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The abscissas and weights for Gaussian Quadrature of order N=2 to 100, and N=125, 150, 175,

and 200 are given.
more than 1 unit in the last place.

The abscissas are given to twenty-four places and the error is estimated to be no

| The weights are given to twenty-three places and the error is
estimated to be no more than 1 unit in the last place.
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1. Introduction

The advent of high speed digital computers has
made the use of Gaussian Quadrature formulae of very
high order a practical procedure. It can be pro-
grammed with a few instructions and the awkward
abscissas are easily handled by the computer. It is
a familiar technique which usually converges rapidly,
and since the whole range of integration can be covered
at once instead of making many subdivisions, it will
usually be very efficient.

In addition to its use in numerical integration Gaus-
sian Quadrature can be used in the numerical solution
of integral equations and also in the evaluation of func-
tions that can be written as integrals. The last four
sets of very high order were computed [1]? since
“exact values of these quantities are also interesting
in view of certain unsettled theoretical conjectures that
have been made about distributions of the weights and
abscissas.” It was reported by Davis and Rabinowitz
[2] that there was a “‘brisk demand” for the sets N =64,
80, and 96 even though they had not been published
and there existed some doubt about their accuracy.

! The complete tables. 77 pages, have recently been published as NBS Monograph 98,
Abscissas and Weights for Gaussian Quadrature For N=2 to 100, and N =125, 150, 175,
and 200. This monograph is available from the Superintendent of Documents, Government

Printing Office, Washington, D.C. 20402. Price 55 cents.
?Radio Standards Engineering, NBS Laboratory, Boulder, Colo.
3 Figures in brackets indicate the literature references at the end of this paper.

Higher order Gaussian Quadratures were found to
be very efficient in the calculation of the inductance
of rectangular conductors such as strip transmission
lines at various frequencies [3]. It was found that if
the width of the outer conductors were divided into
n equal parts and the width of the inner conductors
according to a Gaussian distribution, then the rate
of convergence of the inductance function (with respect
to n the number of subdivisions) was greatly improved.
In order to obtain the limiting value of inductance
(for an infinite number of subdivisions) a formula of
the form L,=L,+an* was used for sufficiently
large n. This equation is most easily solved for the
unknowns L., a, and «, if the inductance function
L, is calculated for four different n chosen such that
Ni/Ny= N3/Ns. Therefore, specific high order Gaus-
sian Quadratures were needed.

The only high order Gaussian Quadratures that
were found in the literature were those mentioned in
the references. A. H. Stroud is working on tables
for N=2, 64, 96, 168, 256, 384, and 512 but he has
not published them at the present time [4].

2. Method

The Gaussian Quadrature formula is given by

1 n
f Fdx~ S HF X, )
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where the weighing coefficients Hj. are given by
2

H,
B Py (X )P X )

(2)

Pu(X) is Legendre’s polynomial of degree n, P,(X) is
the first derivative of Py(X), and the Xj are the zeros
of Pn(X) [5]

From the equations
(1 "'XZ)PI/l(X) = ’IXI)II(X)+ ”I)n—l(X)

=(n+ DXPyX) = (n+ DPpi(X), (3)

and with X, a zero of P,(X) in (3), the following rela-
tions can be obtained:

(1 _X;%)P,,.(XI\) = nPn— I(Xk) =—(n—+ ])[)ll+1(XI\‘)- (4)

Equation (2) can now be expressed as [6]
2 0-Xp
A—X)[PIXDE  (n+ 12[PrarX0) P ©)

H,=

Since Pu(X) is a symmetric function of X for even
n and skew symmetric for odd n, only the positive
roots between 0 and 1 have to be calculated [5]. The
weights Hy will be the same for positive and negative
X’s of the same magnitude.

The roots of the Legendre Polynomials and their
corresponding welghlng factors were computed as
follows. Upper and lower bounds were obtained for
the kth root of P,(X), namely Xy, k, from the fact that
the roots of P, i(X) separate the roots of P,(X):

1 <Xn.l <anl.l For k=1
(6)

Xn—l.l.'—l <X11AI.'<XH—I.I\' For i >1.

