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Presented are methods that avoid the need to employ an extrapolation technique in the region
of the critical points for evaluation of the apparent emmissivity of diffuse cylindrical and conical

cavities.

The methods involve appropriate substitutions in the integrands of integral equations that

are used in analytical solutions for determining the thermal radiation characteristics of diffuse and

conical cavities.
are provided in a direct form for computations.

Equations for either isothermal or nonisothermal surface temperature conditions
Numerical results are presented for a general linear
temperature distribution along the length of a cylindrical cavity.

The method is equally applicable

for the solution of other problems in integral equations where discontinuities are encountered.
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1. Introduction

Analytical formulations have been derived [1, 2, 3]
for determining the radiant interchange in finite length
cylindrical cavities, and conical cavities whose bound-
ing surfaces radiate in a gray diffuse manner. These
solutions are in the form of integral equations where,
unfortunately, most of the integrands exhibit discon-
tinuities with finite limits at critical points, such as
the corner of the cylindrical cavity and the apex of the
conical cavity. Numerical solutions of these equa-
tions in the region of the discontinuities have been
previously evaluated by extrapolation techniques.
Also, to a lesser degree of difficulty, some of the in-
tegrands exhibit slope discontinuities, which for accu-
rate numerical results may involve intricate numerical
integration procedures.

The purpose of this paper is to present methods for
numerical evaluation of the apparent emissivity in
these cavities that avoid use of an extrapolation tech-
nique in the region of the critical points. For the main
part, the methods involve appropriate substitutions
which make the integrands go to zero at the critical
points and at the points of slope discontinuity. Im-
petus for this investigation has been the numerical
evaluation of thermal radiation characteristics for
parameters not included in the scope of references 1
and 2. A particular need has been the determination
of the thermal characteristics for low values of the
surface emissivity of shallow cylindrical cavities in-
vestigated by Kelly and Moore [4].

! Figures in brackets indicate the literature references at the end of this paper.

Also presented is a system of integral equations for
determining the thermal characteristics of diffuse
cylindrical and conical cavities whose surfaces are
nonisothermal. A few selected numerical results are
included for the cylindrical cavity with an arbitrary
linear temperature variation over its length.

2. Cylindrical Cavity

Analytical formulations for the apparent emissivity
of the surfaces of cylindrical enclosures have been
derived by Sparrow, Albers, and Eckert [1]. Using
the same nomenclature, their eqs (8) and (9) are pre-
sented here in a different form.

Lld

€a(x))=€+(1—¢€) f €a(x)Ki(x0, x)dx
0

1—;—6- <§—xo) fol €a(r)Ka(xo, r)rdr (1)

1—e€

Ljd
€r)=€e+ 5 fo €a(x)Ks(x, 1) (%—x) dx  (2)

Lo e
2 {(wo—x)2+1}32

where Ki(xo, x)=1—

(z+w)
{22+ (1 —2w)z+ w?}32

Ks(x, n=
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and €, is the apparent emissivity of a surface location;
€a(xo) and €,(r) represent values on the curved surface
and flat surface, respectively, of the cylindrical cavity.
The physical system is described in [1]. L is the
length of the cavity, d is the diameter of the cavity,
x is a ratio of the distance measured along the cavity
wall from the opening to the diameter, and r is the
ratio of the radius of a position on the bottom of the
cavity to the cavity radius, R.

Initial attempts by the author at obtaining numerical
solutions of (1) and (2) were frustrated by the erratic
behavior of the kernels Ka(xy, r) and Ka(x, r) as r ap-
proaches unity and x and xo approach L/d (the corner
of the system). Visual inspection of these kernels
and integrals involved indicates an indeterminate
form at these limits. In correspondence with L. U.
Albers (coauthor of [1]), it was disclosed that an
extrapolation technique was employed in the region
of the corner, and that the results were quite insen-
sitive to wide variations in types of extrapolation.
Attempts at extrapolation by the author proved to be
inconclusive. Indications were that the second dif-
ferences were quite large in this region, showing that
linear extrapolation may be inaccurate.

