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1. The purpose of this note is to point out how a certain type of approximation to fun ctions 
of one real variable, gives rise to similar approximations to functions of several variables. In 
fact, we show how information on the rapidity of cOQvergence of the approximation in the one 
dimensional case, yields at once corresponding information for the multidimensional case. 

2. Let -oo < a < b <oo, and for n=l, 2, . .. , let c~,), cln), . •• , c\!') be points of [a, b], 
and Kbn)(X), K\n)(x), ... , K~n)(x) polynomials which are ;;:z,: ° throughout [a , b], and such that 

n 

~ K)n)(x) == l. 
j = O 

We set, finally, for every real function f, continuous in [a, b], 

n 
Pn(f, x) == ~f(c)n))K}n)(x) (n =1,2, .. . ). (1) 

j = O 

3. The purpose of constructing such polynomials Pn(f, x) is to obtain polynomial approxima
tions to f Here are two examples. 

I. Let a=O, b= 1, and for n= 1, 2, 
Then };J=oK;n)(x) == 1 (n= 1, 2, . .. . ). 

n=l.2, . ... 

... , let c1n) = i/n, ~n)(x) == (j)xj (1- x)n-j (j= 0,1, .. . ,n). 
If f is any real function, continuous in [0, 1], then for 

(2) 

is the Bernstein polynomial [1] of order n of f If, furt hermore, w(8) is the modulus of continuity 
of fin [0, 1], then ([7, 10]) the polynomial (2) satisfies 

max If(x) - P n(f, x) I ~ (S/4)w(n - 1/2) (n= 1,2, ... ). 
O.:S;x~ 1 
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II. Leta=-1,b=1,andforn=1,2, ... ,letc~n)=cos J 7T, [ 2'+ 1 ] 
2(n+ 1) 

Kl1l)(x) == (1- C<~)x)[T1I+ I(X)/ {(n + 1) (x - C<"»)})2 
)) ) (j=0, 1, ... ,n), 

where Tn +t(x) == 2nI1~=o(x-c~n») is the (n+ l)th degree Chebyshev polynomial of the first kind satis
fying Tn + t(cos ()) == cos [(n + 1)()]_ If f is any real function continuous in [-1, 1], then 

(n = 1, 2, ... ) are the well-known [3] Hermite-Fejer polynomials converging uniformly to fin 
[-1 , 1]. Again:L.!i~o~n)(x) == 1 (n= 1, 2, ... ). If fis a realfunction, satisfying throughout [-1,1] 

If(v)- f(u) I ~A Iv-u I 

where A is a positive constant, then [11] for n = 1, 2, . . . 

max If(x) - Pn(f, x) I < 4A7T(n + l) -I[a+ log(n + 1)] 
-l~x:s;t 

where a = ~ + C -log 2 = 0.384 ... ,C being Euler's constant. Furthermore , if f is a real func
tion, continuous in [-1,1], and if w(cS) is the modulus of continuity oflthere, then for n= 1,2, . 

we have [11] 

where 1}n depends on n only and 1}11 ~ 0 as n ~ 00. 

4. THEOREM 1. Assume the hypotheses and notation of section 2. Assume also that if f is a 
real function satisfying for some positive constant A, throughout [a, b], I f( v) - f( u) I~A I v - u I , 
then for n=l, 2, .. . 

max I f(x) - P n(f, x) I < aA. ,n 
a~xl!S:b 

where aA., n depends on A and n only. Let f(XI, X2 .•. , x p ) (p ~ 2) be a real function, defined on 
the cube C: a ~ Xk ~ b, k = 1,2, ... , p. Suppose that for r= 1,2, ... , p, Ar is a positive number 
such that throughout C 