When n is odd, X=0 is also a root of Pu(X).

Setting the lower limit equal to @ and the upper
limit equal to b, the method of false position can be
used to obtain an initial approximation c:

Fla)

m(l)—(:)

Pula) (b—a).

C=a+ P —Pub) o)

In order to calculate P,(X) and P, (X) the following
recurrence relation was used:

Zioar | o - A .
n—+1 XPA(X) n—+1

PniiX)= n+1(X). (8)

After an approximation has been obtained, the root
X,k can be obtained much faster by using the Newton-
Raphson technique which converges quadrically [6]:

F(X)l)

Xns1= TR

9

where X,.; is the next approximation to the root X
The value of F(X,) can be obtained from (4).

The last four sets (n=125, etc.) required a little
different approach. The first root, X;, 1, was obtained
for all n between 101 and 200. The fact that the roots
of P,(X) became monotonically increasingly further
apart was then used to locate succeeding roots:

I'Xn.l <X11.1_Xn.2<- o o o <Xn.k_Xn,k+1- (]())

In order to find the X, x root, the quantity a=
Xn, k=1—Xn, k-2 was found. Then b was set equal to
Xn, k-1—a and a equalto b—a. The polynomials P,(a)
and P,(b) were examined to see if they were of op-
posite sign. If so, the upper and lower bounds were
found and the root was calculated as before. If they
had the same sign, then a and b were both decreased
by a and the above process repeated until P, (a) and
P, (b) did indeed have opposite signs.

3. Errors

The calculations were done with a double precision
computer routine. The routine was accurate to
1.9 X 1025 (or 289%).

In order to check the accuracy of the abscissas the

Ly o =1
formula ZX,\. e
found was 5 units in the 24th decimal place and the
next largest was 2 units in the 24th place. More than
half of the checks had zero error in the 24th place.
Squaring a number that has an error in the kth place
gives an error in the kth place that is approximately
twice that of the original error. When checking the
tables in references [1],.[2], and [5] only one error in
the abscissas was found. This was in reference [5]
where an error of 0.5 units in the 21st place was dis-
covered. The calculations had been carried out to
7.6 X 10?2 and the abscissas given to 21 places. The
21st and 23d places are 851 but the value given in the
table was 8 in the 21st place instead of being rounded
up to 9.

In this report the abscissas have been given to 24
places and it has been concluded that there is an error
of no more than 1 unit in the last place. It is also
concluded that this occurrence will be very rare.
There will be further comments on the abscissas after
the weights have been examined.

The weights were checked by summing them be-
tween zero and one and comparing the results to
unity. The largest error found was 1.48 units in the
23d place. The previously mentioned references
were checked for errors in the weights and no error
larger than 1 unit in the last place was found through
n=48. In reference [5] a table of errors obtained
by summing the weights in references [1] and [2] is
given. Even though the error in reference [1] reaches
11 units in the last place, there is no error in any
individual weight of more than 1 unit. It is interesting

was used. The largest error
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to note that the errors in [1] are always 1 unit too
small and are caused by not rounding up. It was only
when the first omitted digit was 9 that the rounding
was done correctly and then only half the time.

It was found that the errors in the higher order tables
of reference [5] (up to n=64) were larger than ex-
pected. The sums of some weights were in error
4 units in the last place, but almost all the error was
concentrated in the first or second weight. For
example, the value of the first weight for n=064 was
found to be 4.7 units too small in the last place and
the sum of the weights was 4 units too small.