The suggested method for obtaining solutions is
to make the integrand zero at the corner and make
contributions to the results negligibly small in the
region of the corner. This may be performed by
making the substitutions

€dx)=A¢+ A1z + P(x) 3)
E(z(r):B()+31W+ W(r) (4)

in the integrals of (1) and (2). Ao, A;, By, and B, are
chosen such that ¢(L/d)=$(0)=0 and y11) =y10) =0.
Substitution of the first two terms of (3) and (4) in the
appropriate integrals of (2) and (1), and by rdr=—2dw,

and ((%—x) dx=—dz/2 gives

14 (By + Byw)(zo + w)dw

I, =222
! 0 {0 — 2zom+ 20+ 22192

I, =1 f(L/d)z (Ao + A12)(z+ w)dz
R A P et

From a table of integrals

1 _ 2 I:(QZ() = 1)Bo+ ZZ()(ZO + ])Bl
' (z0+ )12

= 1/2{2Bo+(1 +220)Bl}
_26/231 In [2{(Zt)+1)1/2_2()}]j| (5)

[(L/d)2_ w] [Ao +A1 +A1W] _Al(L/d)z
H{(L/d)?* = w}*+(LId)*]'

+A4:/2In [2{[(L/d)*—w]*+ (L|d)*} 2+ 2AL|d)*+1—2w]
(6)

IQZA()+A]1/U+

The kernel K;(xy, x) has a discontinuous derivative
at x=x9. This did not seem to have an appreciable
effect on the accuracy of numerical integration by
Simpson’s rule if the subdivision of L/d was sufficiently
small. The smaller the increment, the longer becomes
the time needed to compute apparent emissivities,
and it is therefore expedient to use as large an incre-
ment as possible. This can be done by making the
integrand equal to zero at x=x,, and quite small in
the vicinity of xo, or by the substitution

€q(x) = €4(x0) + Nx) (7)

in the first integral of eq (1). Letting

Lld

13 = G(,(.X()){ f ' Kl(xn, x)dx 3P K](.X(). x)dx}
0

Lo

and performing the indicated integration, we obtain
1L 223+ 1

2 (%"‘X())z + 1
I;= €q(x0) [__ 1— . :|

2 2 1/2
a 25+ 1) % { <§—X0> + 1}

With the substitution of (3), (4), and (7), eqs (1) and (2)
become

€dxg)=€+(1—¢ [[;;+f”d Mx)K(x0, x)dx]
0

1 _— 1
e (—2;‘9 {1, -+ (% - x‘,) ﬁ UK. r)rdr} (1a)

o et ge) {12 n f UW O@Ks(x, 1) (%— x) dx}.
(2a)

Numerical solutions were obtained from (la) and
(2a) by the process of iteration, where all numerical
integrations were performed by Simpson’s rule and
employed an increment equal to Yea of the difference
of the limits of integration. This increment was
proved adequate by comparison with results obtained
using an increment of Y128. For a fixed value of L/d,
the kernel functions were computed only one time for
all variations in the surface emissivity, €. Ki(xo, x)
was computed in a one-dimensional array where proper
indexing gave translation about a given value of x,.
Ks(x, r) was computed in two-dimensional array.

Initial values of €,(x) were determined from rather
crude polynomial approximations. Placing the values
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FIGURE 1. Apparent emissivity in a cylindrical cavity, L|/d=2.

for €4(x) in (2a), gave values for €,(r), which with the
values of €4(x) placed in (1a) gave new values for €,(x).
This process was repeated using the new values in
(2a). The number of iterations (n) necessary for con-
vergence was set by the criterion

€dx=0)n—€alx= 0)n—1

cax=0), =< 0.0005

which was usually satisfied for n=4 orless. A typical
time to compute 16 cases involving various values of
L/d and € was about 2 min for an IBM 7094 digital
computer.

Figures 1, 2, 3, and 4 give values for apparent emis-
sivity versus dimension ratios for L/d=2, 1, 0.5, and
0.25, respectively, and for various values of the surface
emissivity, €. Where the same parameters occur,
there is agreement with values given in table 1 of
reference [1] to within 0.1 percent. Figure 5 is a plot
of €4(r=0) versus € for L/d=2,1, 0.5, and 0.25. Figure
6 is a plot of the ratio of the overall emissivity of the
cavity to the surface emissivity (Q/oemR?*T*) versus
efor L/d=2,1,0.5, and 0.25. The ratio was computed
by numerical integration of eq (11b) of [1].
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FIGURE 2. Apparent emissivity in a cylindrical cavity, L/d= 1.

