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The result s of the preceding paper are extended to the general system of n first-order differential 
equations having an irregular singu larity of arbitrary rank at infinity. Formal solutions are explicitly 
constructed for the syste m in canonical form. Proofs of existence and uniqueness of solutions of 
integral equations defining the e rror are given. As an example, the case n = 2 is solved completely, 
and a flow chart of the transformations of this case to canonical form is included. . 

1. Introduction 

The system of differential equations under consideration in this paper is of the form 

s=o, 1, . .. , (Ll) 

where h is an integer and the matrices Ak: and Ws(z) are defined as in [1], except that no assump
tions are made concerning eigenvalues of the matrices Ak (k=O, 1, ... ). We shall simulta
neously consider the case of a regular point, the case of a regular singular point, and the case of 
an irregular singular point at infinity. 

From the point of view of applications it is worthwhile recalling that when the eigenvalues of 
the lead coefficient matrix Ao are not distinct they can be made distinct by an arbitrarily small 
change in the elements of Ao. The results of [1] 3 can then be applied, and the very complicated 
procedure given in this paper for obtaining a formal solution of (1.1) avoided. Indeed the ex
istence of a linearly independent set of n formal solution vectors for the system (1.1) was fully 
established only in 1937 ([2]) and more explicitly in 1955 ([3]). 

We have not been able to improve on the method of [3] for the reduction of (l.I) to canonical 
form. We thus start with the canonical form given in [3] and establish a minor variation of it 
which enables us more easily to obtain error bounds. Next we explicitly construct formal solu
tions for the system in canonical form. Integral equations are then set up for the error vector, 
that is, for the difference between the .partial sum of a formal solution vector and an actual solution 
vector. 

As in [1], it is again possible to express the error by one or, at most, two Volterra vec tor integral 
equations. As opposed to [1], however, it is not always possible to choose the end points of in
tegration in the Volterra integral equations to be at infinity. 

2. The Canonical Form 

The following theore m due to H. L. Turrittin [3] concerns transformation to canonical form, of 
the system (1.1), with eigenvalues of Ao not necessarily distinct. In this theorem the normalizing, 
exponential, zero-inducing, root-equalizing, and shearing transformations are defined as in [3]. 

I An invited paper based on the autllOT's Ph. D thesis, University of Alberta (1965). 
1 Present address: University of Mic higan. Ann Arhor, Mich. 
3 Figures in brackets indicate the lite rature references at the end of this paper. 
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An example of each of these transformations will be given in our treatment of the special n = 2 

case in section 4. 
THEOREM 2.1: Let h be an integer and 

a system of differential equations in which 

S- i 

dX 
-= thW(t)X 
dt 

W(t) = L Akck + Ws(t)t- S 

k = O 

(2.1) 

(s=O,l, ... ), (2.2) 

where the Ak are constant n X n matrices and the elements of Ws(t) (s = 1,2, ... ) are holomorphic 
and uniformly bounded in some domain £1t extending to infinity. Then the system (2.1) can be 
transformed by a finite sequence of normalizing, zero-inducing, root-equalizing and shearing trans
formations to the canonical system 

dW _=zr(£(z)W 
dz ' 

where z = t P , rand p > ° are integers, 

and 

(£, (z) 

r+1 
zr(£·(z) = '" C· zl'- kI . + Z - I J . 

. I L.J lk iJ.1 IJ.) 
k = O 

i=I ,2, ... , I; 

S- I 

SZ3 u(z) = L BUkz- k + IBus(z)z-S, 
k= () 

(2.3) 

(2.4) 

SZ3 I/(z) 

(2.5) 

The elements of the ,matrices SZ3ij(z) are holomorphic for z in the domain £1 which corresponds to 
£1t for all z sufficiently large. Each element ofSZ3u.(z) (i, j=l, 2, ... , l; s= O, 1, ... ) is uni
formly bounded on any path ~ extending to (X) in £1. If r ~ - 2 the matrices (£i(Z) (i = 1, 2, ... l) 
are identically zero. If r > - 2, the I"..are J1-i X J1-i unit matrices, and the J". are J1-i X I-Li square matrices 

I ~l 

with zeros or ones or a mixture of zeros and ones in the first subdiagonal while all other elements of 
JI-\ are zero. No two of the matrices (£i(Z) (i= 1,2, ... , l) in (2.5) are identical. In particular, 

ifi 0/= j and Cik = cjkfor k = 0, 1, ... , r , then corresponding to any particular fixedj (j = 1, 2, ... , l) 
we have - 1 ~ Recj , r+1 < 0, ° ~ Reci , r+1 < 1 and Ci , r+I-Cj, r+1 0/= 1 (i = 1, 2, ... , l; i 0/= j). 

The statement of the above theorem is different in two aspects from that given by Turrittin 
in [3]. In the first place Turrittin proves the theorem for the case when ~r(t) has a convergent 
power series expansion about t= 0. Secondly, Turrittin's version of the last sentence of the 
theorem is: In particular, ifi 0/= j and cik=cJkfor k=O, 1, . __ , r then Ci,r+1-Cj,r+l is not only 
not zero but is also not an integer. 
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It is readily verified that all of the transformations: normalizing, zero-inducing, root-equalizin g, 
and shearing preserve holomorphy of ~(t) for aU t sufficiently large, and t E 9 t extending to infinity_ 

We now establish the s tatement in the last sente nce of Theorem 2.1, assuming Turrittin 's 
version of the theore m. Consider the s ubset of intege rs {i} of the set {i = 1, 2, . . . , l} suc h 
that with iE{i}, and i~j, C;k -Cjk = O, k = O, 1, ... , r. Corres pol1,ding to the points C;,r+ 1 in 
the complex A plane , we define integers k; as follows: if C;, 1' + 1 lies in the strip ki ~ Re A < k j + 1 we 
associate the integer k; with C i ,1'+ I. Without loss of generality we assume that {i} = {I, 2, ... , w} 
and that kl ~k2 ~ . . . ~ kw. Le t K=kw-k l • 

We apply the sequence of zero-inducing tran sformations 

k= 1,2, ... , K+ 1; (2.6) 

to (2.3), where T k is an n X n matrix with an arbitrary leading w X w block and zeros everywhere 
else. Thus for example if 

dZ k - l = r[C + C - 1+ +C -I'- I+B - ,.- 2+ + B - k - r - l + ]Z dz z 0 IZ . .. I'+IZ oZ . . . kZ • •• k- I (2.7) 

where the leading w X w blocks of B o, B I, ... , B h' - I have already been filled with zeros, then 

where 

(2.9) 

We divide the leading w X w blocks of the cons tant matrices BZ, B k , T h· and C I'+ I into smaller sub
blocks corresponding to the way in which Bo was s ubdivided in the above theorem. We denote 
these s ubblocks res pectively by Bt", B;jk, T ijk , and Cij ,1'+ I' Equation (2 .9) for BUh' then becomes 

(2.10) 

where C; = Ci , 1'+ 1. Assuming Turrittin's version of Theore m 1, we have Aj- Ai ~ k. Elements 
of T i jk can therefore be computed 4 starting from the right-hand vector, calculating from top to 
bottom and in thi s manner successively computing the vectors from right to left such that B0k=0 . 
It is clear that each leading w X w block of BI.- (k= 0, 1, ... , K) can be filled with zeros in thi s 
manner. 

