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The mathematics of wave propagation in a viscoelastic filament subjected to constant velocity

transverse impact is discussed.

The equations governing the stress-strain-time behavior are as-

sumed to be those for a linear model consisting of a spring coupled in parallel with a spring and dash-

pot in series.

The nature of the solution is discussed, and a method is described for calculating the

configuration, and the stress, strain, and particle velocity distributions along the impacted filament.
The method used consists of an integration along the characteristics of the system of differential

equations describing the problem.
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1. Introduction

When a flexible filament is struck transversely by
a high velocity projectile, strain waves and waves of
transverse motion are generated. The associated
displacement of filament material can be recorded
by high speed photography, and the resulting data
can be analyzed to obtain the stress-strain, creep, and
stress relaxation behavior of the material under im-
pact conditions. Research of this type has been
described by Petterson et al., [1, 2, 3]' and Smith
etal.,[4,5,6].

A theory originated by Rachmatulin [7], Taylor
[8, 9], and von Karman [10], and modified by Smith
et al., [11, 12] has been used to analyze the experi-
mental data. This theory, however, requires addi-
tional modification in order to account adequately
for viscoelastic effects. Malvern [13, 14] has helped
in this respect by proposing a simple rate-dependent
constitutive equation for approximating these effects,
and has used it in treating the longitudinal impact
problem. Further insight may be gained through the
work of Lee and Kanter [15], Glauz and Lee [16],
Morrison [17], and Smith [18] who have investigated
the behavior of various linear spring and dashpot
models subjected to longitudinal impact.

Transverse impact of materials having rate-de-
pendent constitutive equations has received less
attention. Cristescu [19, 20, 21, 22, 23| has discussed

! Figures in brackets indicate the literature references at the end of this paper.

various aspects of the problem of strain wave propa-
gation and transverse wave motion in strings, including
some strings with stress-strain-time behavior given
by rate dependent constitutive equations. For some
cases solutions calculated by a digital computer were
obtained by integration along the characteristics of
the system of differential equations describing the
problem, but usually only continuous solutions were
considered.

The problem of transverse impact at constant
velocity involves a solution in which the strain is dis-
continuous at the strain wave front, and the slope of
the filament is discontinuous at the front of a wave of
transverse motion. This latter problem will be dis-
cussed here. and a solution obtained by an extension
of the methods of Cristescu. The understanding
gained is expected to be of use in the design and
analysis of future experiments.

2. The Model

The constitutive equation governing the stress-
strain-time behavior of the filament is that for the
three-element linear spring and dashpot model
depicted in figure 1. The longitudinal impact behavior
of this model has been treated previously by Morrison
[17] and Smith [18]. In the model the Hooke’s law
constants of the two springs are g; and g, and the
viscosity constant of the dashpot y;. T is the total
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Linear spring and dashpot model consisting of two
springs and one dashpot.

FIGURE 1.

force, € the strain, and ¢t the time. The constitutive

equation is
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It is more convenient to represent the model in
terms of other parameters. Thus let g1=M\g, g2=
(1—M)g, yi=MAgr. The parameter 7=1y,/g; is the re-
laxation time of the Maxwell element constituting one
branch of the model, and X is a dimensionless parame-
ter that takes on values between 0 and 1. When
A= 0 the model degenerates into a spring of modulus
2, and when A=1 the model becomes a Maxwell
element. For practical applications a value of A of
approximately 0.1 coupled with a relaxation time 7
less than the observation time following an impact is
of interest. Such a model would be mostly springlike
in its behavior, but would exhibit noticeable visco-
elastic effects shortly after impact. Another con-

venient parameter is ¢= 'V g/m, the velocity at which a
strain wave front propagates in the filament. The
quantity m is the mass per unit length of the unstrained
filament. Equation (1) expressed in the parameters
7, N\, ¢ becomes

