Error Bounds for Asymptotic Solutions of
Differential Equations.

Il. The General Case'

Frank Stenger 2

(May 26, 1966)

The results of the preceding paper are extended to the general system of n first-order differential
equations having an irregular singularity of arbitrary rank at infinity. Formal solutions are explicitly
constructed for the system in canonical form. Proofs of existence and uniqueness of solutions of
integral equations defining the error are given. As an example, the case n=2 is solved completely,
and a flow chart of the transformations of this case to canonical form is included.

1. Introduction

The system of differential equations under consideration in this paper is of the form

-1
ﬂZx"[z Akz"‘+?ls(z)z‘s} W, s=0,1, .. ., (1.1)
dz k=0

where h is an integer and the matrices A, and (z) are defined as in [1], except that no assump-
tions are made concerning eigenvalues of the matrices Ay (k=0,1, . . ). We shall simulta-
neously consider the case of a regular point, the case of a regular singular point, and the case of
an irregular singular point at infinity.

From the point of view of applications it is worthwhile recalling that when the eigenvalues of
the lead coefficient matrix A, are not distinct they can be made distinct by an arbitrarily small
change in the elements of Ag. The results of [1]3 can then be applied, and the very complicated
procedure given in this paper for obtaining a formal solution of (1.1) avoided. Indeed the ex-
istence of a linearly independent set of n formal solution vectors for the system (1.1) was fully
established only in 1937 ([2]) and more explicitly in 1955 ([3]).

We have not been able to improve on the method of [3] for the reduction of (1.1) to canonical
form. We thus start with the canonical form given in [3] and establish a minor variation of it
which enables us more easily to obtain error bounds. Next we explicitly construct formal solu-
tions for the system in canonical form. Integral equations are then set up for the error vector,
that is, for the difference between the partial sum of a formal solution vector and an actual solution
vector.

As in [1], it is again possible to express the error by one or, at most, two Volterra vector integral
equations. As opposed to [1], however, it is not always possible to choose the end points of in-
tegration in the Volterra integral equations to be at infinity.

2. The Canonical Form

The following theorem due to H. L. Turrittin [3] concerns transformation to canonical form, of
the system (1.1), with eigenvalues of Ay not necessarily distinct. In this theorem the normalizing,
exponential, zero-inducing, root-equalizing, and shearing transformations are defined as in [3].

! An invited paper based on the author’s Ph. D thesis, University of Alberta (1965).
2Present address: University of Michigan, Ann Arbor, Mich.
3 Figures in brackets indicate the literature references at the end of this paper.
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An example of each of these transformations will be given in our treatment of the special n=2
case in section 4.
THEOREM 2.1: Let h be an integer and

dX_
o UAwX (2.1)
a system of differential equations in which
A= A+ AW (=01, . . ), 2.2)
k=0
where the Ay are constant n X n matrices and the elements of At) (s=1,2, . . .) are holomorphic

and uniformly bounded in some domain 9, extending to infinity. Then the system (2.1) can be
transformed by a finite sequence of normalizing, zero-inducing, root-equalizing and shearing trans-
formations to the canonical system

dW
SWE G
I 2 Cz2)W, (2.3)
where z=1t", r and p > 0 are integers,
61(2) sl*n(Z)%]g(Z) 50 o sl*][(Z)
2'8(z) = Cy(2) +272 | Bay(2)Baslz) . . . Vulz) (2.4)
Gi(2) V(@) Bpa(2) . . . Bulz)

and

r+1
z'Ci(z) = 2 Cikzr_klui iy ZA[Jui

k=0
i=1,2, ... mitpet. . . tw=n

S=1
Byz) = Bipz *+ Bys(2)z%, (2.5)

k=0

The elements of the matrices ®¥ii(z) are holomorphic for z in the domain & which corresponds to
Dy for all z sufficiently large. Each element of Bii(z) (i, j=1,2, . . ., ; s=0,1, . . .) is uni-
formly bounded on any path P extending to * in &. Ifr=—2 the matrices C(z) i=1, 2, ... 1)
are identically zero. Ifr>—2, the I, are py X p; unit matrices, and the Ju, are X pu; square matrices

with zeros or ones or a mixture of zeros and ones in the first subdiagonal while all other elements of

Ju1 are zero. No two of the matrices C(z) i=1, 2, . . ., [)in (2.5) are identical. In particular,
ifi7#] and cix=cy for k=0, 1,...,r, then corresponding to any particular fixedj j=1,2, . . ., [)
we have —1 =Rec; 111<0, 0=Rec; ;y1<1 and ¢;, ;y1—cj 1 #Z1 (=1, 2, . . ., ;i#]).