The root-equalizing transformations 

Z= Y, y= w 

are now applied to (2.8) above , changing C i , r+1 (i = 1, 2 , . ., l) to the form described in the las t 
sentence of Theorem 2.1. 

"For further detai ls . see [3] p. 33. 
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The following theorem is also proved by Turrittin [3]. The main purpose of presenting a 
proof here is to obtain a recurrence relation for the coefficients of the solution matrix and to furnish 
an explicit algorithm for computing these coefficients. 

THEOREM 2.2: The system of differential equations in the canonical form (2.3) to (2.5) possesses 
a formal independent series solution matrix of the form 

W(z) = U(z)e O(z) 

where 

U(z) = [Uu(z)] ~ f UkZ-k ~ f [UUk ]z- k 
k = O k=O 

_ r qik r+l - k 
qJz)-~or+1-kz +%, r+llog z (i, j = 1, 2, . . . , L). 

PROOF OF THEOREM 2.2: Let us put 

1' + 1 

Zr[G£'i(Z)Oij] = L Cd'+ I - k =' zrD(z), 
k =O 

.. - I 

[lB;iz)] = m(z) = L Bkz-k + lB,.{z)z-s. 
"=0 

We substitute (2.11) into (2.3), and use the fact that 0 and 0' commute, to find 

U'(z) + U(z)O'(z) ~ [z''D(z)+z- 2lB(z) ]U(z). 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Expanding (2.3), using (2.12), (2.13), and (2.14) and equating equal powers of z, we obtain 

min (I', 1'+ 1) 1'-1'-2 

L (C"UM- k- UM- kCk)+(jL- r-1)UM- r - 1 + L B kU M- r - 2- ,,=O 
k =O k = O 

(2.16) 

for jL=O, 1,2, . .. , where Uk=O if k < ° and Ck=Qk=O if k > r+ 1. 
The proof of Theorem 2.2 will be complete once we prove the following lemma. 
LEMMA 2.1: Under the assumption that O(z) has the form given by (2.12) with Uo = I, equation 

(2 .16) uniquely determines QM(jL = 0, 1,2, ... r + 1) and U",(jL= 1,2, 3, .. . ). 
PROOF OF LEMMA 2.1: The proof of the lemma is by induction. With jL=O, (2.16) gives 

(2. 17) 

which has the unique solution Qo=Co. With jL=l , (2.15) becomes 

(2.18) 
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Now if U I is an arbitrary n X n matrix we know from the definition of Co that the (i,i)th (i = 1,2, 
. , l) blocks of COU I - UICO consisting of /J-i X fL; matrices are identically zero. Hence the e 

blocks of C - QI must also be zero, and therefore, QI = C I. Furthermore, it follows that all (i,j)th 
blocks of U I for which Clo - CjO #- ° are uniquely de termined and are zero. All (i , j)th blocks of U I 
for which cw = CjO cannot be determined at this point. In partic ular, it is not possible to solve for 
U w (i=1.2 .... , l). . 

Assume that for some integer k, ° ~ k ~ r, we have complete d solving (2.16) for all fL ~ k; 
that we have found QIJ. = CIJ. (fL= 0, 1, ... , k) and that we have determined all blocks of the mat· 
rices UIJ. as far as possible. More precisely , we make the following assumptions for each 

(i,J)th block of UIJ. (i , j = 1,2, ... , l ; fL = 0 , 1 , ... , k). If CiIJ.-CjIJ. = O (fL=0,1 , ... , k-1) 

then assume Uijl , Uij2, ... , Uijl, are arbitrary, fL ;XfLj matrices to be determined later. On the 
other hand, if p is the s mallest integer in ° ~ p ~ k for which C;p-Cjp #- 0, we assume that U;jO 
= Uijl == ... = Vij, " - 1'= 0 (fL;XfLJ, while Uij, HI-p, ... , V ijl,· are arbitrary fL ;XfLj matrices. 

For fL = k + 1, equation (2.16) becomes 

(2.19) 

If U 1, U 2, •• • , U k+ 1 are arbitrary n X n matrices, the (i, i)th (i = 1,2, ... , l) blocks of CIJ.Uk+ I- 1J. 
- U'·+ I- IJ.CIJ. are zero when fL = 0, 1, ... , k. Hence these blocks of C" +I - Qk+1 must also be 
zero, and the refore Q" +I = C"+I. On incorporating thi s result in (2. 19) we find that the (i, J)th 
block of (2 .19) becomes 

(2.20) 

If CilJ. -CjlJ. = O, fL = O, 1,2, . .. , k, then we cannot solve for U ijl , Uij2, ... , Vij,/,+I' We leave 
these matrices unde termin ed for th e mome nt. On the other hand , if p is the smalles t nonnegative 
integer in ° ~ p ~ k for which Cip- Cjp #- 0, then by the above induction hypothesis, (2 .20) beco mes 
(Cip- Cjp)Uij , k+ 1- p=,(XfLiXfL), a nd so under the ass umption th at Vij, H2- p, . .. , Uij, k+1 are arbi
trary fL; XfLjmatrices we have Uij,H I- p= O. 

It is clear at this point that QIJ. is uniquely determined for each fL = 0 , 1, ... , r + 1. We may 
therefore write the (i, J)th block of (2.16) in the form 

1'+1 
L (q;k - Qjk)Uij , IJ.- k+ J IJ.;Vij , IJ.- ,·- I- V ij, IJ.-1'- IJ IJ.j 

k = O 

For fL = r+ 2, (2.21) becomes 

1' +1 

1J. -1'- 2 l 

+(fL- r - 1)Uij,IJ.-r- l+ L LB;SkVSj,IJ.-1'-2~k=O. 
k = O s= 1 

L (qik -Qjk)Uij,1'+2-k + JIJ.;D ijl - UijlJlJ.j + Uijl + BijO = O. 
k = O 

If qilJ. - qjIJ. = ° (fL = 0 , 1, . . . , r), and U;j,1'+2 is an arbitrary fLi X /-tj matrix, then 

(2.21) 

(2.22) 

(2.23) 

where, under the assumptions of Theorem 2.1, qi , 1'+l - Qj, 1' + I#-1 if i ¥- j. In either case, whether 
i = j, or i #- j, eq (2.23) is of the same form as (2.10) and hence it uniquely determines U;jl . On 
the other hand, suppose that p is the smallest integer in ° ~ p ~ r for which qip - qjp ¥- 0. Then 
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from the above analysis we know that Vijo = Vijl = ... = Vij , r+l-p= 0 (JLi X fLj). Thus if 
Vij,r +3 -p ... , V ij ,r+2 are arbitrary JLi X JLj matrices, then 

(qip - Qjp)U;j, r+2-p + B ijp = 0 (2.24) 

and this equation uniquely determines the hitherto unspecified Vij, r+2-p . Thus we see that the 
JLiXJLj matrices U;jl are uniquely determined for i, j= 1, 2 , ... , l, and hence that VI has been 
completely and uniquely determined. 