Since the preceding observation questioned the
accuracy of the 23d place of the first two weights of
higher n in this report, the following analysis was
made. It was assumed that the errors would follow
the same behavior pattern in double precision as in
single precision. Starting at n=>50, all the higher
orders were calculated in single precision and the sum
of the weights obtained. Single precision was 6.87
X 100 (or 23%) which is less than-11 significant digits.
It was assumed that there were 11 good digits and the
error in the 9th place was examined. For n up to
100 the largest error in the sum was 3.0 units in the
9th place and 2.2 units for an individual weight. The
largest error in the last four sets was 3.9 units in the
9th place of the sum but only 2.3 units for any indi-
vidual term. It was observed that if the error in the
sum was 1 unit or more in the 9th place, it was con-
centrated in the first two weights.

These results tend to show that the errors do follow
a similar pattern and give an error bound on the
weights. It is to be remembered that in single preci-
sion there were less than 11 significant digits and the
error in the 9th place was examined while in double
precision there were more than 25 significant digits
and the error in the 23d place was examined. Hence,
the error in the 9th place in single precision should be
greater than the error in the 23d place in double preci-
sion. It was concluded, on the basis of the preceding
discussion and the fact that the largest error in the sum
in double precision was 1.48 units in the 23d place, that
the individual weights were accurate to within 1 unit
in the 23d place.

The sum of the squares of the abscissas were
checked and the largest error was 4 units in the 10th

234-094 O-67—2

place. This was a better check than the double pre-
cision because of a “digit” problem. The sum of the
checks reaches a value of approximately 50 for higher
n and hence it is impossible to obtain the sum accu-
rately to more than 23 decimal places. When the
single precision was used, the squaring and summing
were done in double precision and hence the error in
the 10th decimal place could be examined. It has
been mentioned previously that squaring tends to
double the error and also that there are less than 11
good digits in single precision while in double precision
there are more than 25 good digits. Hence, the error
is no more than 1 unit in the 24th place.

The three values of n given in reference [2] were
checked and were accurate to within 1 unit in the last
place. This is better than one would expect from the
above analysis since that author was only calculating
his abscissas to an accuracy of 5.1 X 10~22, which is
approximately 1 digit less than reference [1]. It is
believed the better accuracy was obtained because of
the rapid rate of convergence of the Newton-Raphson
method and because triple precision was used. The
convergence rate was in fact observed to be approxi-
mately “squared”; the errors were approximately
10-4, 108, 1019 for successive iterations. Hence,
when the error condition was satisfied, the roots were
probably more accurate than expected and therefore
the weights were more accurate. It is believed that
the larger error of the first two weights is caused by
the 1 —X? term in the numerator of the expression for
the weights.

4. Table Errors

After the final form of the manuscript had been
prepared, the abscissas and weights were punched
onto cards from the manuscript. These values were
then subjected to the same numerical checks as before
and the errors checked to insure they were the same as
before. The values were also compared against the
values that were punched onto cards during the
computation.

Tables. Examples of the tables for N=2 to 100, and
N=125, 150, 175, and 200 follow. The complete set
of tables will be published in a NBS monograph by
Carl H. Love.
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0.99941
0.99693
0499247
0.98604
0.97765
0.96732
0.95507
094093
0092491
0.90706
0.88741
0.86600
0.84287
0.81806
0.79163
0.76363
073411
0.70313
0.67076
0.63706
0.60209
056593
0.52864
0.49030
0,45099
0.41079
0436977
0.32801
0.28561
0.24263
0.19918
015533
0.11117
0.06679
0.02227

ABSCISSAS

82859
62519
60552
55580
74059
82236
85091
25790
85168
81162
68168
36342
10819
50876
49010
29967
49700
94261
78640
45546
64124
28637
57076
89745
87783
31659
19616
66093
00105
63594
09763
01378
09057
09541
83952

73575
61680
11689
70398
57592
64986
14292
03815
97934
60922
63348
13858
98980
25441
07892
71899
60942
51528
94077
09778
85355
18808
79711
57636
81647
02630
38461
89643
40037
63740
64857
82070
94298
67551
86140

84205
15660
98109
65992
40039
43838
84264
35552
464027
84943
17112
62938
24231
18902
75810
56892
64130
59706
40564
09627
48733
28637
12726
58926
86573
58937
89583
25784
86169
64578
66415
24730
69373
32400
30969