, np be arbitrary positive integers , and set 

nl 

Pnt, n2' ... , np(f, xl, X2, ••. , xp) == L 
hi = 0 

Then throughout C: 

x )- P (f XI X2 p n1 ' n2~ ... , n p ' , , 
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(4) 

p 

, xp) I < L aA.r , nr' 
r = 1 



nl 

PROOF. Observe that L 
hI = 0 

Hence , throughout C, 

p 

=2: 2: 
r = 1 herO,I " , " nq 

q= I ,2,. . . fJ , Q¢ 1' 

d,',' r - I l, X", . ., 1' - 1 

Thus, throughout C, 

~ K\:~I)(XI ) . . . K\,';r)(xp) == l. 
hp = O 

., Xp) means I(x" ... , xp) if r= 1, and 

) f( (Ill) (11 )'f - ) ., Xp means Ch , ••• , Cl,P J r -p. 
I p 

., xp) - Pili, 112, .. . , IIp(f, XI, ..• , xp)1 

p "r 

. IT Kli~s)(xs) 
s = 1 

s"or 

~ L L ., xp) - L f(c\:~I), ... , eli::), Xr+h ... , xp) 
r = l hq=0 , I , , .. , nq 

q= I,2 , ... , p , q"or 

<i L 
r = 1 hQ= O,l, . . "nq 

q= I ,2, .. . , p , q"or 

",.=0 

. K},";)(Xr ) I }) K},:s)(xs) 

s"r 

a"r,llr n KI:~s)(xs) = i a"r,llr' 
8= 1 1'= 1 

s"or 

5. EXAMPLE [11]. Let f(x!, X2, ... , xp) (p:3 2) be a real function defined on the cube C: 
-1 ~ Xk ~ 1, k= 1,2, ... , p. Suppose that for r= 1,2, ... , p we have, for some positive con-
stant Ar and throughout C, the inequality (3). For j= 0,1, ... , n; n = 1,2, ... , let cjn) and Kj")(x) 
be as in II , section 3. If n!, n2, ... , np are positive integers and PilI' 1l2' ... , IlpCf, XI, ••• , xp) is 

defined by (4), then by Theorem 1 we have, throughout C, 

lfix!" .. , xp) - Pnl> . . . ,"pCf, x!, ... , xp)l< i 4Ar 7T(nr + 1)-1 [a+ log (nr + 1)]. 
1'= 1 
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6. Similarly to Theorem 1, one can prove the following 
THEOREM 2. Assume the hypotheses and notation of Section 2. Assume also thatfor n= 1,2, ... , 
an, {3n(f3n ~ b - a) are numbers such that if f is a real function, continuous in [a, b], with modulus of 
continuity w(o) there, then 

max I f(x) - P n(f, x) I ~ a nw({3n). 
a ~ x ~ b 

Let f(xt, X2, ... , xp) (p?- 2) be a real function, continuous in the cube C: a ~ Xk ~ b, k= 1,2, ... , p. 
For every oe[O, b - a] and every r(= 1,2, ... , p), let 

wr(o)=maxlf(xt, ... , Xr- I, v, Xr+l, ... , xp)-f(xt, ... , Xr- t, U, Xr+t, ... , xp)1 (5) 

where the Xl> u, and v vary in [a, b] with 0 ~ v - u ~ O. Let n1, n2,. . ., np be arbitrary positive 
integers. Then with the notation (4), we have throughout C, 

p 

If(xt, ... , xp)-p,,! , 1t2 , ••• ,np(f, Xl, ... , xp)l~ 2: a nrwr{f3n). (6) 
r= l 

7. EXAMPLE. Letfixt, ... , xp) (p?- 2) be a real function, continuous in the cube C: 0 ~ Xk:;;; 1, 
k= 1,2, ... , p. For every oe[O,I] and every r(= 1,2, ... , p) let Wr(O) be as in Theorem 2 
(with a = 0, b = 1). Let nt, . . ., np be arbitrary positive integers. Then by Theorem 2, and by I, 
section 3, we have throughout C: 

8. We consider now an analog of the situation considered in Theorems 1 and 2, sums being re
placed by integrals. 

9. Let - 00 < a < b < 00, and for n = 1,2, ... let Kn(x, t) be a real function which is ?-° and con
tinuous in the square a ~ x ~ b, a ~ t ~ b, and which satisfies for every xe[a, b], 

f Kn(x, t)dt= 1. 

For every real function f, continuous in [a, b], set 

P,,(f, x) == f f(t)Kn(x, t)dt (n= 1,2, ... ). (7) 

10. Such Pn(f, x) are constructed again, like their counterparts (1), in order to obtain approxi
mations to f Here are a few examples of such P n(f, x) prominent in Analysis. 

I. Let a = -1T, b = 1T and for every real x, t, let 

1 [ 1 n-1 n - j ] 
K,,(x, t)=; -'2+ L ~ cos U(t-x)} 

) = 0 

(n= 1,2, ... ). 