Assume that for some integer k?;.O we have completed solving (2.16) for JL=r +2, ... , 
r + 2 + k; that we have uniquely determined V I, . . . , V I +k and that we have determined all 
blocks of the other matrices V1+S, s > k, as far as possible. More precisely, we make the following 
assumptions for each (i, j)th block Vij ,HI-' of V1+I-" (0~JL~r+2+k). If qil-'-Qjl-'=O, JL=O, 
1, . . . ,r, then assume that Vijl , •.. , V ij ,r+2+k are arbitrary JLiXJLj matrices. On the other 
hand, if p is the smallest nonnegative integer in ° ~ p ~ r for which qi; - qjp =F- ° then assume that 
Vijl , ••. , Vij ,r+2+k-p have been uniquely determined while Vij ,r+3+k-p, ... , Vij ,r+2 are 
arbitrary JLiXJLj matrices, to be determined later. 

With JL=r+3 +k, (2.21) becomes 

(2.25) 

If qis - qjs = ° (s = 0, 1, . , r), then with the assumption that Vij , r+3+ k is an arbitrary JLiXJLj matrix, 
the above induction hypothesis, and the assumptions of Theorem 2.1, we see that (2.25) is an 
equation in Vij,I;+2 of exactly the same type as (2.10) was in T ijk, and thus uniquely determines 
Vij , H2. On the other hand, suppose that p is the smallest nonnegative integer in ° ~ p ~ r for 
which qip - qjp =F- 0. Then assuming Vij, 7'+4+k-P' ... , Vij, r+3+k to be arbitrary JLi X JLj matrices , 
we see that eq (2.25) may be written 

r+1 k+1 I 

(qiP-qjp)Vij ,r+3+k- p=- 2: (qis-qjs)V ij ,r+3+k-s-(k+2)Vij,k+2-2: 2: BivsVvj,k+l-s. 
s=p+1 s=O .v=1 

(2.26) 

By the induction hypothesis, all matrices on the right of (2.26) are known; hence Vij , r+3+k- p is 
uniquely determined. 

Thus the matrices VI-'(JL= 1,2, .. . ) are uniquely determined by eq (2.16). 
The above proo( can be easily modified for purposes of computing the jth column of blocks 

only. Suppose we are interested in knowing the coefficients of a particular vector solution, say 
the vth column Wj(z) in the jth column of blocks \Viz) of'i\z). If JI-'j has a one in its vth column as 

well as in its (v + l)th, . , (JL -l)th but not in its JLth column where JL ~ JLj, then it is .readily shown 
that 

(2.27) 

where Vk is the sth (s= 1,2, . .. , JLj) column vector in the jth column of blocks of the matrix Vk. 

Thus to obtain the vth formal solution vector in the jth column of blocks it is only necessary to 
compute the JLth , (JL -l)th, ... , vth columns of V jk at each stage. 

192 



3. Error Bounds for Formal Partial Sum Approximations to Actual Solutions 

We shall obtain an actual solution vector of the sys te m (2.3) to (2.5) corresponding to vth formal 
solution vector in the jth column of blocks of formal solutions (eq (2.27», and we shall obtain error 
bounds for the difference between a partial s um of (2 .27) and the corresponding actual solution 
vector. 

3.1. The differential Equation for an Approximation 

Starting with the partial sum 

111 - ] 

<l> jm(Z) = L UjI,Z-ke C;(z) 

k =O 

where in the notation of Theorem 2.2, U jk is the jth colu'mn of blocks of the matrix Uk and 

O;(Z) = lli(z)I w+ JI-' . log Z, 
:J J 

we define R jm(z) by 

(3 .1) 

(3.2) 

(3 .3) 

On expanding the (i, j)th block of (3.3) using (2 .14) and (2.25) and denoting qi(Z) - qj(z) = qu(z), we 
obtain the followin g expression for R ijm(z) 

(3.4) 

if i ¥= j, and for some p in 0 ~ p ~ r, qip - qJp # O. On the other hand, if qip= qjp, 0 ~ p ~ r, the n 

111 - 1 

R ijlll(z) = [ (qi , r+ l - qj , r+J + m)Uijm+ J/L;U ijm- Uij"J/L)z- m- J - L {lSm- .lz)Ujs} i Z- 1I1 - 2, (3.5) 
s= 0 

where (3.5) includes the case i = j. 

3.2. The Various Possible Cases 

It is demonstrated in [4] that for each fixed j (j= 1,2, ... , I) the comple te vicinity of infinity 
can be divided into a finite number N, say, of sec tors Y'kj (k = 1, 2, , .. , N) such that for all i 
(i = 1-, 2, . .. , l ) for which qip - qjp ¥= 0 for some integer p in 0 ~ p ~ r, we have either Re qij(z) 

bounded above, or else Re qij(z) tending to + 00 as Z ~ 00 in a particular sector Y' kj. This fact 
enables us to classify the various ways of constructing actual solution vectors corresponding to 
formal solution vectors under two different headings: (a) those cases for which it is possible to 
define an actual solution vector by a single Volterra integral equation; and (b) those cases for 
which we require a simultaneous pair of Volterra integral equations to define a solution vector. 

Let us establish our notation for purposes of characterizing cases (a) and (b) above. The 
fixed limits of integration in the closure, :?», of the domain !3J in which ~(z) is holomorphic will 
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be denoted by {no In case (a) {n consists of a single point ~, say, and in case (b) H} consists of 
two points, ~J, and ~2, say. g' a will denote a closed disc with centre at the origin and radius a. 
If for all integers i in the range 1 ~ i ~ l qip = qjp for p = 0, 1, . . . ,r, then a = ° provided that 
every member of {~} is unbounded. ,Put x=min I~I. If X < 00 we set a=x. If, in case (b), all 

sE{n 
members of {n are bounded then we assume thai ~I ~ S2 and ISII=ls21. If, for at least one i in the 
range 1 ~ i ~ I, we have qip # qjp for some p E (0, 1, ... , r), we let ao denote the maximum 
modulus of the set of zeros of q;)z) for all such i, and set a = ao if X = 00. If X < 00 chose {S} in such 
a way that X ~ Go and no member of {s} coincides with a zero of qi/z). Let f!))* = f!)) - g' a - .9" where 
.9" is empty or {(x)} according to whether or not O(z) = 0. The paths 9 are defined as in [1]. 

Case (a) above is related to the extreme eigenvalue case in [1]. It is characterized as follows. 
We define a region £1(z, S) to be the union of all points z, other than L such that there is a path 9 
connecting zE f!))(z, s) and ~ satisfying the following extreme eigenvalue conditions: 

(1) If ~ E f!))*- £1* , then 9 lies entirely in £1* except for ~. 
(2) For given ~ and z, all elements of the matrices exp{Oi(T)-0/t)-IIi[qi7)-qj(t)]} 

I 

(i = 1,2, ... ,l: i # j) are bounded for all points t, 7 in the order~, t, 7, Z on 9. If JIi #0, or iffor 
J 

some i (i = 1,2, ... , l; i # j) we have qip = qjp for p = 0,1, ... , r, we require that 7/t be bounded. 
(3) V", (t7)-l) is bounded, where the fixed number YJ may be taken to be zero if JIi , =0 but other· 

J 

wise YJ is an arbitrary positive number less than 1. 
Case (b) above is related to the interior 'eigenvalue case in [1]. It is characterized as follows. 