_ar 1, ‘
T 6_8t+7' i @)

e 8_e+ (1 —N)me?
ot
3. Formulation of the Problem

In the laboratory or observer’s coordinate system,
; . . .
let x" and y'" denote the horizontal and vertical coordi-

nates respectively. At time t=0 let the filament at
x'=0 be impacted at constant velocity V in the y’
direction. The motion of the filament is to be de-
scribed in terms of a Lagrangian coordinate system;
i.e., a system of x coordinates fixed to the filament,
moving and extending with it, but such that in the
initial unstrained state the x and x" coordinates of the
filament coincide. The displacement of any point x
of the filament at time ¢ relative to its original position
is given by &(x, t) for horizontal displacements, and
n(x, t) for vertical displacements. The location in
the laboratory coordinate system of a point x on the
filament is thus given by

x'=x+E&x, ), y' =mn(x, t). (3a,b)
Consider an element of unstrained length Ax. After

impact, this element is strained, and its new length
measured in the laboratory coordinate system becomes
Ax \/(l +09€/0x)*+ (dm/dx)>. The increase in length
per unit length, or strain €, is thus

e=V(1+ 9¢/92)*+ (am/dx)* — 1. (4)

The angle 0 that the element makes with the hori-
zontal is given by

L (142) - L0

cos 0=

1+e ax 1+eax ©2b

so that the differential equations that govern the motion
of the small element are

m aLérIi('[' Ccos 0)2i [ L <l +§—§>]

at*  dx ax | 1+e dx
m__ 9 . o[ T 67)]
_ — T _ — e .
M ox (£ sin 6) 9x [l +e€ dx 194,0)

Equations (6a) and (6b) can be incorporated into a
system of linear equations by introducing the hori-
zontal and vertical components of the velocity (in x’,
y' space) of a point on the filament

u=0aé&/ot. v=0m/ot (7a, b)
and the direction variables a, B defined by
9¢ am
=1+ =21. :
“ ax A 0x (Ba)

It is also helpful to introduce the flow or particle
velocity w of a point along the direction of the filament.
An increment of this velocity dw has horizontal and
vertical components du and dv respectively and thus
satisfies the relation

dw=du cos 0+ dv sin 6. (9)
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The system of linear equations becomes

%:%[m(?ie)] (10a)
h_d [m—‘fi—e)] (10)
%:% (10¢)
b_%P (10d)
(lezlietla-f-]ﬁfdﬁ (10e)
dw= l ie du+ T+e dv (10f)
111('3%4-&:%@ e=%+% T. (10g)

Equation (10e) is the differential form of eq (4).
The seven variables w., v, w. a, B, €, and T must
satisfy the initial conditions: For t=0, x >0

u=v=w=RB=e=T=0,a=1 (11)

and the boundary conditions: For ¢t >0, x=0

u=0,v=V (12a, b)

and fort >0, x— =

u=v=w=B=e=T=0, a=1. (13)
If conditions (12) are substituted into eq (10f), an
additional boundary condition: For t >0, x=0
w=a constant (14)
is obtained. The value of this constant velocity is
attained at the instant of impact, before any creep or
stress relaxation has occurred, and thus is the same as
that given in the solution for the springlike filament
discussed in the next section.
In addition to the initial and boundary conditions,
certain compatibility conditions, to be given later,
must be satisfied.

4. Solution for the Case =0

When A=0 the model degenerates to a spring of
Hooke’s law constant g. The solution for this case,
discussed in detail elsewhere [11] is illustrated in

Ol [+e)R-ceft —

ot — el

e

FIGURE 2. Configuration of a spring-like filament at time t after

transverse impact.

The filament, originally horizontal, was struck with velocity ¥ in the vertical direction.
After time ¢ the resulting strain wave propagating with velocity ¢ has a front at F, and the
filament becomes uniformly strained at strain €. The strained material between points
F and B moves inward horizontally with velocity — ceg, but at the transverse wave front,
point B, this inward motion ceases. Material in the transverse wave moves vertically
with velocity V. The transverse wave front moves with velocity Py relative to points fixed
on the filament, but with velocity (1+€)P,— ce, with respect to the laboratory (x', y’)
coordinate system.

figure 2.  The impact causes a wave of constant strain
€0 and constant tension T, to propagate along the
filament at velocity ¢, so that at time ¢ the strain wave
front has arrived at point F. In the wake of this
wave front the strained material flows inward at ve-
locity —cey.  The increase in length of the filament
is taken up by a wave of transverse motion. which at
the time ¢ has a front at point B.

In the transverse wave the filament material moves
in the y" direction at the impact velocity ¥, and there
is no component of velocity in the x" direction. The
profile of the wave is a straight line. The transverse

wave front moves at velocity Py=VTo/m(1+ €) rela-
tive to the Lagragian coordinate system, so that the
length of strained filament AB as measured in the
x", y' system is equal to (14 €¢)P¢7T, and the horizon-
tal projection of this length is [(1+4 €¢)Po— ceo]t.

As OAB is a right triangle, the following relationship
applies

V2= (1+ €02 — [(1 = Eu)l’n*(fo]z' k)

If the mass per unit length m and Hooke’s law con-
stant g are known for the specimen, the velocities
¢ and Py can be calculated for any strain €y, and upon
substituting these values into eq (15), the value of
€0 corresponding to any transverse impact velocity
V' can be found.

In the region between the strain wave front and the
transverse wave front, the particle velocity w and the
horizontal velocity u are both constant and equal to
—cey. In the region of the transverse wave, u =0 but
the velocity w remains equal to —cey, even though in
the x'. y' coordinate system there is no observable
flow of material longitudinally along the filament.
This paradox can be explained by the following inter-
pretation of the particle velocity w. Suppose that

259



there is a second filament, inextensible and fixed to
the impacted filament at a point a great distance in
advance of the strain wave front. Before impact let
the two filaments coincide with the inextensible fila-
ment ending at the point of impact, and after impact
let the inextensible filament be constrained to move
alongside the impacted filament. Under these con-
ditions the point under impact will recede from the
end of the inextensible filament with velocity w.

The solution for the limit case A= 0 can be stated
briefly as follows. The quantities w, €, and T are
continuous between the point of impact and the strain
wave front at x=ct, and have the following values:

w=— cey, €= €9y, I'=mc*, (16a.b.c)
where € is found by solving eq (15). The quantities
u, v, «, B are discontinuous at the transverse wave

front x=Pot =tV To/m(1 + €).

For 0= x < Pyt
u=0,v=V
a=(1+e€p) cos 6=1+¢€y—ceo/Po(17a.b.c.d)
B=(1+¢€p) sin 0=—V/P,

and for Pot < x < ct

u=w=—ceyp, v=B=0,a=1+e€, (18a.b.c)

The limit solution just presented indicates the type
of solution to be sought for the general case where
A > 0; namely, a solution in which w. €. and T are
continuous between the point of impact and the strain
wave front, and u, v, a, and B are continuous only be-
tween the point of impact and the transverse wave
front. A method for finding this solution by integrating
along the characteristics of the system of differential
equations will be developed in the succeeding sections.

5. The Characteristics of the System of
Equations

If the variables u, v. @, and B are eliminated from
eqs (10a) through (10g) the following set of equations
results.?

ow_1aT
Jat  mox
ow_ade
dx  dt
= 2
mc? E%—L A)171£_€:£+l T.
Jat T it 7

(19a.b.c)

2 Equations (19a) through (19¢) plus the boundary conditions of eqs (11) through (14)
involving w. €. and T are the same as the equations and boundary conditiors for longitudinal
impact at constant velocity —ce,. The distribution of w. €. and T can be calculated from
the solutions for this case given by Morrison [17] and Smith [18]. However. the subsequent
determination of values for u. v. @, and B from eqs (10a) through (10d) would be difficult
and will not be attempted here by this method.

These equations then can be arranged to obtain

dw dw oT ad
mc(a[-i-cax)—(a[—l-CaD ==
Jw Jw ol J
e (at ax) (at aD =l

For differentiations along curves
given by

N)mc’e]

N)mce|.

of the families

dx/dt==*c (20)
the expressions in parentheses may be replaced by
total derivatives so that the equations reduce to: Along
the curves given by dx/dt=c

medw—dT= [T — Nmc’e |dt/r (21a)
and along the curves given by dx/dt=—c
medw~+dT=—[T—(1— N Nmc*e]dt/r.  (21b)

The curves satisfying eq (20) are known as charac-
teristics.
If P=VT/m(1+e¢), eq (10a) can be expressed in the

form

which can be combined with eq (10c) to obtain the
expressions

ou | ,ou__ ( )

= ==Y + P + o — (P2

at dx at 0x (}ax )
au_pdi__p (a—a—[’aa)-f-aa—(f’z).
Jat ox ot dx dx

Along curves of the families given b
=] &

dx/dt==P (22)

these expressions reduce to

du da )

dr ==*P 11+a. (P?). (23a)
Similarly eqs (10b) and (10d) yield

dv dp ® 5

—_— a2 bl L 5P

dt =P dt e ax L) (23b)

Equations (23a) and (23b) can be combined to give:
Along the curves given by dx/dt= P

Bdu—adv=PBda— PadB (24a)
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and along the curves given by dx/dt=—P

Bdu—adv=—PBda+ PadpB (24b)
The curves satisfying eq (22) are additional charac-
teristics.

Other equations holding along these characteristics
can be found by the following manipulation involving

eqs (19a) and (19b).

9 pry— 1+ 0T/6x)—Tloe/Ix)
0x m(1 + €)?

ST
|l +€|moax 0x

But along curves defined by dx/dt=P

19T _dw_dw_pow
madix dt dt ox
and
p2 ai:p d_G_ )a_e:,)(ﬁﬁ )ﬂ
ax dt at dt ax
so that

I ppy_ L [dw ., de]
EE(I )= 1+e [(1! J ([[]

Thus along curves defined by dx/dt= P, eqs (23a) and
(23b) reduce to

(1+ €)(du — Pdo) = o dw — Pcde)

(25a.b)
(1+€)(dv — PdB)= B(dw — Pde)
Similarly along curves defined by dx/dt=—P
(1+ €)(du + Pda)= a(dw + Pde)
(26a.b)

(1+€)(dv+ PdB)= B(dw+ Pde)

Along characteristic curves in x, ¢ space the inte-
gral surface of the system of differential equations
may have discontinuities. It should be noted that the
characteristic curve x=ct determines the discon-
tinuous wave front for the stress, strain and particle
velocity distributions, and the characteristic curve
that passes through the origin and is a solution of the
equation dx/dt =P, determines the front of the trans-
verse wave where the quantities u, v, «, and B are
discontinuous.

6. Compatibility Conditions

An obvious requirement of the solution is that the
displacements & and 1 be continuous at all points along
the filament. The partial derivatives of these quan-

tities with respect to x and ¢, however, are not nec-
essarily continuous at the strain wave front and at
the transverse wave front. At these places of dis-
continuity, according to the principle of kinematic
compatibility [24]. the following relations hold:

o) [] =0

om) dx @F
[ax] dt+[at &

where the bracketed quantities represent jumps in
value occasioned by the passage of a wave front at
the point under consideration. For instance, at the
point x the expression [€] is defined as

(27a,b)

[e] = gl_{]% {elx, t+0)— e(x, 1)}.

The strain wave front velocity is greater than the
transverse wave front velocity. Therefore at the
strain wave front, where dx/dt =c, it follows that n =0
and, from eq (4), 0é/0x=€. Equation (27a) then yields
the relation

[e] =—1 [w]. (28)

Similarly at the transverse wave front, where dx/dt=P,
eqs (27a) and (27b) yield

[a—1]=—7 4]
(29a,b)
[8]=—[v]
As [a—1]=a—1—e¢, [u]l=u—w, [B]=pB, and

[v] =v, where «, u, B, and v refer to values in the
wake of the wave front, eqs (29a) and (29b) can be
expressed more conveniently as

a=1+e—u/P+w/P
(30a,b)
B=—uv/P

Another compatibility condition is obtained as fol-
lows. Consider a point x on the filament. Just before
arrival of the strain wave front at time ¢, the tension
T and particle velocity w are both zero. At a slightly
later time ¢+ At=t-+ Ax/c, the tension is — Ax(dT/dx)
and the particle velocity is (Ax/c) (dw/dt). Thus the
jump relations for T and w are [T]=— Ax(dT/dx) and

[w]= (Ax/c) (0w/dt). Application of eq (19a) then
yields the condition of dynamic compatibility
[T1=— mclw]. (31)
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7. Values of the Tension, Strain, and Particle
Velocity at the Strain Wave Front

Equation (21a) is a differential relation involving
the tension 7T, strain €, and particle velocity w, that
holds at the strain wave front. Hence if values of T
and w from eqs (28) and (31) are substituted into this
relation, it becomes 2de=—(\€/7)dt, which when
integrated yields

e(ct, t)=€(0, 0)e~ /20, (32)
Substituting this result into eqs (28) and (31) then
gives

w(ct, t)=—ce(0,0)e-(A/27) (33)

T(ct, t)=mc2e(0,0)eA27), (34)

When x =t=0 the strain and transverse wave fronts
coincide. If values at t=x=0 are designated by a
zero subscript, the boundary conditions give uo=0,
vo=V, and eqs (30a) and (30b) reduce to

Qo= 1+€0_C€0/P0
(35a,b)
Boz— V/Po

Thus eq (4) expressed as a3+ BZ=(1+ €y)?, can be put

in the form V2=P2(1+¢€,2— [(1+ €)Po—cer]?. But
Po=c Veo/(1+€p) so that
12/c2=€o(1 + €o) — [V eo(l + €0) — €0 ]3. (36)

The value of € to be used in eqs (32), (33), and (34)
is obtained by solving eq (36).

8. Integration Along the Characteristics

A numerical solution to the system of differential
eqs (10a) through (10g) and the initial and boundary
conditions (11) through (14) can be found by integrating
along the characteristics of the system. The nature
of the problem and the method of solution are easily
understood from an inspection of figure 3, in which
some of the characteristics are plotted.

The straight line characteristics of positive slope are
solutions of the equation dx/dt=c. Their slope is
equal to 1/c. The other straight line characteristics
completing the network are solutions of the equation
dx/dt=—c. The characteristic passing through the
origin, and having the equation x=ct corresponds to
the discontinuity marking the wave front of the strain,
tension, and particle velocity distributions. Thus in
the domain between this characteristic and the x axis
the strain €, tension 7, and particle velocity w are zero.
Along the characteristic the values of €, w, and T are
given by eqs (32), (33), and (34). These equations thus

t AXIS

x AXIS

FIGURE 3. A plot of the characteristics network.

The straight line characteristics of positive slope are solutions of the equation dx/dt=c.
The straight line characteristics of negative slope are solutions of the equation dx/dt=—c.
The straight line characteristic through the origin has the equation x =ct, or equation of
the strain wave front. The curved characteristic passing through the origin is that solution

of the equation dx/dt= \/T/m(l + ¢ that gives the location of the transverse wave front.

may be thought of as boundary conditions holding
along the characteristic x =ct.

The curved line passing through the origin represents
a solution of the characteristic equation dx/dt=P.
The exact course of this characteristic is not known in
advance, as P is a function of € and 7. This charac-
teristic corresponds to the front of the wave of trans-
verse motion that propagates along the filament; thus
in the domain between this characteristic and the
characteristic x=ct the velocity u is equivalent to the
velocity w, the direction variable « is equal to 1+,
and the velocity v and direction variable B8 are equal to
zero. The jump relations (30a) and (30b) holding along
the transverse wave front characteristic constitute a
second set of boundary conditions.

A third set of boundary conditions expressed by eqs
(12a), (12b), and (14) holds along the time axis.

The problem consists in finding the values of w,
€, and T at all of the mesh points in the domain be-
tween and along the time axis and the characteristic
x=ct, in finding the course of the transverse wave
front characteristic, and in finding the values of u,
v, a, and B at all of the mesh points between and
along the time axis and the transverse wave front
characteristic. The values of these quantities must
satisfy the differential relations (10e), and (10f), the
relation (10g) holding along the line x=a constant,
the differential relations (21a), (21b), (24a), (24b),
(25a), (25b), (26a), and (26b) holding along the char-
acteristics, and the boundary conditions.

A first step towards the solution consists in solving
eq (36) for the initial strain €, at the point of impact.
The values of €, w, and T along the characteristic
x=ct are then given by eqs (32), (33), and (34).

Values of €, w, and T are then found at the first mesh
point on the time axis above the origin. Figure 4a
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FIGURE 4. Mesh situations encountered during integration of the
system of differential equations along the characteristics network.

depicts one of the triangular meshes lying along the
t axis. In the lowest mesh points the values of
€. w, and T are known, and from the boundary condi-
tion (14) w is known to be constant along the r axis.
The strain € and tension 7" are found by solving eq
(21b), which holds along the characteristic of negative
slope, and eq (10g), which holds along the ¢ axis.
These equations can be expressed in the form

T—Ty=—[To—(1 — Nmc2E: | At/r — mc(w, — ws)

mce—e)—(T—T) = Z[Tl —(1 — Nmc*E ] At/T

(37a, b)

where At=t—1t, and 2At=t—1t,. An iterative proc-
ess is used in the solution. The quantities Ty, T..
Ei. and E, are first set equal to Ty, T, €, and €., re-
spectively, and approximate values are found for T

and €. The quantities Ty, T>. E;, and E. are then
assigned the average values (T+T))/2, (T+ Ty)/2.

(e+&)/2, and (e+e2)/2, respectively, and eqs (37a)
and (37b) are solved again for more accurate values
of T and €. Another iteration may be performed if
desired.

Figure 4b depicts a rhombus shaped mesh formed
by the intersection of characteristics. If values of
€. w. and T are known at each of points 1, 2, and 3
the values of €, w, and T at the vertex are found by
solving the system of equations; eq (2la) which
holds along the upper characteristic passing through
point 1, eq (10g) which holds along the vertical line
passing through point 2, and eq (21b) which holds
along the upper characteristic passing through point 3.
The solution is found by an iterative process similar to
that just described.

By applying successively the methods of solution
associated with the mesh types depicted in figures 4a

and 4b, values of €, w, and T can be found at each of
the mesh points in the domain between the ¢ axis
and the characteristic x=ct.

The values of @ and B at the origin are next calcu-
lated from eqs (30a) and (30b). The values of « and v
are already known from the boundary conditions.
The solution for the mesh situation depicted in figure
4c can then be used to determine the course of the
transverse wave front characteristic and the values of
e,w, T, u, v,a,andB at its intersections with the other
characteristics. In figure 4c¢ the quantities €, w. T, u,
v, a, and B are known at point 1, and the values of
e, w, and T are known at points 2 and 3. The values
of €, w, T, u, v, a, and B are required at the intersec-
tion of the transverse wave front characteristic with
the characteristic passing through points 2 and 3.

As a first step P is set equal to V' T1/m(1 +€;) and the
line (x—x;)=P(t—t;) is drawn through point 1 to
intersect the characteristic between points 2 and 3.
The values of T and € at the intersection are deter-
mined by interpolation. The quantity P is then set
equal to VT/m(1 + E), where T and E are the averages
of T and Ty, and € and €, respectively. One or two
iterations are performed to obtain more accurate values
of T and € and the coordinates (x, t) of the intersection.
The value of w at the intersection is then found by
interpolation. The values of u, v, «, and B at the
intersection are found by solving the set of four equa-
tions (30a), (30b), (25a), and (25b) expressed in the
form

u—u—Pla—a)=—— [w—

1. — Ple —
T w, — Ple—€))]

wPa—w- P(l'+€)

v—uv—PB—B1)= €1)]

Tre [w— w1 — Ple—

v+PB=0. (38a.,b.c.d)

In the solution process 4 and B are first set equal to
ay and B respectively and in subsequent iterations
set equal to the average values along the transverse
wave front characteristic.

Solutions are needed for two additional mesh situa-
tions in order to find the values of u, v, a, and 8 at the
mesh points between the ¢ axis and the transverse
wave front characteristic. Figure 4d depicts a mesh
of the type found along the ¢ axis. The characteristic
between points 1 and 3 may be either the transverse
wave front characteristic or one of the solutions of the
characteristic equation dx/dt=c. Usually the mesh
is triangular in shape with point 1 lying on the ¢ axis,
but sometimes when the transverse wave front charac-
teristic has a steep slope, the mesh has the more
general form shown. The values of €, w, T, u, v, a, 8
and the coordinates x and ¢ are known at points 1 and 3,
and the values of u, v, w, €, and T are known at point 4.
The values of « and B at point 4 are required. As a
first step the characteristic of slope —1/P is drawn
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between points 4 and 2. In this construction iteration
and interpolation processes are used to determine
values of P, €, and T,, and the coordinates (x, t2) of
point 2. Interpolated values for us, v2, @, B2, and w:
are calculated next. The values of a and B at point
4 are then obtained by solving eqs (26a) and (26b).

Figure 4e depicts a four-sided mesh in which the
characteristic between points 3 and 5 may be either
the transverse wave front characteristic or a solution
of the characteristic equation dx/dt=c. Values of
u, v, w, a, B, €, and T are known at points 1, 3, and 5,
and values of €, w, and T are known at point 6. The
values of u, v, @, and B at point 6 are required. To
find the solution lines of slope +1/P and —1/P are
constructed to intersect at points 2 and 4, respec-
tively, and values of u, v, w, a, B, €, and T are deter-
mined at these points. The values of u and « at point
6 are then obtained by solving eqs (25a) and (26a)
expressed in the form

—a») [W(;_WZ—P(Gﬁ—EZ)]

V=TT E

[ws — w4t P(es — 54)] .
(39a.b)

The values of v and B8 at point 6 are obtained similarly
by solving eqs (25b) and (26b).

By systematically applying the methods of solution
outlined for the five mesh types depicted in figure 4,
it is possible to calculate numerical values of €, w, T,
u, v, , and B at any distance x along the filament,
and at any time t.

In order to find the configuration of the filament in
laboratory (x', ') coordinates it is only necessary to
calculate appropriate values of ¢(x, t), and n(x, t) by
integrating u(x, t) and v(x, t) with respect to time. It
is of special interest to perform this calculation in
order to determine how much curvature is introduced
into the transverse wave portion of the filament by the
creep and stress relaxation processes that occur after
impact.

A
u—zL4+[’(a—a4)=m

The methods of calculation just described have been
incorporated into a set of programs for use with a digital
computer. Calculations have been made for various
values of the propagation velocity ¢, impact velocity V,
relaxation time 7, and parameter \ that approximate
conditions realized in tests on real materials. It is
planned to present some of the results of these calcula-
tions in a later publication.

9. References

[1] D. R. Petterson, G. M. Stewart, F. A. Odell, and R. C. Maheux,
Textile Research J. 30, 411 (1960).
[2] D. R. Petterson and G. M. Stewart, Textile Research J. 30,
422 (1960).
[3] J. W. Jameson, G. M. Stewart, D. R. Petterson, and F. A. Odell,
Textile Research J. 32, 858 (1962).
[4] J. C. Smith, C. A. Fenstermaker, and P. J. Shouse, Textile
Research J. 33, 919 (1963).
[5] J. C. Smith, C. A. Fenstermaker, and P. J. Shouse, Textile
Research J. 35, 743 (1965).
[6] C. A. Fenstermaker and J. C. Smith, Applied Polymer Symposia
1, 125 (1965).
[7] Kh. A. Rachmatulin, Prikl. Mat. i. Mech. 9, 91 (1945).
[8] G. L. Taylor, Scientific Papers of G. I. Taylor, Vol. 1, Paper
No. 30, 456, Cambridge University Press (1958).
[9] G. 1. Taylor, Scientific Papers of G. I. Taylor, Vol. 1, Paper
No. 32, 467, Cambridge University Press (1958).
[10] T. von Karman and P. Duwez, J. Appl. Phys. 21, 987 (1950).
[11] J. C. Smith, F. L. McCrackin, and H. F. Schiefer, J. Res. NBS
60, 517 (1958); Textile Res. J. 28, 288 (1958).
[12] J. C. Smith, J. M. Blandford, and K. M. Towne, Textile Res. J.
32, 67 (1962).
[13] L. E. Malvern, J. Appl. Mech. 18, 203 (1951).
[14] L. E. Malvern, Quart. Appl. Math. 8, 405 (1951).
[15] E. H. Lee and I. Kanter, J. Appl. Phys. 24, 1115 (1953).
[16] R. D. Glauz and E. H. Lee, J. Appl. Phys. 25, 947 (1954).
[17] J. A. Morrison, Quart. Appl. Math. 14, 153 (1956).
[18] J. C. Smith, J. Appl. Phys. 37, 1697 (1966).
[19] N. Cristescu, Arch. Mech. Stos. 12, 597 (1960).
[20] N. Cristescu, J. Mech. Phys. Solids 9, 165 (1961).
[21] N. Cristescu, Arch. Mech. Stos. 15, 47 (1963).
[22] N. Cristescu, International Symposium on Stress Waves in
Anelastic Solids, p. 118 (Springer Verlag, 1964).
[23] N. Cristescu, J. Mech. Phys. Solids 12, 269 (1964).
[24] A. G. Webster, Partial Differential Equations of Mathematical
Physics, p. 283, 2d ed. (Dover, 1955).

(Paper 70B4—187)

264



	jresv70Bn4p_257
	jresv70Bn4p_258
	jresv70Bn4p_259
	jresv70Bn4p_260
	jresv70Bn4p_261
	jresv70Bn4p_262
	jresv70Bn4p_263
	jresv70Bn4p_264