If t - x is not an integral multiple of 21T, then 

K,,(x, t)=sin2 {~(t-x)}/ [2n1T sin2 {~(t-x)} ] (n= 1,2, ... ). 
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Also the properties in the first sentence of section 9 hold. For every real function I continuous in 
(- 00, 00) and of period 21T, and for n = 1,2, . . . , P,,(f, x) of (7) is in the present case the arithmetic 
mean 

where 

n - I 

(J,,(f, x) == n- 1 L Six), 
j = O 

SO(x) == ao/2, Sj(x) == (ao/2)+± [ak cos (kx)+bk sin (kx)] 
k=O 

U= 1,2, ... ), 

'" (ao/2) + L [ak cos (kx) + bk sin (kx)] 
k=o 

being the Fourier series of I, and by a classical theorem of Fejer [2] (J,,(f, x) converges uniformly 
to I{x) in (- 00, (0). Furthermore, suppose that a real function I(of period 27T) satisfies throughout 
the real line, for some constant A, 

I/{v)-/(u)l,;,;; Alv-ul. 

Then by a theorem of S. N. Bernstein ([6], p. 61; [9], p. 162) for every n> 1, Pn(f, x) == (In(f, x) 
satisfies 

max I I{x) - P,,(f, x)1 ,;,;; Co'll. log n/n, 
-oo< x <oc: 

Co being an absolute constant. 
II. Let a=-7T, b=7T, and for every real x, t, let 

K,,(x.; t) 21Tn(2~2 + 1) [ - n + 2 ~~ (n - j) cos {jet - x)} r (n=I,2, .. . ). 

If t - x is not an integral multiple of 271', then 

K,,(x, t) (n=I,2, . .. ). 

The properties in the first sentence of section 9 hold. For every real function j; continuous in 
(- 00, 00) and of period 271', and for n = 1,2, ... , Pn(f, x) of (7) is now a trigonometric polynomial 
introduced by Jackson ([4, 5, 6]). If I is a real function of period 21T, satisfying for every real u, v 

I/{v)-fiu)1 ';';;Alv-ul 

A being a constant, then by a classical theorem of Jackson ([4, 5, 6]) this particular Pn(f, x) satisfies, 

max I/(x) - Pn(f, x)1 ,;,;; (cAl n) 
-oo<X<oo 

(n= 1,2, ... ), 

C being an absolute constant. 
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III. Let a = - 7T, b = 7T, and for every real x, t, let 

_ (2n)!! 2n(t-X) 
Kn(x, t) - 27T(2n -I)!! cos -2- (n= 1, 2, ... ). 

Here, m!! denotes 2·4·6· ... m for every positive even m, and 1·3·5· ... m for every posi
tive odd m. Again the properties in the first sentence of section 9 hold. For every real function 
f, continuous and of period 27T in (- 00, (0) and for n = 1,2, ... , Pil, x) of (7) is in the present case 
a trigonometric polynomial introduced by de la Valee-Poussin [12]. If w('») (0 ~ (') < (0) is the 
modulus of continuity of such an f, then ([8], [9]) for n = 1,2,. _ . 

max if(x)-Pn(f, xli ~3w(n-1/2). 
-oo<X<oo 

11. An analog of Theorem 1 is 
THEOREM 3. Assume the hypotheses and notation of section 9. Assume also that iff is a real 

function satisfying for some positive constant A, throughout [a, b], 

if(v)-f(u)i~ Aiv-ui, 

then for n=I,2, ... max if(x) - P D(f, x)f < aA, n 
a~x::s;b 

where aA,D depends on A and n only. Let f(xt, X2, •. " xp ) (p ~ 2) be a real function defined in the 
cube C: a ~ Xk ~ b, k= 1,2, , , "p, Suppose that for r= 1,2, ' , "p, Ar is a positive number 
such that throughout C 

Let nt, n2" " np be arbitrary positive integers, and set 

Then throughout C: 

p 

if(xt" , " xp ) - POI' O2 , , , "Dp(f, Xt" " xp)i < k aAr• Dr' 

PROOF, Observe that throughout C, 

ib 
, , , ib K",(xt, tl)' , , K"p(xp, tp)dtl _ , , dtp = 1. 