We define a region £i1(~t, S2, YJ) to be the union of the points z for which there is a path 9 connecting 
~I, z and S2 (in that order) satisfying the following interior eigenvalue conditions: 

(1) Except possibly for SI and ~2, 9 lies entirely in £1*. 
(2) The integers i = 1, 2, .. . , l are subdivided into two nonempty disjoint classes N 1 and N2 

such that if ~J, and ~2 are given, then for all points t and 7 in the order ~J, t, 7, S2 on 9, the elements 
of the matrix OU(T, t) = exp {OJ7) - O;(t) - lliJqj(7) - qj(t)]} are bounded if i EN I (i # j) !'¥hile 
if i E N z (i # j) the n all elements of the matrix Ou(t, 7) are bounded. If J lij # 0, or if for some 
i in the range (1 , l) (i # j) we have qip = qjp for p = 0, 1, ... , r, then we assume without loss of 
generality that both i and j are in Nz, that ~l is bounded, and that t/7 remains bounded for all points 
t, T in the order St, t, 7, ~z on 9 , 

(3) Hal+a4+V(al-a4)2+4a2a3}~ (t7) - I) < 1, where YJ may be taken zero if J"'j=O,but 
otherwise YJ is an arbitrary positive number less than 1, and aI, a2, a3 and a4 are defined by (3.31). 

We observe that it is no longer always possible to choose the points {n at infinity, in contrast 
to the cases in [1]. 

If r ~ ° we can again represent the eigenvalues of Co as points in the complex plane, and en· 
close them Ly the s mallest strictly convex closed polygon. As opposed to the distinct eigenvalue 
case it is now possible to have several formal solution vectors corresponding to a particular eigen· 
value qOj of Co. Nevertheless, if qOj is an interior point of the polygon and if at least one endpoint 
of integration is taken at infinity 5 it will be necessary to express the error vector by a simultaneous 
pair of Volterra vector integral equations. If qOj is an extreme point of the polygon and only one 
formal vector solution corresponds to qOj, it is again possible, as in the distinct eigenvalue case, 
to express the error vector by a single Volterra vector integral equation. If qOj is an extreme 
point of the polygon and more than one formal vector solution corresponds to qOj, or if qOj is any 
other boundary point of the polygon, we can always determine whether we can express the error 
vector by a single or a simultaneous pair of Volterra integral equations by testing whether or not 
the above extre me eigenvalue conditions can be satisfied. 

!'i We are here attempting to construct actual solutions for which the formal solutions are asymptotic expansions. 
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Weare now prepared to set up the integral equations. Let a vector WJ(z) of holomorphic 
functions satisfy the differential equation (2.3). Denoting the vth column vector of <Pjm by <1>5"" we 
find from (3.3) and (2.27) that the error vector 

satisfies the differential equation 

!!:... ~ ()-[D'()+ - 2m()] ~ ( )- _ ~ Rs ( ) (log z)S-v 
dz EJm Z ) Z Z "-J Z E)1n Z - s~ J11l Z (s - v)! 

where RJm(z) is the sth column vector of Rjm(z) , and Dj(z) = G(z) - Iqj(z) . 

Hence for the extre me eigenvalue case, if the vector E}m(Z) satis fi es 

where R}~.(z) is defined by 

R V*(z) = - f Z e OJ(Z) - OJ( l ) 
Jm , 

Ii (log t)8-V 
L Rj",( t) (s - v )! dt, 
s=v 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

and the path 9 of integration satis fi es the above extre me eigenvalue conditions, then E}II/(Z) simul
taneously satisfi es (3.7). 

For the interior eige nvalue case we partition Ejm(Z) into Ej"JZ) a nd Ejm2(Z), Diz) into D jl(z) a nd 
Dj 2 (z) and RJm into R]",, (z), R jmt(z), and in a corresponding manner m(z) into ClI(Z), Cl 2(Z), Cla(Z) and 
Cl4(Z) so that (3.7) may be written 

(3.10) 

In (3 .10) EJ,"I (z) contains all the ith elements of EJ,n (z) for which i E NJ, and EJ,nz (z) contains all the 
ith elements for which i E N2. It follows that if E]",(Z) satisfies 

(3. 11) 

where 

R~* ( ) =- fz OJ,{z) - Oj,{l) ~ R~ (t) (log t)S- V dt k= 1 2 
liliA- Z e L.. pnk (s - v)! ' " 'k s=v 

(3.12) 

and the path of integration satisfies the above interior eigenvalue conditions, the n EJm(Z) also 
satisfies (3.7). 
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3.3. Treatment of R ;jm(z) 

We shall derive expressions for the elements of the matrices (3.9) and (3.12) which will enable 
us to obtain good bounds in the following sections. Let us consider the block 6 

R :" (z)=_j Z e01z) -o.(t) R· · (t)eOj(t)- <tJ(z) dt . 
lJIn, 1Jm 

(3.13) 

We split (3.13) into its dominant part plus a remainder; thus we express R ijm(t) in the form 

(3.14) 

where 

(3 .15) 

The form of the first term in (3.14) is such that when substituted into (3.13) it can be readily 

integrated by parts. We define Sdz, t) by 

Clearly, knowing the form of OCt), we can express the matrix Suez, 
Sdz, t) is simply P ijm(t) multiplied by a matrix polynomial in log (zit). 

(3.13) , integrating by parts and making use of (3. 16), we find that 

(3.16) 

t) explicitly. In any case 
On substituting (3.14) into 

where 1] I may be taken zero if J iJ.j = 0 for all i = 1, 2, ... , l, otherwise it is an arbitrary positive 

number less than 1. The matrices UU1ll(z), V)jm(z) and V;jm(z, t) are defined by 

U .. .. ?,-me C;(z )- q;(z) _ eL.(z) - o.(QU. . r- meOjW - q/z) 
Ui-m(z) = 'Jlf""Jm., 

J ZTJ1 - m-~TJf"m 

SHere and henceforth we inte rpre t e £'..M) - qAt) = ei:j( t) - IJ..t}J (l). 
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and 

(3.20) 

Equations (3.19) and (3.20) hold, provid ed that the re is an integer p in 0 ~ p ~ r such that qip-qjp 

"'" O. If this is not so we define V)jll/ (z) = 0, and 

The represeritation (3.17) was motivated by the following consideration. 
each element of R ulll(z) is of the form 

p(z, Q =fiz)-jm+g(z)-g(~)+ f h(z, t)t-m- 2dt, 

(3.21) 

We observe that 

(3.22) 

where lI\z)I=O(lzl - mllogzllJ.- ") (see eq (2 .27»" Ig{z) I= O( lzl - m- lllogzll-'-") and h(z, t) = O( llogz lk 
Ilog tn, as Izl, It l--7 00, where k and s are integers. The reason for introducing terms lik e t - Tl , t - TI I 
where T} and T}I are nonnegative numbers less than 1 is to eliminate logarithmic terms conve niently, 
and at the same time obtain good bounds. From (3.22), we have 

+1 ( z f( T}I - m - 1)(g(z) -g(~» + h(z t)t - 1)I}t1)l - m- 2dtl, 
j, l ZT"t I- m - l _'Tt t - m. - t ' 

from which 

where in the las t s upremum t and T are points on 9 in order ~ , t, T , z. 
In each of the next two sec tions we firs t establish the exis te nce and uniqueness of the solutions 

to the integral equations (3.8) and (3.11), then we obtain the error bounds. Our procedure is, in 
one aspect, similar to that in [6nn that we firs t es tabli s h that the conditions in sections 3.2 deter· 
mine a domain. We then appeal to the contrac tion mapping principle (see e.g. [8], sec. 11) to 
establish existence and uniqueness. Proofs by use of s uccessive approximations are given in [7]. 