6743
9813
8942
7101
3908
8618
0327
2816
2266
6353
4374
0035
8594
7232
7676
5095
7652
2947
6281
8860
6767
2959
5081
9778
1640
1263
9405
6132
1665
3579
1404
9006
5752
3719
3493

252

70

0.00149
0.00347
0.00544
0.00741
0.00936
0.,01129
0.01320
0.01508
0,01693
0.,01875
0,02053
0.02228
0.02397
0,02562
0,02722
0,02876
0.,03025
0.03168
0.03304
0.03434
0.03557
0.03673
0.03782
0.03883
0,03977
0.04062
0.04140
0.04209
0.04270
0,04322
0.04366
0.04401
0.04428
0.04446
0.04454

WETIGHTS

27212
18948
71118
17693
17627
31846
21908
49878
78363
70570
90378
02404
72078
65709
50548
94859
67979
40379
83722
70920
76189
75096
44615
63164
10654
68527
19791
49057
42567
88225
75613
96023
42465
09684
94171

88844
93078
74217
63190
69699
49931
14676
65443
76302
93133
24326
52256
89100
08468
18664
55808
80154
61308
39372
49906
01292
93672
69222
84073
927176
36789
29045
27284
89449
05068
97201
90183
39055
17246
59754

51573
14325
21831
21036
02681
53764
74762
12768
93253
42341
45338
59583
29227
48279
41715
28066
23781
48173
42047
53756
38053
69534
81719
40397
56747
61635
20863
40602
77776
69978
44025
45875
40677
37082
66720

1064
500
282
211
150
963
507
230
184
545
449
389
869
899
911
131
654
465
087
855
277
804
727
900
785
123
823
098
997
940
255
736
580
356
217



099949
0.99732
099343
0.98782
0.98050
097149
0.96079
094843
093442
0.91880
090159
0.88281
0.86251
0.84072
0.81747
0.79280
076677
0.73940
0.71075
0.68088
0.64982
0.61764
0.58440
0.55014
0.51492
0.47882
0,44189
040419
0.36579
0.,32676
028716
0.24707
020655
0.16567
0.12450
0.08312
0.04159
000000

ABSCISSAS

27755
84289
85365
89667
93245
22563
33637
11650
70599
52912
29025
96914
81576
34466
32891
79352
00852
48153
94999
37292
92238
97445
10000
05501
77057
34269
02167
20134
40794
28887
60113
19968
02553
09373
48125
31470
75800
00000

36035
62231
78892
67524
97416
43063
41892
79287
64107
28393
48446
47895
26883
54958
035641
13563
06641
58032
58041
96269
10262
46925
91577
25645
79916
55803
92348
61653
80035
26526
64297
64234
33159
52137
32900
02610
29079
00000

45648
80330
70437
52014
60577
82336
31415
37792
15683
99127
33409
54216
42546
05009
31484
51036
92552
52649
12676
59804
23258
96445
88031
55150
64052
15701
26653
61319
92532
30235
24694
75690
60711
81838
26162
99169
45597
00000

3467
9066
7047
1267
1693
3814
56448
1920
6194
1240
3964
0092
1262
7012
3395
0414
4095
6514
9559
4384
6887
0186
9607
3015
7992
5809
7336
0807
6018
8400
2702
4240
4475
5950
5085
7497
4891
0000

=79

253

0.00130
0.00302
0.,00475
0.00646
0.00817
0.00986
0.01153
0.01318
0.01481
0.01642
0.01799
0,01954
0.02105
0.02252
0,02396
0,02535
0.02670
0.02801
0.02926
0.03047
0.03162
0,03272
0.03376
0,03474
0,03566
0.,03652
0.03732
0.03805
0.03872
0,03932
0.03985
0.,04031
0,04071
0.04103
0.04128
0.04146
0.04157
0.04160