Hence, throughout C, 

= J: . ib ~xt, . , , xp)-fih" , "tp)] K",(xt, tl) , , , K"p(xp, tp)dtl ' , , dtp 

= J:, , J: [~I fit!, , , "tr-t, Xr, ' , "xp)- fit!, , , " tr , Xr+t, , , "Xp)] K"Jxt, tl) 
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-f(tl, ... , t r, Xr+I, ... , xp)]K"r(xr, tr)dtr} D K".(xs, t~)dtl ... dtr- 1dtr+1 ... dtp. 

s .. r 

(f(tt, . .. , tr-l, Xr, . .. , Xp) means f(XI, . .. , xp) if r= 1, and f(tt, ... , t r, Xr+t, ... , xp) means 
f(tI, . . ., tp) if r = p). Thus, throughout C, 

[{(x!, . .. , xp)-Pn""2 •.. ""p(f, xl, ... , xp)1 ~ i (I> . .. (I> 1J'(tI, . .. , tr-l, xr, ... , xp) 
r=l Ja Ja ~ I 

- LI> f(tt, ... , tr, Xr+I, . .. , xp)K",.{xr, tr)dtrln K".(xs, tS)dtl ... dtr- tdtr+1 ... dtp 

s .. r 

. LI> axr. nr D Kn/xs , ts)dtl ... dtr- tdtr+1 ... dtp = ~I axr· nr • 

s .. r 

Similarly, one can prove the following analog of Theorem 2: 
THEOREM 4. Assume the hypotheses and notation of section 9. Assume also that for n = 1,2, . . ., 
an, f3n{f3 n ~ b - a) are numbers such that iff is a real function, continuous in [a, b], with modulus of 
continuity w(a) there, then 

Let f(xl,. . ., xp ) (p ;:;. 2) be a real function, continuous in the cube C: a ~ Xk ~ b, k = 1,2, . . ., p. 
For every GE[O, b - a] and every r(= 1,2, ... , p) let w/a) be as in Theorem 2. Let nl, .. . , np be 
arbitrary positive integers. Then with the notation (9), we have (6) throughout C. 

12. The last two theorems can obviously be modified in the following way. For n = 1,2, . 
let K,,(x, t) be a real function which throughout the plane - 00 < x < 00, - 00 < t < 00 is ;:;. 0, contino 
uous , and of period 27T with respect to x and to t, and such that for every real x, 

J~ K,,(x, t)dt= 1. 

For every real function J, continuous and of period 27T in (- 00, 00), set 

P,,(f, x) == L: f(t)K,,(x, t)dt (n= 1,2, ... ). 

Let f(Xl, ... , xp) (p ;:;. 2) be a real function, continuous and of period 27T with respect to each Xj 
in the (real) Euclidean p·space Ep , Let nl, n2, ••• , np be positive integers, and set 
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A. Suppose that if I is a real function of period 27T, satisfying for some constant A, throughout 
(-00,00), If(v)-l(u)l:;;; Alv-ul, then for n= 1,2, ... 

max If(x) - P,,(f, x) I:;;; aI<, " 
-oo<x<cc 

where ai. , " depends on A and n only. Suppose that for r= 1,2, ... , p, Ar is a number such that 
(8) holds everywhere in Ep. Then throughout Ep we have 

p 

If(xt, ... , xp)- P"" ... , "p(f, Xl, ••• , xp)l:;;; L ai.T , "T' 

r = 1 

For example, if for n= 1,2, ... , K,,(x, t) IS as III example II of section 10, then throughout Ep 
we have 

c being the absolute constant mentioned there. 
B. Assume that for n = 1,2, . . ., a" and {3n are numbers such that if I is a real function, 

continuous and of period 27T in (- 00, (0), with modulus of continuity w(8)(0 :;;; 0 < (0), then 

max If(x)-P,,(/, x)l:;;; anw(f3n). 
-oo < X < x 

For every 8 ~ 0 and for r= 1,2, ... , p let wT(8) be given by (5) where now the Xj, u and v vary 
in (~, 00), subject to 0:;;; v - u :;;; 8. Then (with the notation (10)), (6) holds throughout Ep. For 
example, if for n= 1,2, ... , K,,(x, t) is as in example III of section 10, then throughout Ep we 
have 
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