3.4. Error Bounds for the Extreme Eigenvalue Case 

We use the followin g notation to refer to the elements of a partitioned n X n matrix A. 
Aj = {A}j will denote thejth column of blocks in A, Aij= {Aj };= {A}ij the (i,j)th bloc k, A"= {Aj }" 

./ 

197 



the vth vector in the jth column of blocks, and A'f/= {Ajh'" = {Aj}f the (w,v)th element in the (iJ)th 
block. 

LEMMA 3.1: If under the extreme eigenvalue conditions of section 3.2, 9 (z, Q contains at least 
one finite point z*, distinct from {, then 9 (z, Q is a domain, that is, ~n open connected set of points. 

PROOF: The region 9 * defined in Section 3.2 is certainly a domain. By assumption there is 
a path 9 in 9 * connecting z* with { satisfying the three extreme eigenvalue conditions. Simi· 
larly there is s uch a path connecting an arbitrary finite point Zo on 9 with {. We can clearly choose 
a sufficiently small positive number p such that the disk Yep): Iz - zol< p lies entirely in 9 *, and 
when an arbitrary point ZI of the disk is joined to Zo by a straight line 9 1 then conditions (1) and (3) 
are satisfied on f7J U 9 1• It remains to be shown that condition (2) is also satisfied. 

To show this we define matrices 

(i = 1, 2, . . ., l; i o;f j) (3.24) 

(3.25) 

where 7,.t, 71, tl are points on 9U91 in the order Zl, 71, tl, zo, 7, t, {, and the suprema apply to 
individual elements of the matrices, as in [1]. Clearly, by hypothesis each of these matrices has 
nonnegative bounded elements. We now choose 7 and t on 9 U9 1 in the order Zl, 7, t, {. We 
then consider 

where i is a part of the range (1, I) other than j. If 7 is on 9 then so is t, and in this case by hypoth
esis the matrix on the right consists of nonnegative bounded elements. Similarly when 7 and t 

are on 9 1• Suppose then, that 7 is on 9 1 and t is on 9. In this case 

- Il'i(qk) - qj(Zo))] I ~ lexp [Ui(ZO) - Ui(t) - Il'i(qj(zo) - qj(t))] I I exp [0;(7) - Ui(ZO)- Il'i(qj(7) -flj(zo))]I, 
(3.26) 

so that Ki (9 U[YJI) ~ Ki(9 )K;(91). This shows that the elements of Ki (9U91) (i= 1,2, .. . , I; 

i o;f j) are bounded, and therefore that 9 (z, {) is a domain. 
We next establish the existence and uniqueness of the solution of the integral equation (3.8). 

To this end. we observe that all known functions in (3.8) are holomorphic and single-valued in 
every simply-connected subset of 9 (z, {). If 9 (z, Q is multiply-connected, we interpret 9 (z, {) 
to be a Riemann surface on which all known functions of equation (3.8) are holomorphic and 
single-valued. 

Consider the set Sjm of all n X 1 vectors h(z) of functions holomorphic in 9 (z, Q such that 

lim y h(z)=O, where z~ { along some path 9 belonging to the family described above. The set 
z~\, 
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s:>m together with the metric vector 

forms a complete 7 metric space. 

Let 

Uv* - sup IU* ( )1 
jill - T E !!J> jill T 

B = _1_ [ sup Ie Dk)- D ,{t) Q3(t)C - ,I< IJ 
1-7) t,TE !!J> 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

where for example V'f~, (k= 1,2) is the vth column vector in the column of blocks Vj;" (k = 1,2), and t 
and T are on g;; in the order ~, t, T, z. By the analysis of the previous section , all elements of the 
vec tors and matrices defined in (3.28) to (3.30) are bounded. It follows that with E'J",(t) replaced by 
h(t), the right of (3.8) is a contraction mapping of a comple te metric space into itself, so that the 
solution to (3 .8) exists and is unique. 

On substituting the bounds (3.28) to (3.30) into (3.8) and using Lemma 2 of the appendix in 
[1] , we obtain: _ 

THEOREM 3.1: If, corresponding to a formal vector solution Wjm(z) of equation (2.3), we can 
determine a region 9 (z, ~) satisfy ing the extreme eigenvalue conditions of Section 3.2 , then equation 
(2.3) possesses an actual solution vector of functions holomorphic in 9 (z, ~), given by 

(3.31) 

in which 

(3.32) 

for aLL z in ~(z , ~), where the matrix B and the elements of the vectors U"* and 'Y" are dehned by 
Jrn Jrn J" 

equations (3.28) to (3 .30). The solution Wjm(z) depends on ~ and an arbitrary positive integer m. 

The function qj(z) is defined in Theorem 2.1. The integers J.L and lJ and the vectors Ufk (k = 0, 

1, 2, ... ; s = 1, 2, ... ,J.L) are defined as for equation (2.27). If each J/Lj = 0 (i = 1,2, . . . ,l) 

then the numbers 7) and 7)1 can be taken to be zero; if J/Lj=O then TJ can be taken to be zero; other

wise 7) and 7)1 are arbitrary positive numbers less than 1. 
Let us now obtain a norm bound for the vector EJ",(Z) in Theorem 3.1. To this end we use the 

definitions (3.18) to (3.21), and define 

(3.33) 

sup 
'YJ", = E r17l IIVJ,,!(T)+ VJ~(T, t)11, t , T ;;r 

(3.34) 

7 This is easily ve rified by use of Vitali's theore m. 
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where t and T are on f!J in the order~, t, T, z. Substituting these quantities into (3.8) and using [1] 
Lemma 2, appendix, we obtain 

THEOREM 3.2: A norm bound for the vector Ejm(Z) in Theorem 3.1 is given by 

(3.35) 

where TJ and TJI are defined as in Theorem 3.1 and B, Uj~ and YJrn are defined in (3.33) and (3.34) . . . 

3.5 . Error Bounds for the Interior Eigenvalue Case 

We shall first establish the existence and uniqueness of the solution of (3.11) by use of norms. 
We split the vectors Uj,;,(z), Vj~(k = 1, 2) defined in (3.18) in the manner corresponding to the way 
(3 .7) was split in (3.10) into lower dimensional vectors Uj,;,s(z), Vj~!S (s = 1,2). We change ~ to ~s if 
iENs (s = 1,2 : in the notation of the interior eigenvalue conditions). We then define 

(3.36) 

where II and t2 are on f!J in the order ~I, tl, t2, '2 if k = 1, or ,,, t2, t" ~2 if k = 2. The fixed number 
TJI may be taken to be zero if J/L i=O (i = 1,2, ... , l) but YJI is otherwise an arbitrary positive num-

berlessthan 1. 
Similarly, we define 

{ S=1,k=1,2 
s=2,k=3,4 

(3.37) 

where t1 and t2 are again on f!J in the order '1, tl, t2, '2 if s= 1, k= 1,2 and in the order~" t2, t" '2 
if s = 2, k = 3, 4. The number YJ may be taken to be zero if J/Lj=O but otherwise YJ is an arbitrary 

positive number less than 1. 
LEMMA 3.2: If under the interior eigenvalue conditions of section 3.2, £1(~" ~2' YJ) contains at 

least one finite point z* distinct from ~I and ~2' then £1(,,, ~2, YJ) is a domain. 