The statement of the above theorem is different in two aspects from that given by Turrittin
in [3]. In the first place Turrittin proves the theorem for the case when 2(t) has a convergent
power series expansion about t=0. Secondly, Turrittin’s version of the last sentence of the
theorem is: In particular, if i # j and ciy=cy for k=0, 1, . . ., r then ¢ r+;—C;,r+; IS not only
not zero but is also not an integer.
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It is readily verified that all of the transformations: normalizing, zero-inducing, root-equalizing,
and shearing preserve holomorphy of 2(¢) for all ¢ sufficiently large, and t EZ,extending to infinity.

We now establish the statement in the last sentence of Theorem 2.1, assuming Turrittin’s
version of the theorem. Consider the subset of integers {i} of the set {i=1, 2, . . ., [} such
that with i€{i}, and i #J, cix—cjx=0, k=0, 1, . . ., r. Corresponding to the points c;, y4; in
the complex A plane, we define integers k; as follows: if ¢;, r+1 lies in the strip ki = Re A</ki+1 we
associate the integer k; with ¢;, ..  Without loss of generality we assume that {i} ={1,2, . . ., o}
and that k= ko=, . .=k, Let k=k,— ki

We apply the sequence of zero-inducing transformations

Zia=0+Tiz M2 k=1,2,. . ., k+1; Z,=W (2.6)

to (2.3), where T is an n X n matrix with an arbitrary leading w X @ block and zeros everywhere
else. Thus for example if

d?ll;_l :Z"[C()‘}’ (:IZ_1 P o o9 C,v+1Z_r_l F B()Z_r_2 Fo o oTr Bkz*"'*"*‘ W oo .]Zkf] (27)
where the leading w X o blocks of By, By, . . ., Bx_; have already been filled with zeros, then
de . - —p— e X, —f—r—
le_zzl[C()‘l'C]Z tees . .+Cr+;z ! 1+B()Z P .+Bkz Bp=ilap .]Z}; (2_8)
where
BZ( = Bk— TA~C,~+1 aF Cr+ 1T[,~ aF /nT;. (29)

We divide the leading @ X @ blocks of the constant matrices B, By, T\ and C,, into smaller sub-
blocks corresponding to the way in which By was subdivided in the above theorem. We denote
these subblocks respectively by B, B, T, and Cyj, 1. Equation (2.9) for B then becomes

B = Biji+ (Cil; + 3o ) Tije — Tije( Cily; + J o) + kT (2.10)

where C;i=0C;, ;+1. Assuming Turrittin’s version of Theorem 1, we have \j—\; # k. Elements
of Tijr can therefore be computed* starting from the right-hand vector, calculating from top to

bottom and in this manner successively computing the vectors from right to left such that Bj;,=0.
It is clear that each leading w X w block of By (=0, 1, . . ., k) can be filled with zeros in this
manner.
The root-equalizing transformations
ZI“I}L: Illl
7= Zaie Y, Y= L, W
E zl,,
L #u | L I““_u

are now applied to (2.8) above, changing C;, ,+; (i=1, 2, . . ., ]) to the form described in the last

sentence of Theorem 2.1.

4 For further details, see [3] p. 33.
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The following theorem is also proved by Turrittin [3]. The main purpose of presenting a
proof here is to obtain a recurrence relation for the coeflicients of the solution matrix and to furnish
an explicit algorithm for computing these coefficients.

THEOREM 2.2: The system of differential equations in the canonical form (2.3) to (2.5) possesses
a formal independent series solution matrix of the form

W(z)= U(z)e (2.11)
where
U(z) = [Uy(2)] = i Uz ™ = i (Ui Jz~*
=0 o
Ui@) is miX py  Uyo= 81,

Q)= [(Lya(2)+ I, log 28,1 = 2 TR Qo

T

: e i IR . Q Hem
ql(Z) ]gor+1_kz +q1.l‘+1 lOgZ (l’] 19 27 GG Sg [) (2.12)
PrOOF OF THEOREM 2.2: Let us put
r+1
2'[Ci(z)8:] = 2 Cizr 1% = z7D(z), (2.13)
k=0
s§—1
[Bif2)] = Blz)= Y, Brz* + Byz)z—>. (2.14)
k=0
We substitute (2.11) into (2.3), and use the fact that £ and £’ commute, to find
U'(0)+ 002 @) = [D() +22B(2) ] Ua). 2.15)

Expanding (2.3), using (2.12), (2.13), and (2.14) and equating equal powers of z, we obtain
min (u, r+1) nw—r—2

E (CkUu—k u. k‘CI\)+(/~L—r— ]-)Uy. r— 1+ 2 BkUy. r—2— k—O (216)

for u=0,1,2,. . ., where Uy=0if k<0 and C,=Q;=0if k>r+1.

The proof of Theorem 2.2 will be complete once we prove the following lemma.

LEMMA 2.1: Under the assumption that $(z) has the form given by (2.12) with Uy =1, equation
(2.16) uniquely determines Q. (u=0,1,2, . . . r+1) and U, (u=1,2,3, . . .).

PRroOF OF LEMMA 2.1: The proof of the lemma is by induction. With u=0, (2.16) gives

—Qy=0. (22504)

which has the unique solution Qy=Co. With w=1, (2.15) becomes
—Q:+CU;—U,Cy=0. (2.18)
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Now if U, is an arbitrary n X n matrix we know from the definition of C, that the (i,i)th (i =1,2,
.« « 5 1) blocks of CoU,—U,Cy consisting of w; X u; matrices are identically zero. Hence these
blocks of C; — Q; must also be zero, and therefore, Q, =C,. Furthermore, it follows that all (,/)th
blocks of U, for which cig—cjo # 0 are uniquely determined and are zero. All (i, j)th blocks of U,
for which cio=cjo cannot be determined at this point. In particular, it is not possible to solve for
Um(i=1.2. o« o oy l)

Assume that for some integer k, 0 =k =r, we have completed solving (2.16) for all u = &;
that we have found Q,=C, (u=0, 1, . . ., k) and that we have determined all blocks of the mat-
rices U, as far as possible. More precisely, we make the following assumptions for each
@@, pth block of U, (i,j=1,2,...,Lu=0,1,...,k. If cip—cjpy=0 (u=0,1,...,k—1)

then assume Ujji, Ujj, . . ., Ui are arbitrary, uXu; matrices to be determined later. On the
other hand, if p is the smallest integer in 0 = p = k for which ci—cj, # 0, we assume that Ujjo
=Upn=...= Uy r—p= 0 (umiXw)), while Ujj, ks1-p, . . ., Ujjx are arbitrary wXu; matrices.

For u=Fk+1, equation (2.16) becomes

C()U/.-H — Uk+1C0+ L6 o CkUl - UICI{+ CI.'H - Qk+l = O- (219)
If Uy, Uy, . . ., Ugyy are arbitrary n X n matrices, the (i, i)th (i=1, 2, . . .,[) blocks of C, Uy,
— Uks1-uCy are zero when w=0,1, ..., % Hence these blocks of Cri;— Qs must also be

zero, and therefore Qy.1=Cri1. On incorporating this result in (2.19) we find that the (i, j)th
block of (2.19) becomes

(cio— cjo)Usj, k+1+ (cii— ci)Uij, e+ . . . +(cir—ci)Uijn = O. (2.20)

If ciu—cju=0, u=0,1,2,...,k then we cannot solve for Uy, Uy, . . ., Uy ks1. We leave
these matrices undetermined for the moment. On the other hand, if p is the smallest nonnegative
integer in 0 = p = k for which ¢;,—¢j, # 0, then by the above induction hypothesis, (2.20) becomes

(cip= cip)Uij, kr1-p=O(iXp)), and so under the assumption that U, o p, . . .. Ujj, k+1 are arbi-
trary w;Xw; matrices we have Ujj, x11-p=O.
It is clear at this point that Q, is uniquely determined for each =0, 1, ..., r+1. We may

therefore write the (i, j)th block of (2.16) in the form
r+1
z (qit — @)Uy, ur+ I Ui, pr—1— Ui, u—r—1J uj
k=0
pu—r—2 1
+H(—r=DUj u-r-1+ Y Y BikUg, y—r—2-6 =0. (2.2
k=0 s=1

For w=r+2, (2.21) becomes

r+1
> (@i = qie)U, r 2k +J Ui —=Uind u, + Uijs + Bijo = 0. (2.22)
k=0
If giu—qju=0@w=0,1, . . . ,r), and Uy r+2 is an arbitrary u; X u; matrix, then
A+gi,re1 =@, r+ DU+ uUin = Uind ; + Bijp=0 (2.23)

where, under the assumptions of Theorem 2.1, gi,r+1—¢j,r+1 7 1 if i #j. In either case, whether
i=j, or i #j, eq (2.23) is of the same form as (2.10) and hence it uniquely determines Uj;. On
the other hand, suppose that p is the smallest integer in 0 = p = r for which ¢i,—¢qj, # 0. Then
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from the above analysis we know that Ujo=Uj= ... =Uj r+1-p=0 (wiXw;). Thus if
Ui, r+3-p - - . , