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The mathe matics of wave propagation in a viscoelastic filament subjec ted to cons tant veloc ity 
trans verse impact is di scussed. The equations gove rning the s tress·strain·time be hav io r a re as· 
s umed to be those for a linear model cons is ting of a spring coupled in parallel with a sp ring a nd dash· 
pot in ser ies . The nature of the solution is di scussed, and a method is desc ribed for calculating the 
configuration , and the s tress, s train, a nd particle ve locity di s tribut.ions along the impacted fil ament. 
The me thod used consists of a n integration along the cha racteri s tics of the s ys tem of differe nti al 
equations describing th e probl em. 
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1. Introduction 

When a fl exible fil ament is s truck transversely by 
a high veloci ty projectile, strain waves and waves of 
transverse motion are generated. The associated 
displacement of filament material can be recorded 
by high speed photography, and the resulting data 
can be analyzed to obtain the stress·strain , creep , and 
stress relaxation behavior of the material under im· 
pact conditions. Research of this type has been 
described by P etterson et aI., [1 , 2, 3] t and S mith 
et aI., [4,5,61-

A theor y originated by Rac hmatulin [7] , Taylor 
[8 , 9] , and von Karman [10] , and modified by Smith 
et aI. , [11 , 12] has been used to analyze the experi· 
mental data. This theory, however, requires addi· 
tional modification in order to account adequately 
for viscoelas tic effects. Malvern [13 , 14] has helped 
in this respect by proposing a simple rate-dependent 
co nstitutive equation for approximating these effects, 
and has used it in treating the longitudinal impact 
problem. Further insight may be gained through the 
work of Lee and Kanter [15] , Glauz and Lee [16] , 
Morrison [1 7], and Smith [18] who have investigated 
the be havior of various lin ear spring and dashpot 
models subjec ted to longitudinal impac t. 

Transverse impact of materials having rate·de­
pe nde nt constitutive equations has received less 
attention. Cristescu [19, 20, 21, 22, 23] has discussed 

1 Figures in brackets indicate the literature references at the end of this paper. 

various aspects of the proble m of strain wave propa­
gation and transverse wave motion in s trings, including 
some strin gs with stress-strain·time behavior given 
by rate dependent cons titutive equations. For some 
cases solutions calculated by a digital computer were 
obtained by integration along the characteristics of 
the sys te m of differential equations describing the 
problem, but usually only continuous solutions were 
considered. 

The prob le m of transverse impac t at co ns tant 
velocity involves a so lution in whic h the s train is dis· 
continuous at the strain wave front , and th e s lope of 
the fil a men t is di scontinuous at the front of a wave of 
tran sve rse motion. Thi s latter proble m will be di s· 
c ussed he re, a nd a soluti on obtain ed by a n ex te nsion 
of the me th ods of C ri s tescu . The und e rs tanding 
gained is expected to be of use in th e des ign and 
analysis of future experim e nts. 

2. The Model 

The constitutive equation governing the stress· 
strain·time behavior of the filam e nt is that for th e 
three·ele me nt lin ear s pring and dash pot model 
depicted in fi gure 1. The longitudinal impact behavior 
of thi s mode l has been treated previously by Morrison 
[17] a nd Smith [18]. In the model the Hooke's law 
co ns ta nts of the two s prings are gl and g2, and th e 
viscosit y constant of the dashpot )'1. T is the total 
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FIGURE 1. Linear spring and dashpot modeL consisting of two 
springs and one dashpot . 

force, E the s train , and t the time. The co ns titutive 
equation is 

(1) 

It is more conve nient to re present th e model in 
t e rm s of other paramete r s . Thus le t g l = Ag, g2 = 
(1 - A)g, Yl = Agr. The parameter T=Yl /gl is the re­
laxation time of the Maxwell element constituting one 
bran c h of the model , and A is a dimensionl ess parame· 
ter th a t ta kes on values be tween 0 a nd 1. When 
l\ = 0 the mode l degenera tes into a spring of modulus 
g, and whe n '11. = 1 the mode l becomes a Maxwell 
eleme nt. F or prac ti ca l a pplications a value of l\ of 
a pproximately 0.1 coupled with a re laxation time r 
less than th e observation time following an impact is 
of inter es t. S uch a model would be mostl y s pringlike 
in it s behavi or , but would exhibit noti ceable visco· 
e las ti c effec ts shortl y aft er impac t. Another con· 
venie nt para me ter is c = vgr;;;, the velocity at which a 
stra in wave front propagates in the filam ent. The 
qua ntity m is the mass per unit length of the uns trained 
fil a me nt. Equ ation (1) expressed in th e para meters 
T , A, c beco mes 

(2) 

3_ Formulation of the Problem 

In the labo ra tory or observe r's coordinate s ys te m, 
let x' a nd y ' de note the hori zo ntal and verti ca l coordi -

nates respec tively. At time t = 0 let the filament at 
x' = 0 be impacted at cons tant velocit y V in the y' 
direction. The motion of the fil ament is to be de­
sc ribed in terms of a Lagrangia n coordinate syste m; 
i.e., a sys te m of x coordinates fixed to the fil a ment , 
moving and exte nding with it , but suc h th at in the 
initial uns train ed state the x and x' coordin ates of the 
fil a ment coincide . The dis placeme nt of any point x 
of the filam ent at time t relative to it s original position 
is given by ~(x, t) for horizontal displacements, and 
7)(x , t) for vertical displacements. The location in 
the laboratory coordinate system of a point x on the 
filament is thus given by 

x ' = x+ ~ (x, t), y' = 7)(x, t) . (3a , b) 

Consider an ele ment of unstrained length Llx. After 
impact , thi s ele ment is strained , and it s new length 
measured in the laboratory coordinate sys te m becomes 
Llx Y (1 + a~/axr+ (a7) /ax)2. The increase in length 
per unit length , or strain E , is thus 

The angle e tha t the element makes with the hori­
zo nt al is given by 

1 ( a~) 
cos e = 1 + E 1 + ax ' 

. e 1 a7) 
sm =1 + Eax (5a , b) 

so that the diffe re ntial equ ations that gove rn the motion 
of the small e le ment are 

a"17 a . a [ T a7) ] m - = - (T Sll1 e) = - --- . 
a t ~ ax ax 1 + E ax 

(6a , b) 

Equ ations (6a) and (6b) can be incorporat ed into a 
sys tem of linear equations by introdu cin g the hori­
zo ntal and verti cal co mponents of the velocity (in x', 
y' s pace) of a point on the fil ament 

u = a~/at , 

and the direc tion va riables a , f3 de fin ed b y 

a= 1 + a~ 
ax' 

f3 = a7) . 
ax 

(7a , b) 

(8a, b) 

It is also helpful to introduce the Row or particle 
ve locity w of a point along the direc tion of the fil a me nt. 
An increment of thi s veloc ity dw has hori zontal and 
ve rti cal co mpone nts du and dv res pecti ve ly and thus 
sati s fi es the re lation 

dw = du cos e+ dv sin e. (9) 
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The system of linear equations beco mes 

au aex 
ax at 

av = a{3 
ax at 

dE=~dex+Ld{3 
I + E l + E 

dw =~du +Ldv 
I + E l + E 

(lOa) 

(lOb) 

(lOc) 

(lOd) 

(lOe) 

(l0f) 

., a E + (l - r..)m.C~ aT IT mc- - E=-+- . (lOg) 
at T at T 

Eq uat ion (IOe) is the differe nti a l form of eq (4). 
Th e seve n variables u , v , w, ex, {3 , E , and T mu st 

sati sfy th e initi al condition s : For t = 0 , x> 0 

u = v = w = {3 = E= T = O .. O' = 1 (11) 

and the boundary conditions : For t > 0 , x = 0 

u= O, v = V (12a, b) 

andfort > O, x~ oo 

u = v = w = {3 = E= T = O,O' = 1. (13) 

If condition s (12) are s ubstitut ed into eq (10f) , an 
add itional boundary condition: For t > 0 , x = 0 

w = a constont (14) 

is obtained. The value of this constant velocity is 
a ttain ed at the instan t of impact , before any creep or 
s tress relaxat ion has occurred , and thus is the same as 
that given in the sol ution for the s pringlike filament 
di sc ussed in the next secti on. 

In addition to th e initial and boundary conditions, 
certain co mpatibilit y conditions, to be given later , 
mu st be sati s fi ed. 

4. Solution for the Case A = 0 

Wh e n r.. = 0 th e mode l dege ne ra tes to a s prin g of 
Hooke's law con stant g. Th e so luti on for thi s case, 
di sc ussed in de tail e lse where [11] is illu s trated 111 

FI GU RE 2 . Configuration of a spring- like filament at time t after 
transverse impact. 

The filam ent, o ri ginall y ho ri zo nta l, was s t ruc k with ve loc it y V in the ve rti ca l direc tion . 
After tim e I the resulting s train wave propaga ting with veloc it y c has a fron t a t F. a nd the 
filam ent becomes uniformly s tra ined a l s t rai n Eo. The stra ined mat e ri al be tween point s 
F a nd B moves inwa rd horizontall y wilh ve loc ity - t;'t:o. but al the t ra nsverse wave front, 
poin t B, thi s in wa rd motion ceases. Ma teria l in the trans ve rse wave moves ve rti call y 
wi llI veloc it y V. The tra nsve rse wave front moves with velocity Po re lative to po int s fixed 
on the fi la me nt , but with veloc ity (I + EoW'o-CEu with res pec t to the labora to ry (x', y') 
coo rdi nate sys te m. 

fi gure 2. Th e impac t causes a wa ve of con s ta nt s train 
Eo and co ns tant te ns ion To to propaga te a long th e 
filam e nt at ve loc it y c, so that at tim e t th e s train wave 
front has arrived at po int P. In the wake of thi s 
wave front th e s train ed mate rial Rows inward a t ve­
locit y - CEo. The in c re ase in le ngth of the filam ent 
is ta ken up by a wave of ti-a ns ve rse moti on, whi c h at 
the time t has a front at point B. 

In th e tran sverse wave the filam e nt material moves 
in th e y' direc tiun at th e impac t ve locity V, and th ere 
is no component of ve loc ity in th e x' direc tion . Th e 
profi le of th e wave is a s traight line. The tran sve rse 

wave front moves at ve loci ty Po = v'To/m(1 + Eo) re la­
ti ve to th e Lagragian coordinate syste m , so that th e 
le ngth of s trained filament AB as meas ured in th e 
x'. y' sys te m is equal to (1 + Eo)PoT, and th e horizon­
tal projec tion of this length is [ (1 + Eo)Po - CEo] t. 

As OAB is a right triangle, the followin g re lat ions hi p 
applies 

V2 = (1+Eo)2Po2- [(l + Eo)Po -CEoV (15) 

If the mass per un.it length In and H ooke's law con­
stant g are known for th e s pecim e n , the ve locities 
c and Po ca n be ca lc ulat e d for a ny strain Eo , and upon 
substituting these valu es into eq (15), the value of 
Eo correspondin g to any transverse impac t veloc ity 
V c an be found . 

In the region between the s trai n wave front and the 
transverse wave front , the partic le veloc ity wand th e 
hori zon tal ve locity u are both constant and eq ual to 
- CEn. In the region of the transverse wave , u = 0 but 
th e ve locity w remains equal to - CEo , even though in 
th e x' , y' coordinate sys te m there is no observable 
Row of mate rial lon gi tudinall y along the filam e nt. 
Thi s paradox ca n be explained by the followin g in ter­
pre ta tion of the partic le velocit y w. S uppose th a t 

259 



there is a second fil a me nt , in extensible and fixed to 
the im pacted fil a me nt a t a point a great distance in 
advan ce of the s train wa ve front. Before impac t let 
the two filame nts coincide with the inextensible fila­
ment e nding a t th e point of impact , and aft e r impact 
let the in ex tensibJe fil ament be" co nstrained to move 
alon gside the impac ted filam ent. Under these con­
ditions the point under impact will recede from the 
end of the inexte nsible filament with velocity w. 

The soluti on for the limit c ase lI. = 0 can be stated 
brieAy as fo ll ows. The quantities w , E, and T are 
continuous be twee n the point of impac t a nd th e strain 
wave front a t x = ct , and have the followin g valu es : 

(16a,b,c) 

where Eo is found by solving e q (15). The qu antJtles 
u , v, 0' , (3 are disco ntinuous at th e transverse wave 

front x = Pot = tV To/m(l + Eo). 
ForO ~x< Pot 

u = O, v = V 

O'=(l + Eo) cos 8 = 1 + Eo -cEo/Po(l7a ,b,c,d) 

(3 = (l + EO) sin 8 = - V/Po 

and for Pot ~ x < ct 

u = w = - CEo, v= {3 = 0, 0' = 1 + Eo. (18a,b ,c) 

The limit solution just presented indi cates the type 
of so lution to be sought for the general case where 
lI. > 0; namely, a solution in whi ch w , E, and Tare 
continuous between th e point of impact and the strain 
wave front, and u, v, a, and {3 are continuous only be­
tween the point of impact and the transverse wave 
front. A me thod for findin g this so lution by integrating 
along the c haracteri s ti cs of the sys te m of differenti al 
equations will be de veloped in the succeedin g sec tions. 

5. The Characteristics of the System of 
Equations 

These equ ations then can be arra nged to obtain 

(aw aw) (aT aB 1 mc -+ c - - -+ c - =- [T - (l-lI.)mc2E] 
at ax at ax T 

(aw aw) (aT aB 1 ? - mc --c- - --c- =- [T - (l - lI. )mn]. 
at ax at ax T 

For differe ntiation s along curves of the fa milies 
gIven by 

dx/dt = ±c (20) 

th e express ion s in pare nth eses may be re placed by 
total deriva ti ves so that the equation s red uce to: Alon g 
the c urves given by dx /dt = c 

mcdw-dT = [T -(1-lI. )mc2fJdt /T (21a) 

and along the c urves given by dx/dt = -c 

mcdw + dT= - [T - (1-lI.)mc2E J dt/T. (21b) 

The c urves sati sfying eq (20) are known as charac­
teri sti cs . 

If P = VT! m(l + E), eq (lOa) can be e xpressed in the 
form 

which can be combined with eq (10c) to obtain th e 
expressions 

Along c urves of the fa mili es given by 

If the variables u , v, 0' , and {3 are e liminated from dx/dt = ± P (22) 
eqs (lOa) through (lOg) the following set of equati ons 
res ults .2 these ex pressions reduce to 

aw 1 aT 
at max 

aw af 
ax at 

(19a,b ,c) 

du = + pdO' + ~(P2) 
de - dt (lax . 

Similarl y eqs (lOb) and (lOd) yield 

dv d{3 a 
-= ± P -+{3 - (P2). 
dt dt ax 

(23a) 

(23b) 

1 Eq u a ti o ns (19a) throu~h (19(') plu s th e b( )u ndary co ncl it ion s of eq s ( II ) Ihroll~ h (14) 
in vo lv in g w. E. and T a rc th e same a s t he e qua tions a nd bou nda ry con cii ti uJ':'s fo r lon :,ritudina l 
im pac t at nJl1 s lan l ve loc ity -CEo. T he d is tr ibut iun uf Ill . E. a nd T (" a n be ca lcul.:lt ed fro m 
the s ulution s fur thi s case j!ive n by Murriso n 1171 and S mi th [18 1. Howe ve r . t he s ubseq ue nt 
de terminat ion uf vH lu es fur II. v. a . and f3 fru m eqs ( lOa) th ruul!h ( IOd ) wHuld Iw d iffi(, ult 
a nd wi ll lI ot be a tt e mp te d he re by thi s me thod . 

Equations (23a) and (23b) can be combined to give : 
Along the c urves given by dx/dt = P 

{3du - adv = P{3da - Pa d{3 (24a) 
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and along the curves given by dx/dt =- P 

{3du - adv = - P{3da + Pad{3 (24b) 

The c urves satisfying eq (22) are additional c harac­
teri s ti cs . 

Other equations holdin g along these c harac te ri s ti cs 
can be found by the followin g manipulation involvin g 
eqs (I9a) and (I9b). 

.i.. (P2) = (1 + E) (aT/ax)- T(a E/aX) 
ax m(I + E)2 

_ _ 1_ [1.. aT_p2 aE] . 
1 + E m ax ax 

But along curves de fin ed by dx/dt = P 

1.. aT = ow = dw _ paw 
In ax at dt ax 

a nd 

p2 aE = p dE _ P aE = P dE _ P aw 
ax dt at dt ax 

so th at 

.E....(P2) = _ 1_ [dw _ p dE]. 
ax l + E dt dt 

Thus along curves defined by dx/ dt = P , eqs (23a) and 
(23b) reduce to 

(1 + E)(du - Poo) = a( dw - PdE) 

(1 + E)(dv - Pd(3) = {3(dw- PclE. ) 

Similar ly a long c urves de fin ed by dx/dt = - P 

(1 + E)(du + Pda )= a(dw + PdE) 

(1 + E)(dv + Pd(3) = {3 (dw + PdE ) 

(25a,b) 

(26a,b) 

Alon g characteristi c curves in x, t space the inte ­
gral surface of the sys te m of differential equations 
may have di scontinuities. It should be noted that th e 
c haracteri sti c c urve x = ct determines the di scon­
tinuou s wave front for the s tress , strain and particle 
velocity di stributions, and the characteri s ti c c urve 
that passes through the origin and is a solution of the 
equation dx/ dt = P, determines the front of the trans­
verse wave wh ere th e qu antiti es u, v, a, and {3 are 
di sco nti n uou s. 

6. Compatibility Conditions 

An obvious require me nt of the solution is that th e 
di s place ments ~ and TJ be continuou s a t all points along 
th e filam ent. The partial derivatives of these quan-

titl es with res pect to x and t , however, are not nec­
essaril y continuou s a t th e s train wave front and a t 
the transverse wave front. At th ese places of di s­
continuity, accordin g to th e principle of kin emati c 
co mpatibilit y [24J, th e followin g relations ho ld: 

[ a~] dx + [ a~ ] =0 
ax dt gt 

(27a,b) 

[aTJ] dx + [aTJ] = 0 
ax dt at 

where the bracketed quantities represent jumps in 
value occasioned by the passage of a wave front at 
the point under consideration_ For instance, at the 
point x the expression [EJ is defined as 

[EJ = f~ {E(X, t+8)-E(X, tn. 

The s train wave front velocity is greater than the 
transverse wave front velocity. Therefore at the 
strain wave front, where dx/dt = c, it follows that YJ = 0 
and, from eq (4), a~/ax= E. Equation (27a) then yields 
the relation 

1 
[EJ =-- [wJ. 

c (28) 

Similarly at the transverse wave front, where dx/dt = P, 
eqs (27a) and (27b) yield 

1 
[a - IJ =-- [uJ 

P 

1 
[{3J =- - [vJ 

P 

(29a,b) 

As [a-IJ = a-1-E, [uJ=u-w, [{3J={3, and 
[vJ =v, where a, u, {3 , and v refer to values in the 
wake of the wave front, eqs (29a) and (29b) can be 
expressed more conveniently as 

a= 1 +E-U/P+W/P 
(30a,b) 

{3=-v/P 

Another compatibility condition is obtained as fol­
lows. Consider a point x on the filament. Just before 
arrival of the strain wave front at time t, the tension 
T and particle velocity ware both zero. At a slightly 
later time t +!!'t = t + !lX/c, the tension is - !lX(aT/ax) 
and the particle velocity is (!lx/c) (aw/at). Thus the 
jump relations for T and ware [T]=-!!.x(aT/ax) and 
[w] = (!lx/c) (aw/ at). Application of eq (I9a) then 
yields the condition of dynamic compatibility 

[T]=- mc[w]- (31) 
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7. Values of the Tension, Strain, and Particle 
Velocity at the Strain Wave Front 

Equation (21a) is a differential relation involving 
the tension T, strain E, and particle velocity w, that 
holds at the strain wave front. Hence if values of T 
and w from eqs (28) and (3 1) are substituted into thi s 
relation, it becomes 2dE =- (AE/r)dt, which when 
integrated yields 

E(Ct, t) = E(O, 0)e- (At/2T). (32) 

Substituting this result into eqs (28) and (31) then 
gives 

w(ct, t) = - CE(O, 0)e- (At/2T) (33) 

T(ct, t) = mc2E(0 ,0)e-(At/2r). (34) 

When x = t = ° the strain and transverse wave fronts 
coincide. If values at t = x = ° are designated by a 
zero subscript, the boundary conditions give Uo = 0, 
vo = V, and eqs (30a) and (30b) reduce to 

ao = 1 + Eo - CEo/Po 
(35a,b) 

f3o=-V/po 

Thus eq (4) expressed as O'fi + f3fi= (1 + Eo)2, can be put 
in the form P = Pfi(l + Eo)2 - [(l + Eo)Po - cEo)2. But 

Po = c y' Eo/(l + Eo) so that 

P/c2 = Eo(l + Eo) - [y' Eo(l + Eo) - Eo] 2. (36) 

The value of Eo to be used in eqs (32), (33), and (34) 
is obtained by solving eq (36). 

8. Integration Along the Characteristics 

A numerical solution to the system of differential 
eqs (lOa) through (lOg) and the initial and boundary 
conditions (11) through (14) can be found by integrating 
along the characteristics of the system . The nature 
of the problem and the method of solution are easily 
understood from an inspection of figure 3, in which 
some of the characteristics are plotted. 

The straight line characteristics of positive slope are 
solutions of the equation dx/ dt = c. Their slope is 
equal to l/c. The other straight line characteris tics 
completing the network are solutions of the equation 
dx /dt =- c. The characteris tic passing through the 
origin, and having the equation x = ct corresponds to 
the discontinuity marking the wave front of the strain, 
tension , and particle velocity distributions. Thus in 
the domain between this characteristic and the x axis 
the strain E, tension T, and particle velocity ware zero. 
Along the characteristic the values of E, w, and Tare 
given by eqs (32), (33), and (34). These equations thus 

(/) 

x 
« 

x AXIS 

FIGURE 3. A plot 0/ the characteristics network. 
The stra ight line charac te ri sti cs of positive slope are solutions of the equation dx/dt = c. 

The straight line charac teris tics of nega tive slope are solutions of the equation dx/dl=- C. 
The straight line charac teri s tic through the origin has the equa tion x = ct , o r equation of 
the strain wave front. The c urved character isti c passing through the origin is tha t solution 
of the equat ion dx /dt = VT/m(l + £) that gives the location of the transverse wave front. 

may be thought of as boundary conditions holding 
along the characteristic x = ct. 

The curved line passing through the origin represents 
a solution of the characteristic equation dx / dt = P. 
The exact course of this characteristic is not known in 
advance, as P is a function of E and T. This charac­
teristic corresponds to the front of the wave of trans­
verse motion that propagates along the filament; thus 
in the domain between this characteristic and the 
characteristic x = ct the velocity u is equivalent to the 
velocity w, the direction variable a is equal to 1 + E, 
and the velocity v and direction variable f3 are equal to 
zero. The jump relations (30a) and (30b) holding along 
the transverse wave front characteristic constitute a 
second set of boundary conditions. 

A third set of boundary conditions expressed by eqs 
(12a), (12b), and (14) holds along the time axis. 

The problem consists in finding the values of w, 
E, and T at all of the mesh points in the domain be­
tween and along the time axis and the characteristic 
x = ct, in finding the course of the transverse wave 
front characteristic, and in finding the values of u, 
v, a, and f3 at all of the mesh points between and 
along the time axis and the transverse wave front 
characteristic. The values of these quantities must 
satisfy the differential relations (lOe) , and (10f), the 
relation (lOg) holding along the line x = a constant, 
the differential relations (21a), (21b), (24a), (24b), 
(25a) , (25b), (26a), and (26b) holding along the char· 
acteristics, and the boundary conditions. 

A first step towards the solution consists in solving 
eq (36) for the initial s train Eo at the point of impact. 
The values of E, w, and T along the characteristic 
x = ct are then given by eqs (32), (33), and (34). 

Values of E, w, and T are then found at the first mesh 
point on the time axis above the origin. Figure 4a 
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FIGU RE: 4 . Mesh situa. tio ns encountered during integration. of the 
system. of differentia.! equa.tions alon.g the cha.racteristics n.etwork. 

depi c ts one of th e trian gul a r mes hes lyin g a long th e 
t axis. In the lowes t mesh poi nts the values of 
E, w, a nd T a re know n, and from the bound ary co ndi ­
tion (14) w is kn ow n to be constant alon g th e t ax is . 
Th e s train E and te nsion T a re found by so lving e q 
(21b), whi c h holds alo ng th e c harac te ri s ti c of nega tive 
slope, and eq (lOg), whi ch hold s a long th e taxi s. 
Th ese equations ca n be ex pressed in the form 

T - T2= - [1'2 -(1- A)mc2£"2 ]D.t /T - mc(wl - W2) 

mC1 E- Ed - (T - 1'1) = 2[1'1 - (1 - A.)mc2E I ]D.I /T 

(37a , b) 

where D.I = 1- t2 and 2D.t = I -I I. An itera tive prQS:­
ess is used in th e soluti on. Th e quantiti es fl . T"2, 
£1, and E"2 a re first se t equ al to T I , T"2, EI , and E"2, re­
s pec ti ve ly,.a nd approxin}llte ""yalu es are found for l' 
and E. Th e quantiti es T I , 1'"2, E I , and E"2 are th e n 
assigned th e average valu es (T + TI)/2 , (T + ]'.2)/2 . 
(E + EJ)/2, and (E + E2)/2 , respectively, and eqs (37 a) 
and (37 b) are solved again for more acc urate values 
of T and E. Another ite ration may be performed if 
des ired. 

Figure 4b depic ts a rhombu s shaped mes h form ed 
by the intersection of c harac teristics. If values of 
E. w, and T are known a t each of po int s 1, 2 , and 3 
th e valu es of E, w, a nd T at th e vert ex are found by 
solving the sys te m of equ ation s; eq (2 1a) whi ch 
hold s along th e uppe r c har ac teris ti c passi ng through 
point 1, e q (lOg) whi ch holds along th e verti cal line 
pass in g throu gh point 2, and eq (21b) which holds 
along th e up per char ac te ri s ti c pass in g through point 3. 
Th e so lution is found by an ite rati ve process s imilar to 
th a t jus t described. 

By ap pl yin g s uccess ively th e method s of soluti on 
associa ted with the mesh types de pi c ted in figures 4a 

a nd 4b, valu es of E, w, and T ca n be found at each of 
th e rn es h points in th e doma in be twee n th e I axi s 
and the cha rac te ri s ti c x = cl,. 

Th e values of 0' and f3 a t th e ori gin are next calc u­
lated from eqs (30a) and (30b). The values of u a nd v 
are already know n from th e bo und a ry co nditi ons. 
The solution for the mesh situ ation de pi c ted in fi gure 
4c can then be used to determin e the cour e of th e 
transverse wave front characte ri s ti c a nd th e values of 
E, W, T, u , v, 0', and f3 at its intersec tion s with the other 
charac teris tics . In figure 4c the quantities E, W, T, LL , 

v, 0' , and f3 are known at point 1, and the values of 
E, w, and T are known at points 2 and 3. The values 
of E, w, T, u , v, 0', and f3 are required at the intersec­
tion of the tra nsverse wave front characteristic with 
the characteri stic passing through points 2 and 3. 
As a firs t step P is se t equal to VTI /m(l + EI) and the 
line (x-X I) = P{I-I I) is drawn through point 1 to 
intersec t the characteri sti c be tween points 2 and 3. 
The values of T and E at the intersec tio n are de ter­
mined by interpolation. The quantity P is the n se t 

equal to VT/m{l +E), wh e re T an d E are the averages 
of T and T I , and E and EI respec tively. One or two 
itera tions are performed to obtain more accurate values 
of T a nd E and the coordinates (x, t) of the intersec tion. 
Th e value of w at the intersection is then found by 
interpolation. The values of u, v, 0', and f3 at the 
intersec tion are fo und by solvin g the se t of four equa­
tions (30a), (30b), (25a), a nd (25b) expressed in the 
form 