PROOF: By assumption there is a path f!J in £1* (£1* defined in sec. 3.2) connecting ~" z* and 
'2 (in that order) and satisfying the three interior eigenvalue conditions. The same path f!J con-

FIGURE 1 
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nects an arbitrary point Zo on 9 in this manner. By an argument similar to that used in the proof 
of Lemma 3.1, -we can clearly choose a sufficiently small number p > 0 such that when we alter 9 to 
pass through an arbitrary point ZI in the inte rior of the disk Y (p) instead then (1) and (3) of the 
interior eigenvalue conditions remain satisfied. To prove that condition (2) also remains satisfied 
we need merely show that if p ~ 0 and the altered path 9 ' in figure 1 tends to 9, then 

sup ,,, eOj ,(T) - Oj,(L) al(t)c-~"-7 s up II eOj,(T)- OJ,(L)a l (t)t - 1J // 

t,7E !!J t,7E 9 

where t and 7 are points located on the paths 9 and 9' in the order ~I , t, 7, ~2. 
of achieving this is to put 

(3.38) 

A convenient way 

~(t , tl, 7, 71) = eUj,(T, ) - Dj,(L') al (tdtl~ -eOj,(T)-Oj,(L)adt)t - 1J (3.39) 

where 7 and t are located as described above; outside Y(p), tl = t , 71 = 7 while in the interior of 
Y(p) tl and 71 are arbitrarily located on 9 '. Let us denote the norm on the left of (3.38) by a', 
that on the right by a. Then it follows that 

(3.40) 

where the supremum is taken for tl, 71 E 9 ' and t, 7 E 9 . The norm on the right is clearly a con· 
tinuous function of its elements, and tends to zero as p ~ O. A similar argument applies to 02, 

0 3 and 04. Moreover the difference %> (t1J - I) _ %>, (~ - I) can be made as small as we please by taking 
p sufficiently small. The truth of Le mma 3.2 is now evident. 

We again observe that if .@(~I' ~2 ' 'Y}) is simply connected then all known functions appearing 
in equation (3.11) are single valued in this domain. If, on the other hand, .@(~I ' ~2 , 'Y}) is multiply 
connected then we interpret .@(~I' ~2 ' 'Y}) as a Riemann surface on which all known functions appear
ing in eq. (3.11) are single valued. 

Consider the set 8 Sj(~I' ~2) = (SjI(~I' ~2)' 4>2(~1' ~2»T of n X 1 column vectors h(z) = (hl(z), h 2(Z)Y 

of functions holomorphic in .@ (~I' ~:i , 'Y}), such that hl(z) E SjI(~I' ~2) is K X 1, h2(Z) E Sj2(~J, ~2) is 
(n - K) X 1, and all elements of h(z) are bounded as z ~ ~J , Z ~ ~2 along any path 9 of the family de· 
scribed above. If we take 

(3.41) 

as metric for Sj, where Xk(t), Yk(t)ESj'''(~I' ~2) (k= 1,2), then it follows that Sj(~I' ~2) together with 
the metric (3.41)i form a comI?lete metric space. Substituting (3:36) and (3.37) in (3.11) and using 

the fact that the eigenvalue of largest modulus of the matrix (ai, a 3 ) ~ (t1J - I ) i s~ {al + a4 
a2, a4 

+ Y(al - a4)2 + 4a2a3}~ (t 1J - 1) and therefore less than 1, we see that the right of (3.11) is a contrac· 
tion mapping of a co mplete metri c space into itself. Hence the solution of (3.11) exists and is 

unique. 

Following [l] we shall again first obtain a vec tor bound. We thus define ljImk(U, v) and ak as 
in (3.36) and (3.37) respectively, except that the norms in these equations are now replaced by 
absolute values. Thus ljImk and ak are now matrices of absolute values. On substituting these 
bounds into (3.11) and proceeding as in [1] we obtain 

8 The index T denotes matrix trans position. 
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THEOREM 3.3: If, corresponding to the vector Wj",(z) (ci, eq. (2.26)) we can determine a region 
£&(~l' ~2, Tj) satisfying the interior eigenvalue conditions of section 3.2, then the eq. (2.3) possesses 
an actual solution vector of functions holomorphic in £&(~\, ~2' Tj) and depending on m, ~l and ~2, 
given by 

(3.42) 

Here 

and ai, a2, a3, and a4 are defined by (3.37), 'l'mk(U, v) (k= 1,2) are defined by (3.36) with norms in 
these equations replaced by absolute values, and 

B = [12 - C2Cl(~t. ~2)] -lC2 X exp {al~ (t7) - l)} 'l'ml(~\' ~2) + CI(~l' ~2) exp {a4~ (t7)-l)} 'I' m2(~I' ~2) 
(3.44) 

In (3.44) II designates a K X K unit matrix and 12 designates an (n - K) X (n - K) unit matrix, K being 
the number of elements in NI (sec. 3.2). All variations on the right of (3.43), (3.44), and (3.45) are 
taken along 9. The function qj{z). is defined as in Theorem 2.1. The vector U~k given by Theo

rem 3.1 is partitioned into lower dimensional vectors as described in section 3.2. The numbers 
Tj and Tjl are· defined as in Theorem 3.1. The bound (3.43) is valid when every eigenvalue of the 
matrix C2CI(~t, ~z) is less than 1 in magnitude. An exactly similar result holds for Ej'm2(z). We 
also have 

THEOREM 3-4: Let ai, a2, a3, and a4 be defined by (3.37), 'l'mk (k = 1, 2) be defined by (3.36), and 

(3.46) 

where the variations are taken along 9. If F(~2) < 1 then 1- F(~2) times the norm of the vector 
Elm,(z)(ci eq. (3.42)) is bounded by the expression 

An exactly similar result holds for Ej'm2(z). 
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4. Example: The Case n = 2 

In this section we consider the special system X' = Zh~(Z)X (h an integer), that is 

adZ») (XII 
adz) X21 

where for each arbitrary positive integer s 

S- I 

aij(z) = L aijl<z- k -+- aijs(z)z-S 
k =O 

(i, j= 1, 2), 

(4.1) 

(4.2) 

and the functions aijs(z) (s = 0, 1, 2, ... ) are holomorphic in a domain § ' and uniformly bounded 
on some path 9 E !@' extending to infinity. 

We begin by transforming the system (4.1) to canonical form. The Row c hart on the following 
pages indicates the steps involved in transforming the system (4.1) to canonic al form. The chart 
is constructed along the lines of the proof of Turrittin's theorem [3], and it contains all the trans
formations used in [3] for arbitrary n. The process terminates in all cases. 

Box #2 in the chart contains the normalizing transformation, box #8 the exponential trans
formation, box # 19 the s hearing transformation, box # 27 the zero-inducing transformation, and 
box # 31 the root-equalizing transformation. Box #7 also contains a modified form of the zero
inducing transformation. 