TABLE

1

Values of €4(r=0) and €,r=1)

€ Lid=2 1.0 0.5 0.25

0.9 0.9936 0.9944 | 0.9785 0.9843 | 0.9482 0.9707 109191 0.9600
8 .9860 9877 19532 9659 8924 9371 8361 9149
0 9764 9795 9231 9435 8314 8977 7506 8633
.6 9637 9686 .8862 9153 7640 8504 6619 .8030
5 9460 9534 .8396 8778 6879 .7916 5694 7316
4 9196 9302 7789 8264 6005 .7168 4719 6452
3 8766 8913 6951 1504 4976 6185 .3684 .5388
220 8442 8612 L6401 .6980 4383 5568 3138 4758
52 . 7986 8179 5728 6314 3724 4841 2570 4046
15 51313 7526 4874 5438 .2982 .3973 1977 3237
| .6238 6457 3756 4246 .2136 .2919 1354 2311
.05 L4305 4488 2228 .2554 1156 .1624 0697 1242

Values of Q/(ocemR*T*)

.9 1.0829 1.0801 1.0688 1.0483
8 1.1829 1.1755 1.1482 1.1025
a 1.3060 1.2908 1.2410 1.1637
6 1.4620 1.4330 1.3507 1.2337
.5 1.6662 1.6156 1.4844 1.3138
4 1.9482 1.8540 1.6480 1.4070
3 2.3670 2.1877 1.8543 1:5163
25 2.6609 2.4072 1.9788 1.5784
7 3.0550 2.6770 2.1220 1.6465
15 3.6080 3.0207 2.2880 1.7213
ol 4.4500 34720 2.4840 1.8040
.05 5.8980 4.0920 2.7160 1.8960
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FIGURE 3. Apparent emissivity in a cylindrical cavity, L./d=0.5.
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FIGURE 6. Overall heat transfer rate from cylindrical cavities versus
surface emissivity.

3. Conical Cavity

Analytical solutions for the apparent emissivity
of the surfaces of diffuse conical cavities were de-
rived by Sparrow and Jonsson [2]. Here, the problem
is to evaluate an integral of the form

cos? (6/2)

%y sin (612) Jo ed)Ks(y, t)dt 9

where

1, =+ 6ty sin® (6/2)]
Ky, p=1=lt=y] [(t—y)*+ 4ty sin? (6/2)P2

and y is the ratio of a surface position measured from
the apex to the total length of a cone. The kernel
function Ki(y, t) has a discontinuous derivative at
y=t and a problem arises for the case y=0, which by
visual inspection gives an indeterminant form. This
suggests a substitution of the form

€dt) = €qy)+y(t). (10)

Letting

L) cos?(0/2)

y 1
_m |: ﬁ) K;;(_’y., [)({[+J;/ ](;;(yW [)(II:I
and performing the indicated integration, we obtain
2 sin (6/2)—1  cos? (0/2)
2 sin (6/2) 2y sin (6/2)

-l s o
{(T= % +4y sin® (07} 7

L(y)=

]' (I

For the case y=0, the second term is an indeter-
minant, but can be evaluated by L’Hospital’s rule.

This yields

140)=1—sin? (0/2). (12)
The integral (9) then becomes
2082 (6/2 !
€dNi(y) + _cos” (6/2). YO K(y. t)dt (13)

2y sin (0/2) Jo

where the second term still contains the indetermi-
nant form for y=0. By letting ¢t >0, and applying
L’Hospital’s rule, we find that the integrand goes to
zero. Also, y(0)=0, so that the second term goes to
zero for y=0, and the limit becomes

Li 2082 (0/2 -
e OB [ Kty 0 = e 1 sind 0121

(14)

This is the same result derived by C. H. Page in an
internal NBS' Report (1952), where it was intuitively
assumed that the apparent emissivity at the apex of
the cone would be independent of the length of the
cone, or that the cone appears infinite. The upper
limit of (9) was changed to infinity; this yields €.(t)
constant, hence equal to €,0). Another way to arrive
at this limit for the case y=0 is to assume y(t)= At
+Ast>+. . . in eq (13) and perform the indicated
integration and limiting process which will give the
same result as eq (14).

By making the substitution y=x/L in eq (5) of [2],
the equation for the apparent emissivity of a cavity
maintained at uniform temperature is

G =) {e,,< W)
cos® (6/2) (!

o O | oKty o} a5)

which has a unique solution at y=0,

€
+ (1 —¢€) sin® (0/2)

el0)= = (16)

This is the expression for conical cavities shown by
F. J. Kelly, in a paper soon to be published, as derivable
from the expression for cavities used by Gouffé. It
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is also the expression derived by C. H. Page by another
method (see discussion following eq (14)). Com-
parison with graphical quantities given in [2] for
€[1—¢€40)]/(1 —€) show almost identical agreement.

As in [2], numerical solutions were obtained by the
process of iteration, where initial values of €,(y) were
computed from

€

T1-0—ely) (17

€l \V) 1

Because graphical presentations have appeared in
[2]. numerical values are not shown in this paper.

Equation (17) can be considered a good approxima-
tion to eq (15) for all cavities with surface emissivities
equal to or greater than 0.7 and for all cavities with
apex angles greater than 120° and emissivity greater
than 0.3. For emissivities and apex angles below
the values cited above, the deviation between the two
equations is not acceptable. An example of the per-
centage deviation

_ 100 [ea(y) — €aly)1]

() (18)
€ay)
12, l ‘ l
10.—
8.—
6.1—
4.—
4/ 2.
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y

FIGURE 7. Percentage deviation of eq (17) from eq (15) versus position
Jrom apex of a conical cavity.
Unless otherwise noted. surface emissivity. € =0.3.

for various apex angles is given in figure 7, where the
average deviation over the length is —2.3 percent for

€=0.3 and 6 =45°.

4. Cavities With Nonisothermal Surfaces

Equations 1, 2, and 15, are concerned with cavities
for which the surfaces were assumed isothermal.
In the succeeding paragraphs, there are presented
systems for determining the apparent emissivities of
cylindrical and conical cavities with arbitrary varia-
tions of surface temverature in respect to dimensions
of length and radius, assuming the surface emissivity
is constant and not a function of temperature.

4.1 Cylindrical Cavity

For the cylindrical cavity, the integral equations
take the form

€alte) = lfr(;i;) = ef(xo)+ (1 — OGi[eal®), ead]  (19)
B .
= %%Z eg(n)+ (1 — Gz [ea®)] (20)
where
Té(x0) = T4f(x0): fx0)=Co+Ciy+. . .+Cuy™ (21)
T'r=Tigr); gr)=1+Dr2+. . . ~+ Dyr2k, (22)

y=xo/(L/d), Ty is an arbitrary temperature which is
taken to be the temperature at r=0, and G, and G,
are the coefficients of (1—e€) in (la) and (2a), respec-

tively. Two sets of integral equations are defined by

En(x0) = €y" + (1 —€)G1[En(x), En(r)] (23)

Enr=e+(1—€)G:[Enx)] (24)
n=0,1,2, .. . m

and Mj(xo)= €+ (1 — €)G\[Mjx), Mj(r)] (25)

Mi(r)= ey¥ + (1 — €)Go[Mj(x)] (26)

=12 .. .k

The apparent emissivity is then found from the
following:

€a(x0) = CoEo(xo) + C1E\(x0)+ . . .+ CpEmlxo)
+DiMi(xog)+. . .+ DieMi(xo) (27)
€r)=Coko(r)+ C\Ev(n+. . .+ CLE 1)
+DMr)+. . .+ DiMi(r) (28)
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FIGURE 8. Component apparent emissivity values versus position in
cylindrical cavity (L|d=2.0) for a surface emissivity=0.9.

which satisfies (19) and (20) for C;=Cy—D1—D>— . . .
Dy, which gives continuity to the temperature at
xo=L/d and r=1. Figures 8 and 9 show solutions
of (23) and (24) for €=0.9 and 0.5, respectively, with
L/d=2.0, and n=0, 1, 2, 3, and 4.

One simplifying procedure is to assume that the
bottom of the cavity is isothermal at temperature T.
This eliminates the numerical solutions of (25) and

(26); and (27) and (28) become

Gu(.X()) = 2 C,,E“(X())

n=0

(29)

€r)= i C.E\(r).

n=0

(30)

1.0 T T T T
n=0 ]
9 —
Ep(r)
n=i
8K
n=2
n=3
7 —
n=4
1.0 —
En(Xo)
| | 1 |
oO 2 4 6 .8 1.0
X/L or r/R

FIGURE 9. Component apparent emissivity values versus position in
cylindrical cavity (L|d=2.0) for a surface emissivity =0.5.

The ratio of the cavity radiant heat exchange Q with
the environment through the opening to that of a black
disk of equal area at temperature 7T} is

Q _ ¢
oTimR?> (1—¢)

[45 ﬁ : {f(xo) — €alxo) }dx

+2 f 1 {l—ea(r)}rdr} -3¢0, @

n=0

where

1
Oll:; |:4‘£f {x()l_Ell(x())}dx+2 f() {I_E"(r)}rdr] ’
1_6 d 0 0
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TABLE 2. Component thermal characteristics for a cylindrical
cavity, L/d=0.5, with a nonisothermal wall
= = —
G= 05 0.6 0.7 0.8 0.9
n=0 0.68786 | 0.76398 | 0.83139 | 0.89236 | 0.94823
1 59722 | 68197 | 76344 | 84298 92158
E\(r=0) 2 56747 | 65522 | 74133 | 82695 91295
3 55334 | 64260 | .73095 | .81946 190893
4 54539 | 63554 | 72516 | 81530 90670
n=0 79159 | 85038 | 89769 | .93707 97066
1 74185 | 80906 | 86620 | 91592 196006
EJr=1) 2 72380 | 79416 85485 | .90831 95627
3 71433 | 78637 | 84894 | 90436 95421
4 70850 | 78158 |- .84530 | .90193 95310
n=0 68571 | 76237 | 83139 | .89188 94810
1 1781 | 10232 | 08175 | .05731 102986
EJxo=0) 2 09700 | 08423 | 06729 | .04718 102459
3 08713 | 07574 | .06057 | .04252 02219
4 08143 | 07087 | .05674 | .03988 102084
n=0 7422 8104 8687 9186 9619
1 4802 5223 5576 5876 6136
Ou 2 4006 4662 4921 5149
3 13630 14240 4484 4703
4 3412 .3999 4238 4453
TABLE 3. Component thermal characteristics for a cylindrical
cavity, L/d= 1, with a nonisothermal wall
G= 0.5 0.6 0.7 0.8 0.9
n=0 0.83957 | 0.88625 | 0.92309 | 0.95324 | 0.97847
1 70223 | 76827 | 82950 | .88782 94438
Er=0) 2 64592 | 71951 | 79050 | .86032 192993
3 61520 | 69291 | 76914 | .84521 92196
4 59658 | 67656 | .75593 | .83583 91700
n=0 87784 | 91531 | 94353 | 96591 98431
1 79987 | 85305 | .89741 | .93563 96942
Er=1) 2 76831 | 82782 | .87869 | .92333 96338
3 75077 | 81384 | 86831 | 91651 196003
4 73989 | 80500 | .86170 | 91216 95789
n=0 70148 | 77174 | 83533 | .89394 194858
1 09719 | 08009 | 06114 | .04117 102068
Eixo=0) 2 06924 | 05627 | .04237 | .02816 01396
3 05704 | 04613 | 03455 | .02284 01127
4 05059 | 04075 | .03043 | .02007 100988
n=0 8078 9036 9404 9721
1 4088 4334 4401 4447
Qu 2 3018 3149 3176 3189
3 12552 12651 2671 2682
4 2281 2382 12405 2419

TABLE 4. Component thermal
cavity, L/d=2, with

characteristics for a cylindrical
a nonisothermal wall

E.(r=0)

E\r=1)

Exy=0)

€= 0.5 0.6 0.7 0.8 0.9
n=0 0.94601 0.96371 0.97639 | 0.98599 0.99364
1 .81188 85575 89514 93171 96644
2 74333 79923 .85163 90204 95130
3 70026 .76313 82354 .88269 94132
4 67076 .73806 .80386 .86902 93423
n=0 95338 96864 97949 98773 .99436
1 86738 90331 .93281 .95796 .98006
2 82589 87139 90974 94312 97288
3 .80054 85166 .89543 93388 .96840
4 78341 .83819 .88559 92750 .96530
n=0 70647 77428 .83653 .89437 .94868
1 06475 05108 03755 .02455 01204
2 03595 02713 .01920 01209 00573
3 .02561 01890 .01309 00809 .00376
4 02066 .01500 01034 00633 .00292
n=0 .8331 8772 9142 9463 9746
1 .2884 .2863 .2835 .2801 .2766
2 1737 1679 1628 1580 1534
3 1309 1258 1210 1167 1130
4 1087 1051 1012 0977 0948

Tables 2, 3. and 4 give values of the component
thermal radiation characteristics E, (r=0), E,(r=1),
E,(xo=0) and Q, for L/d=2. 1. and 0.5, €=0.5. 0.6,
0.7. 0.8, and 0.9, and n=0. 1. 2. 3. and 4. For the
sake of a numerical example, assume a cylindrical
cavity, €=0.7, where the temperature decreases
linearly from a temperature T, at its base to a value
0.97, at the open end, or, from (21), f(x)=0.6561+
0.2916y+ 0.0486y> + 0.0036y* + 0.0001y*. For L/d=2.
from eq (31) and table 4, we find

=0.6561 X 0.9142 + 0.2916 X 0.2835

oTimR2
+0.048 X 0.1628 + 0.0036 X 0.1210
+0.0001 X 0.1012=0.6908

which is compared to a value of 0.9142 for the iso-
thermal cavity at 7.

