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An algorithm is developed for the following problem: Given three matrices of respective dimen-
sions s Xs, s X t, and tXs, to find a ¢ Xt matrix such that the (s+¢) X (s +¢) matrix formed from the

four blocks has maximum rank.
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Let A, B, C be matrices (over any field) of respec-
tive dimensions s X s, s Xt, t Xs. We shall show how
to find a ¢t X t matrix X such that

A B
MX)=
C X

has maximum possible rank p(M(X)), or equivalently
has minimum possible deficiency

S(MX) =5+t — p(M(X)).

Let B8’ and y' be the respective ranks of the matrices

!
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It is readily seen that for any choice of X,

d(M(X)) = max (s—B', s—y'). (1)

We will show that X can be chosen so that equality
holds in (1). Thus

min §(M (X)) =max (s—B', s—y). (2)
X

For the special case B'=+'=s, this was proved by
Pearl.!

Denote the rank of 4 by a. Find nonsingular s Xs
matrices U and ¥ which bring A4 into Smith normal
form, i.e.,

UAV =1+ 0s_a.

! Martin Pearl, On Normal EPr Matrices, Mich. Math. J. 8, 33—37 (1961), (Theorem 2).

M(X) will have the same rank and deficiency as

_[U 0 V 0| [UAV UB
M‘(X)_[o 1] M) [0 1] - [CV X ]
which we repartition as
I. 0O B,
MX)=|0 05—« B:
C, G, X
. [B
where [C.Co]=CV, B =UB.
2

M (X), in turn, has the same rank and deficiency as

[l 00 I 0 —B;
M,X)=|0 1 0} M, (X) |:0 I 0 }
—C, 0 [ 0 0 I
(1 0 O
=(0 0 B :l
L0 Cz X*‘CIBI

Let B and y be the respective ranks of B, and C..
Since [A4 B] has the same rank as

I 0 —B =[1,, 0 o]
U[A BIV+1) |0 I 0 0 0 B
00 I

we see that ' =a~+ B, and similarly y'=a+1y.

Find a nonsingular (s —a) X (s —a) matrix U, and a
nonsingular ¢ Xt matrix V> which together bring B,
into Smith normal form, i.e.,

U2B2V2 = l:f)ﬁ g:| s
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Then M,(X) has the same rank and deficiency as

(1 0 O I 0 0
0 0 [ 00 7,

1 0 O
== 0 0 UszVz =
1] X —=CiB)V,

Next find a nonsingular ¢ X ¢t matrix U; and a nonsingu-
lar (s — @) X (s — ) matrix ¥3 which together bring C,
into Smith normal form, i.e.,

Iy 0
U3CzV3= |:0y 0:|

Then M5(X) has the same rank and deficiency as

I 0 0 I 0 O
M4(X):|:0 1 0 } M;(X) l:O Vs 0}
0 0 Us 00 I
I 0 0
—_—|:0 0 U2B2V2 :],
0 UsC.ls Us(X —CBy)V»

which we repartition as

. O 00 0]
0 0 0 1Ig O
M&X)=[0 0 0 0 0 |, 3)
0 Iy 0 Y, Y,
0 0 0 VYs Y,

where

UsX — CiBV= [Yl Y ]

Y; Y,

At this point 8 and y are known. Assume without
loss of generality that 3<vy. Choose Y;=0, Y>=0,

Y5=0, and choose the (t—7y)X(t—pB) matrix Ys=[I;»0].
On the one hand, this choice yields

pPMX)=pMsX))=a+y+B+({—7)
=a+t+min (8, y)=t+min (B, y',),

so that equality holds in (1). On the other hand the

choice is achieved by setting

00 0
= =il =il
X=CB:+U; [0 e 0] Vit (@)
If y < B, then (4) can be replaced by
0 0
©®)

X=CB,+U3!' |0 0 Vi
|0 I
i.e., Y1=0, Y2=0, Y3=0, YZ= [0 It—B]-

The main computational labor involved comes (a) in
bringing A into Smith normal form, (b) in determining
V3t and B, and (c) in determining Uz! and y. Step
(a) can be carried out by performing elementary row
operations to “sweep out” A4 to upper triangular form
(the product of these operators’ matrices is U), and
then performing elementary column operations (the
product of whose matrices is V) to “‘sweep out” the
resulting matrix into diagonal form D,+ 0s_,; it is not
necessary to normalize D, to I,. As for step (b), we
can take V> as the product of the matrices of elemen-
tary column operations used to sweep out B; into lower
triangular form; each elementary matrix is trivially
invertible so that V3! can be built up during the sweep-
out process, and 8 can be read off at the end of the
process. Similarly for step (c).
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