WEIGHTS

15917
76710
10691
64649
07107
08249
38733
69567
72122
18171
79931
30115
41975
89349
46706
89191
92668
33758
89885
36312
61180
35541
43398
66732
88537
92849
64772
90504
57365
53812
69465
95121
22771
45618
58080
55810
35694
95863

17375
14606
85015
07037
07327
16114
28304
62824
89814
19024
25645
20127
12282
13865
53716
90216
10120
04780
15725
42214
03749
50934
18334
13330
35240
19290
00332
91513
73432
89635
44656
01141
72937
11392
82467
32619
41781
62141

85599
04129
27396
53840
82640
01839
49596
80211
46852
64004
05063
88937
84223
77645
95917
37909
85177
54082
98680
53920
64805
22052
09264
40653
45308
33900
09016
60313
57584
16252
35257
57755
33029
10667
18908
09213
27878
40938

389
123
590
196
372
205
681
961
014
360
795
957
645
055
477
421
235
526
503
314
603
152
696
510
912
685
731
563
147
077
597
817
876
622
346
525
300
047



099955
099764
099422
0.98929
0.98284
097490
096548
095459
094224
0.92845
091326
0.89667
0.87872
085943
0.83883
0.81695
0.79383
076950
074400
0.71736
0.68963
0.66085
0.63107
060033
0.56867
0.53614
0.50280
0.46869
0.43387
0.39839
036230
0.32566
0.28852
025095
0.21299
017671
0.13616
009740
0,05850
001951

ABSCISSAS

38226
98643
75409
13024
85727
91405
50890
07663
27613
98771
31025
55794
25676
14066
14735
41386
27175
24201
02975
51853
76443
98989
57730
06228
12681
59208
41118
66151
53708
34058
47534
43707
80548
23583
45028
22918
40228
83984
44371
13832

51630
98237
65688
99755
38629
85727
43799
43634
09872
72445
71757
38770
78213
63111
80255
81463
04605
35041
83597
62099
42027
86119
46871
29751
22709
97131
88784
70544
31756
81969
99487
47701
84511
92272
57666
32646
09143
41584
52420
56793

62988
68889
27789

53102

07041
79338
25145
90549
67475
79595
65416
68319
82870
09697
27561
47037
44994
37386
27231
88025
60077
80173
96624
74315
78472
93201
98759
47703
09306
22702
31561
91461
85310
12049
13257
81255
88655
59906
66862
99765

0080
9494
2064
6503
8288
5645
2273
3482
2266
3046
4734
4324
3773
7192
6623
1125
8639
5616
6541
4068
1208
5967
7928
4746
5486
9857
3673
6078
2387
4380
9043
9113
9139
3159
2389
9339
9241
3278
8993
4351

254

80

0.00114
0.00266
0.00418
0.00569
0.00719
0.00868
0.01016
0.01162
0.01306
0.01449
0.01589
0.,01727
0.01862
0.01995
0.02124
0.,02250
0.02373
0.02492
0.02607
0.,02718
0,02825
0.02928
0.03027
0.03121
0.03210
0.03294
0.03373
0.,03447
0.03516
0.03579
0,03637
0.03689
0.03736
003777
0,03812
0.03842
0.03866
0.03883
0,03895
0.03901

WETGHTS

49500
35335
03131
09224
29047
39452
17660
41141
87615
35080
61835
46520
68142
06108
40261
50902
18828
25357
52357
82275
98160
83695
23217
01741
04986
19393
32149
31204
05290
43939
37499
17146
54902
63643
97113
49930
17597
96510
83959
78136

03186
89512
24694
51403
68117
69260
41103
20797
92401
40509
83725
56269
08299
78141
15782
46332
65930
64115
67565
00486
57276
83267
59557
88114
73487
97645
84611
51753
44747
53416
05835
38276
38730
62001
164477
06959
74076
59051
62769
56306

94153
68166
89523
19864
31275
85842
06452
82691
33929
07611
68804
30635
03142
99892
00638
46192
10129
49110
11790
38067
86239
84769
98066
70164
77314
40138
52281
92879
59349
05460
97804
00883
49002
39748
63834
42318
46332
96893
53119
65481