4.2. Conical Cavity

For the conical cavity, the integral equation takes
the form

B(y)

€ly) = ol €f(») +(1 —e)Gyledt)] (32)

where

and Tj is the temperature at the apex of the cone,
Gsl€eq(t)] is the coefficient of (1 —€) in (15) and B(y) is the
radiant emission.

A set of m integral equations is defined by

Ew(y) = €ey" +(1 — €)Gsl€ald)] (34)
n=0,1,2,...,m
Then the apparent emissivity is
ea(y) = Eo(y) =F C1E1(y) F oo oTF CmEm(y). (35)

Evaluation of (34) for substitution in (35) gives an exact
solution to (32). An approximation from eq (17) useful
within the limits cited in section 3 is

/()

“N=1"a ol

(36)

5. Discussion

Sections 2 and 3 present an analytical treatment by
appropriate substitution in integrals which exhibit
slope discontinuities or apparent discontinuities or
both at critical points, such as the corner of a cylin-
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drical cavity and the apex of a conical cavity. The
substitutions (3), (4), (7), and (10) make the appropriate
integrands go to zero when evaluated at the critical
points and points of slope discontinuity, whereby the
awkward behavior of the integrand is practically elimi-
nated. With the transformed problem, as given by
(la), (2a), and (15), accurate numerical results are
readily obtained by use of a sufficiently small integra-
tion step and the fulfillment of the convergence cri-
terion for the successive iterations.

It may be remarked that the very good agreement
found between the numerical results arrived at by
extrapolation in references 1, 2, and 3, and the rigorous
analytical formulation given here shows that any error
introduced by linear extrapolation was negligible.
However, to avoid the uncertainties involved in ex-
trapolation, this paper does provide the equations
(isothermal and nonisothermal) in a direct form for
computation. The suggested method is equally ap-
plicable in other cases of integral equations in which
similar discontinuities are encountered.

The nonisothermal cylindrical cavity has been
treated by Sparrow [5]. For the same values of the
parameters, there is generally good agreement between
the numerical results presented in this paper and
reference 5. Two assumptions were made in the
treatment [5]; namely, (1) the temperature over the
base of the cavity was isothermal, and (2) the apparent
emissivity over the base was constant. For relatively

deep cavities, these assumptions can be considered
reasonable, but for shallow cavities there is some ques-
tion as to the validity of these assumptions. Figures
2, 3, and 4, for example, show a considerable variation
of apparent emissivity €,(r) over the base of the cavity.

Although numerical results are not presented in this
paper for temperature variations over the base of the
cavity, this can be accomplished by evaluation of eqs
(25) and (26). Also, numerical results are presented
for general linear temperature distributions, but may
be evaluated for all temperature distributions that may
be represented in a polynomial or transcendental form.

6. References

[1] E. M. Sparrow. L. U. Albers. and E. R. G. Eckert, Thermal radia-
tion characteristics of cylindrical enclosures, J. Heat Transfer.
Trans. ASME. Series C 84, 73-81 (1962).

[2] E. M. Sparrow and V. K. Jonsson. Radiant emission character-
istics of diffuse conical cavities. J. Opt. Soc. Am. 53, 816-821
(1963).

[3] S. H. Lin. Radiant Interchange in Cavities and Passages with
Specularly and Diffusely Reflecting Surfaces, Ph. D. Thesis,
Department of Mechanical Engineering, University of Minne-
sota, Minneapolis, Minn., March 1964.

[4] F. J. Kelly and D. G. Moore, A test of analytical expressions for
the thermal emissivity of shallow cylindrical cavities, Appl.
Opt. 4, 31 (1965).

[5] E. M. Sparrow, Radiant emission characteristics of nonisothermal
cylindrical cavities, Appl. Opt. 4, 41-43 (1965).

(Paper 70C2-224)

147



	jresv70Cn2p_139
	jresv70Cn2p_140
	jresv70Cn2p_141
	jresv70Cn2p_142
	jresv70Cn2p_143
	jresv70Cn2p_144
	jresv70Cn2p_145
	jresv70Cn2p_146
	jresv70Cn2p_147
	jresv70Cn2p_148