The resulting system takes the form 

dW 
dz = zrG£(z)W = [O'(z) + z- 2lB(z)]W (4.3) 

in which r is an integer, and 

f(q;(z) 
z,·(£(z) = l 0 (4.4) 

o '(z) is the first matrix in braces on the right, lB(z) is the second, and 

_ ~ qik r+1-k 
qi(Z)- k~ r+1-k Z +qi,r+llogz (i = 1,2). (4.5) 

If r ~ - 2 then 0 ' (z) = O. If for some integer p in the range 0 ~ p ~ ,. + 1, we have qlp "" q21" then 
cf = O. Otherwise g is either 0 or 1. The functions bij(z)(i = 1,2) have the eXQansion 

S- I 

bij(z) = L bijkZ- k + bij.(z)z- S, 
k =O 

(4.6) 

where the elements of bijs(z) are holomorphic and uniformly bounded on a path 9 extending to 
infinity in !@. 

By the analysis of sections 2 to 4 , the system (4.3) has a formal solution matrix of.the form 

- -W(z) = U(Z)e {] (zl (4.7) 
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FLOW CHART ILLUSTRATING TRANSFORMATION OF THE 
SYSTEM TO CANONICAL FORM WHEN n = 2 

2 

Make transformation 

X= To Z taking Ao 
to Jordan canonical 
form. 

No 

Are 6 
Eigenvalues Yes 

of Ao distinct ?>----..t 

No 

Make transformation 8 
r+ 1 

X=Ze)..z with (r+l)A 

eigenvalue of Ao . 

12 

No 

B 

r ~r-1 

Relabel Aj 

by Aj-Aj-l 

Make transformation 

X = [1+T1 z-I+ T2 z-2+ ··· ·+ Tr+1 z-r-1JZ 

diagonalizing Al ,A 2 , · ·· , Ar+l 

No 

Is 
9 

0210 = 1 
? 

Yes 

Is 
13 

k=2r+3 
? 

No 
A 

10 

}J-- -r-1 

15 
Is 

16 
No 

}J-o-+--ll2k 0 = - 112 }J---1 
? 

Yes 

fL- - 1/2 

F IGURE 2 
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4 

14 

17 

18 

A 



21 

Make transformations 

z: (2 , (: Z 

Redefine a " k 's by 
IJ 

b jj,2k+l- 0 (i;tj); 

b jj ,2k - 0; 

b 12 ,2k - 2a12, k+l 

b 21 ,2k -- 2a21,k 

b jj ,2k+l - 2aji,k+l 

(k: 0,1,2,"') 

- b jjk 

( k : 0,1,2, ' .. ) 

24 

Eigenvalues >'1, >'2 define 

integers kl ,k2 ' K and 

number s by 

kl ~ Re >-1 < kl + 1 

k2 c; Re >-2< k2 +1 

K_ Ik 1 -k 21, s .... - >'1 - >'2 

31 

If solution corresponding to 
>-1 is desired, make transfor
mation . 

(" 
:kJ z 

X : 
0 

Otherwise 

X ' (:" :k2+V)Z 

c 

D 

19 22 

Make transformation Redefine ajjk's 

(
ZfL 0) (itj) and a ll ,r+l by 

X: Z 
b 2lk -a21, k-fL 

b 12k -- a12, k+fL 

(k: -fL+1, -fL+2,' •• ) 

Yes 

G 

o 1 

20 
Is No 

fL :-112 
? 

____ ---:;:23 

aijk -- b jjk (j;til 

(k: -fL+1, -fL+2,"') 

A 

27 

Make transformation 

reducing Ak to 0 

Yes 
F 

32 

Apply inverse of each 
r---~ exponential transfor 

mation made . 

FI GURE 2-Conlinu ed 
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where 

(
ql(Z) 

O(z) = 
o 

~ 00 

U(Z) ~2: UkZ-k; 
k=O 

U12k) 

U22k 

Uo=1 

k=O, 1,2, 

Suppose that p is the smallest integer in the range 0 ~ p ~ r+ 1 such that qlp #- q2p' 

the Uijk are computed from 9 

UiiO = 1 (i= 1,2) 

Uijk = 0 if i #- j and 0 ~ k ~ r+ 1-p (i, j= 1,2) 

1 k-l 
Uiik = -Ie 2: (bilsUli , k-l-S + b i2s U2i, k-l-S) 

s=o 

(i= 1,2; k?;. 1) 

1 r+l 

Uij r+2+k-p = 2: Uij, r+2 +k-s(l]js - qis) + (k + 1)Uij , k+l 
, qip -l]jp 8=p+l 

k 

+ 2: (bHsUij, k-s + b i2sU2j , k - S) (i #- j; k ?;. 0). 

8=0 

(4.8) 

Then 

(4.9) 

If, on the other hand, qlp-q2p=0 for p=O, 1, ... , r+ 1, then U k +l (k?;' 0; Uo=l) is com

puted from 
k 

(k+ 1)Uk+l + JUk+1 - Uk+1J + 2: BsUk-s =0 (4.10) 
.=0 

with 

~= 0 or 1. (4.11) 

In either case, whether ~ = 0 or 1, eq (4.10) with Uo = I uniquely determines each Uk , k?;. 1. If 
~ = 0 each column vector can be computed independently of the other. If ~ = 1 the second column 
vector in Uk (k=O,1, ... ) can be computed without computing the first. If, on the other hand, 
~ -= 1 and only the first column vector in Uk (k = 0,1,2 . . . ) is required, the second column vector 
must also be computed, and the computations for the second column vector must precede the com
putations for the first. 

We shall obtain a bound on the difference between a partial sum of the first formal solution 
vector and a corre sponding actual solution vector. Since the analysis is similar to the preceding 
extreme eigenvalue case, we only present the main points. 

, .. 
9Thesum L is to be re placed by zero if p = r + l . 

• - p + 1 
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In order to define a domain, we choose a nonnegative number a such that if qlp = q2p for 
p=O,I, ... , r, then a=O if 1~I=oo and a=I~1 if I~I< 00. Let us denote the largest zero of q~l(z) 
byao. If for some pE(O,I, ... , r) qlp =F- q2p then we set a=laolif 1~I=oo, while if I~I< 00 we as
sume that ~ E 9, ~ does not coincide with a zero of q~l(z) and 1~1~laoi. Let 9* = 9 -iifa -Swhere 
iifa is the closed disk with center at the origin and radius a, and 5 is empty or {oo} according to 
whether or not Q'(z) = 0. We define a region 9 (z , ~) to be the union of all points z, other than ~, 
such that there is a path Pi' connecting z and ~ which satisfies the following conditions: 

(1) If ~E9* - 9 *, Pi' lies entirely in 9 * except for ~; 
(2) For given ~ and z, exp {q21(T)-q21(t)} is bounded for all points t , 'T in the order ~,t, T, Z 

on f!lJ . If qlp=q2p for p=O,I, ... , r and either ql,r+1 =F-q2,r+1 or ~=F-O we also require that Tft 
remain bounded; 

(3) ~ (t1/ - I) is bounded, where TJ may be taken to be zero if g = 0, otherwise TJ is an arbitrary 
positive number less than l. 

By section 3.3 9 (z, Q is a domain. 
If q21(Z) = q2(Z) - ql(z) =F- ° (and hence g = 0) let 

m-l 
Rllm(z) = mUllmZ- m- 1 - ~ [b ll , m-s(Z)UIIS + bl2 , m_s(Z)UI2]Z- m- 2 

s=o 

r+1 
R2l1n(z) = q~ I(Z)U2l1nZ-m - ~ (q2k_qlk)Zr- kU2l1nZ- m 

k=p+1 

(4.12) 

where p is the smallest nonnegative integer such that q2p =F- qlp. On the other hand, if q2(Z) = ql(z) 

then 

( R1I1n(Z») = { [_(Ullm U1211) (0 o\+(m 0) (Ullm UI2m)] z-m-I 

R2Im(Z) U21m U22m gO) g m U21m U22m 

[ (
bll ' m-s(Z) 

b21 , m-s(Z) 

bl2 , m-s(z») (UII S UI 2S) ] } (1 \ 
b22 , m-s(Z) U21s U22s z- m- 2 flog z./ (4.13) 

The integral equation for the difference between an actual solution vector and a partial sum 
of a formal solution vector thus takes the form 

(4.14) 

where the path of integration satisfies the above conditions, and Rlm(z) = (Rllm(z), R2Im(z»)T. 
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l _ 

We define nonnegative numbers U{11I1 and I4lm to be the suprema when T E 9 of the respective 
expressions 

I

(U11m + ~U12m log T)T-m - (U111n + ~U2l1n log ?;)~-1n1 
TTll-m - C'h-m 

I (U2Im+~U22rn log T)T-me'l2l(T)-q2'(')I-{u2Im+~ [log~ (U11m+ U21In log ~)+U22m log ~J} ~-m 
TTl I- m - {1') I - In 

(4.15) 

where 1)1 may be taken to be zero if ~= 0 but otherwise 1)1 is an arbitrary positive number less than 1. 
Similarly with tl and t2 points on 9 in the order ~, tl, t2, z we define 

sup 1 t - Y), m - I 1 

Y11m = + 1 L {bu , m-s(t)[Ulls + ~ logt UI2S] + b12 , m- s(t) [U2IS + ~ logt lbl2S]} 
t E 9 m - 1)1 s~o 

(4.16) 

where 

m-I 

P2Im(t) = R21In(t)-q~1 (t)U2Imrm + L [bll , m- s,(t)Ulls+ b12 , m_s(t)U2IS]rm- 2 (4.17) 
s=o 

with R 21m given by (4.12), and tt, tz points on 9 in the order ~ , tl, t2 , z. Note that P21(t) = 0 if the 
smallest integer P such that Q2p ~ Qlp is r+ 1. 

We define 

(1- 1))ak = t~~1 t - T) blk(t)1 

(1 - 1))as = tt, St~~ 91 tIT) [ b2k(tl) + ~ log ( ~) blk(tl) ] e qZI(t2)-qd, ) 1 (4.18) 

(k= 1,2 ; s=k+2). 

In (4.18) tl and t2 are defined as in (4.16), and 1) may be taken zero if ~ is zero; otherwise 1) is an 
arbitrary positive number less than 1. 
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Summarizing we have 

THEOREM 4.1: If, corresponding to the formal vector solution WI(z) of equation (4.3), we can 
determine a domain 9 (z, ~) satisfying the conditions above, then the equation (4.3) possesses an 
actual solution vector of functions holomorphic in 9 (z, Q, given by 

(4.19) 

where 

(4.20) 

for all z in 9 (z, ~). The solution Wlm(z) depends on ~ and an arbitrary positive integer m. The 
function qb) is defined by (4.5); the numbers u0m' Yi1m and ai , a2, a3, C4 are defined by (4.15), (4. 16), 
and (4. 18). If g = 0, both YJ and YJI may be taken to be zero ; otherwise YJ and YJI are arbitrary positive 
numbers less than 1. 

The right side of (4.20) may be explicitly e valuated by use of 

exp (~ ~H';n: x("~s s;}eo'h X I] e''''+O); 

5. The Choice of Paths 

The conditions on the paths of integration in thi s paper are somewhat weaker and define a 
large r domain of validity for the asymptotic expansions than the conditions given in [1]. The paths 
which minimize the error bounds under the present conditions are not known. In application, we 
suggest that paths similar to those of [5] be tried; the possible loss in accuracy is offset by the 
greater ease of evalu ation of the variations. 

Often the error bound can be appreciably reduced by the following simple procedure. Con· 
sider for example, the dis tinct eigenvalue case 1. Let To be a matrix such that TOIAoTo = A is 
diagonal. Then (T 01» -1 Ao (ToD) = A , where D is an arbitrary nonsingular diagonal matrix. We 
choose D so that the least upper bound of the off-diagonal elements in the resulting coefficient 
matrix is minimized on the path 9 . This applies also to the more general case of thi s paper, ex
cept that here we may destroy the similarity of the canonical form to the J ordan canonical form. 
If we want to preserve the canonical form then for every Jordan leading sub block of (I(z) of the form 

T 

~ qikzT- kl + qi, T+IJ log z 
k =O 

where J has a full set of units in its first lower diagonal and is zero elsewhere, we must make the 
corresponding elements of D equal. 

On inspecting the proof of Theorem 2.1, [1], we observe that the undeterminable diagonal 
elements of T k(k= 1,2, .. _, r + 1) were c hosen to be zero . By introducing nonzero diagonal 
elements we may again be able to improve on the error bounds. A similar observation applies 
to the zero-inducing transformations used in [3]. 
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.6. Summary 

The results of this paper and the preceding paper extend the work of Olver [5] for the second
order equation to a system of first-ordef equations. In the majority of applications it is expected 
that the eigenvalues of the lead coefficient matrix Ao are distinct. The analysis for this case is 
considerably simpler and different from the analysis for the case when the eigenvalues for the lead 
coefficient matrix are not distinct, and this is the main reason that the presentation has been split 
into two parts. 

In all cases the procedure was to transform (1.1) to canonical form, to obtain formal solutions 
for the transformed system, and to obtain actual solutions such that the formal solutions are 
asymptotic expansions of the actual sorutions of the transformed system, as z ~ 00 in some sector 
of the complex plane_ Two cases arise when the eigenvalues of Ao are distinct: the extreme eigen
value case and the interior eigenvalue case. They are characterized geometrically by the relative 
location of the eigenvalues of Ao in the complex plane. The main distinction between these two 
cases is that in the extreme eigenvalue case it is possible to express the error vector - that is, the 
difference between an actual solution vector and a partial sum of a formal solution vector - by use 
of a single Volterra vector integral equation, while in the interior eigenvalue case it is necessary to 
use a simultaneous pair of Volterra vector integral equations. As a consequence, the error bounds 
are considerably sharper in the extreme eigenvalue case. 

When the coefficient matrix in (1.1) is regular for all sufficiently large z and when the eigen
values of Ao are distinct, it is always possible to choose end-points of integration in the Volterra 
vector integral equations at infinity_ this is no longer the case when the eigenvalues of Ao are 
not distinct. Further, in this latter case we can no longer always give a simple geometric char
acterization of extreme and interior eigenvalue cases in terms of the relative location of the eigen
values of Ao. We can, nevertheless , always express the error vector by at most a simultaneous 
pair of Volterra vector integral equations. 

The case n = 2 is likely to be the most important in applications_ The complete solution for 
this case is given in detail, including a full statement of the transformation to canonical form. 

The work of this paper was supported by the Harold Hayward Parlee Memorial F ellowship 
at the University of Alberta_ The author is grateful to Dr. F. W. 1- Olver for many valuable 
criticisms_ 
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