455
929
674
927
268
641
083
647
379
696
490
858
874
889
871
622
319
512
297
442
675
277
122
244
806
284
668
436
553
286
396
915
671
978
421
521
708
177
863
128



099960
0.99791
099488
099050
0.98479
0.97774
0.96938
0.95971
094874
0.93649
0.92298
0.90822
0.89223
0.,87%04
0.85667
0.83715
0.81649
0.79473
0.77190
0.74802
0.72314
0.69728
0.67048
0.64277
061420
058479
055460
0.52366
0.49201
0.45970
042676
0.39325
035921
0432469
0.28973
0.25437
0,21867
0.18268
0.14644
0.11000
0.07342
0.,03673
000000

ABSCJISSAS

44773
66011
23742
52177
09576
72884
37119
15159
37562
52381
24960
37715
89878
97237
91838
21673
50348
56725
34544
92030
51474
48798
33104
66201
22115
86589
55555
39606
53440
25297
91387
96294
92380
39176
02756
55114
73522
39889
40107
63401
01660
48782
00000

57478
98116
95616
16415
85580
12243
23678
57188
54578
16430
96090
39091
91355
69097
09956
37082
74791
59116
90293
77434
28601
42249
58662
32514
90136
37388
86269
70567
22851
87088
43009
20059
80438
52247
95173
82453
84059
37112
90510
11577
43291
01249
00000

45432
93315
27845
96378
49732
39193
32800
36239
95340
69968
04558
88489
90158
08763
18909
65019
61472
50544
07866
07395
02138
54765
66070
71484
99307
08571
43315
87478
31047
72076
70172
19065
04875
55745
70353
52249
01571
67387
98921
23735
12561
66352
00000

6304
0309
3367
T124
7164
3334
5136
6347
4649
6698
8769
6825
1714
8653
5811
8542
0573
7149
0311
6270
4583
0964
2672
3400
1297
0292
8991
8045
T142
1470
1995
0215
6645
4017
8710
7731
0243
6281
0902
2680
9508
0469
0000

255

85

0.00101
0,00236
0.00370
0,00504
0.00638
0.00770
0.,00901
0,01032
0.01161
0.,01288
0.,01413
0.01537
0.01659
0.,01778
0.01895
0.02009
0,02121
0,02230
0.02335
0.02438
0,02537
0.,02633
0.02726
0.02814
0.02899
0.02980
0.03057
0.03130
0.03198
0.,03263
0.03322
0.03378
0.03429
0,03475
0.03516
0.03553
0.03585
0.03612
0.03634
0.03652
0.03664
0.03671
0.03674

WEIGHTS

49719
13317
65001
68384
03985
53559
99154
23002
07512
35288
89145
52135
07568
39034
30426
65962
30203
08079
84904
46401
78716
68443
02634
68825
55046
49841
42284
21988
79127
04445
89267
25514
05713
23005
71157
44570
38284
47989
70025
01394
39759
83447
31454

08967
04285
25759
26924
87897
60382
39993
30524
86703
56498
48400
42389
31154
51398
88182
43575
64089
22839
52989
29435
95866
34514
76011
46865
52190
91395
04649
48020
95304
64642
68132
82757
41029
39900
66555
39855
66280
09362
71695
88744
33785
33419
93252

74369
02089
31670
44272
51509
75707
63127
24589
89800
08429
83293
62687
67007
17090
84044
42174
37967
37418
89189
68314
08847
35982
16478
07584
15208
8R737
99572
87044
67445
17818
76976
53033
84670
63752
78824
69908
81255
46037
20376
8R485
70248
61622
10660

537
677
687
545
869
990
897
382
962
051
056
441
521
774
681
179
242
946
770
242
737
173
577
638
987
561
392
840
977
904
253
131
822
925
981
199
692
475
676
748
641
21115
021



ABSCISSAS WEIGHTS
0.99964 69712 86638 43746 3248 0.00090 59323 71214 83309 373
0.99814 03799 38568 15356 1306 0,00210 77787 74526 32989 148
0.99543 18120 58344 66392 6755 0,00330 88672 43336 01819 543
0.99152 39288 11062 78612 9147 0.00450 61236 13674 97786 414
0.98642 13650 57832 84873 4254 0.00569 79815 60747 35260 085
0.98013 02513 45148 38545 8953 0,00688 29832 08463 28431 473
0.97265 81620 90193 13999 7465 0.00805 96949 44620 01565 867
0.96401 40981 71505 48339 3667 0.00922 66969 57741 99094 032
0.95420 84738 81500 33616 0720 0.01038 25823 09893 21461 381
0.94325 31036 45357 76815 3575 0.01152 59578 89148 (05885 059
0.93116 11875 00432 00700 5847 0.01265 54458 37168 12886 888
0.91794 72950 66586 38337 2356 0.,01376 96851 12337 09343 075
0.90362 73479 31302 69386 9986 0.01486 73330 8R043 32405 038
0.8882) 86004 34745 98129 8376 0.01594 70671 51006 63901 321
0.87173 96188 62903 43447 4028 0.01700 75862 85222 67570 940
0.85421 02590 67071 88228 6021 0,01804 76126 34460 23616 405
0.83565 16425 33377 04556 4199 0.01906 58930 39137 31842 532
0.81608 61309 29481 05644 3754 0.02006 12005 44639 59596 453
0,79553 72991 58248 13486 3601 0.02103 23358 78722 56311 706
0.,77402 99069 50334 24680 6958 0.02197 81288 95934 13383 869
0.75158 98690 29638 46817 8415 0.02289 74399 87163 18463 499
0.72824 42238 87390 36362 5800 0.02378 91614 52528 72321 010
0.70402 11012 02391 14355 5469 0.02465 22188 35904 85293 597
0.67894 96879 46597 14618 1269 002548 55722 19443 22848 447
0,65306 01932 16842 19196 1262 0.02628 82174 76514 58736 160
0.62638 38118 35045 12676 2609 0,02705 91874 81547 95852 161
0.59895 26867 60742 18588 8769 0.02779 75532 75302 27515 804
0,57079 98703 61220 97870 5362 0.02850 24251 84161 41631 876
0.54195 92845 85913 42618 9305 0.02917 29538 92100 74248 656
0.51246 56800 93027 97098 8463 002980 83314 64031 27548 715
0.48235 45943 77665 69252 0121 0.03040 77923 19286 95269 039
0.45166 23089 51869 36757 6379 0.03097 06141 54080 92094 594
0.42042 58056 28197 75610 1396 0.,03149 61188 11818 63607 696
0.38868 27219 59498 20677 6509 003198 36731 00218 57603 946
0.35647 13058 88567 84613 1189 0.,03243 26895 54255 61691 179
0.32383 03696 62345 96651 1395 0,03284 26271 44007 50457 863
0+29079 92430 66166 65154 9602 0.0332]1 29919 26551 31651 404
0.2574]1 77260 34420 12992 0888 0.03354 33376 41124 27668 293
022372 60406 94722 85926 8958 0.03383 32662 46831 68725 793
0.18976 47829 03379 01902 0874 0.03408 24284 02253 99546 361
0.15557 48733 30529 11951 1405 0,03429 05238 86375 04193 170
0.12119 75081 53924 08296 8749 0.03445 73019 60324 25617 460
0.08667 41094 20734 77008 5237 0.03458 25616 69496 89141 B0S
0.05204 62751 37206 94905 9279 0.03466 61520 85688 24018 827
001735 57291 46299 65246 1298 003470 79724 88950 05792 046

14] A. H. Stroud, Mathematics of Computation, Vol. 18, p. 164 (1964).
[5] H. J. Gawlik, Zeros of Legendre Polynomials or Orders 2-64 and
Weight Coefficients of Gaussian Quadrature Formulae,
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