LI - UI - P(O'- 0' 1) = 1 ~ £ [W - W I - P(E- EI)] 

u + PO' =w+ P(l + E) 

v + Pf3 = O. (38a , b ,c ,d) 

In th e solution process A a nd B a re firs t se t equal to 
0'1 a nd f31 res pec tively a nd in s ubseque nt ite ra ti ons 
se t equal to th e average valu es a long th e transverse 
wave front c harac teri s ti c. 

Solutions are needed for two additional mesh situa­
tions in order to find the values of LL , v, 0' , and f3 at the 
mesh points be tween the t axi s and the transverse 
wave front characteris tic . Figure 4d de pic ts a mesh 
of the type found along the t axis. The characteristic 
between points 1 and 3 may be either the transverse 
wave front characteristic or one of the solutions of the 
characteristic equation d x/ dt = c. Usually the mesh 
is triangular in shape with point 1 lying on the taxis , 
but sometimes when the transverse wave front charac­
teristic has a steep slope, the mesh has the more 
general form shown. The values of E, w, T, u, v, 0' , f3 
and the coordinates x and t are known at points 1 and 3, 
and the values of u, v, W, E , and T are known at point 4. 
The values of 0' and f3 at point 4 are required. As a 
first s te p the c haracteris tic of slope - 1/ P is drawn 
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between points 4 and 2. In this construction iteration 
and interpolation processes are used to determine 
values of P, E2 , and T2, and the coordinates (X2, t2) of 
point 2. Interpolated values for U 2, V2, lX2, /3 2, and W2 

are calculated next. The values of lX and /3 at point 
4 are then obtained by solving eqs (26a) and (26b). 

Fi aure 4e de picts a four· sided mesh in whic h the 
char:cteri stic between points 3 and 5 may be either 
the transverse wave front characteristi c or a solution 
of the characteristic equation dxl dt = c. Values of 
U, v, W, lX , /3 , E, and T are known at points 1, 3, and 5 , 
and values of E , w, and T are known at point 6. The 
values of u, v, lX , and /3 a t point 6 are required. T o 
find the solution lin es of slope + liP and - l iP are 
cons tructed to intersect at points 2 and 4, respec­
tively, and values of u, v, W, lX, /3 , E, and T are de t~r­
mined at these points. The values of u and lX at pomt 
6 are then obtained by solving eqs (25a) and (26a) 
expressed in the form 

A 
u - Uz - P( lX - lXz) = 1 + E [W6 - W2 - P( E6 - E2) J 

A 
u - U4 + P(lX - lX4) = 1 + E [W6 - W4 + P(E6 - E4)J. 

(39a,b) 

The values of v and /3 at point 6 are obtained similarly 
by solving eqs (25b) and (26b). 

By systematically applying the methods of solution 
outlined for the five mesh types depicted in fi gure 4, 
it is poss ible to calculate numerical values of E , w , T, 
u , v, lX, and /3 at any dis tance x along the filam ent , 
and at any time t . 

In order to find the configuration of the filament in 
laboratory (x', y') coordinates it is only necessary to 
calculate appropriate values of g(x, t), and 1] (x , t) by 
integrating U (x, t) and v (x, t) with respect to time. It 
is of special interest to perform this calculation in 
order to determine how much curvature is introduced 
into the transverse wave portion of the filament by the 
creep and stress relaxation processes that occur after 
impact. 

The methods of calculation just described have been 
incorporated into a set of programs for use with a digital 
computer. Calculations have been made for various 
values of the propagation velocity c, impact velocity V, 
relaxation time T, and parameter A that approximate 
conditions realized in tests on real materials . It is 
planned to present some of the results of these calcula­
tions in a later publication. 
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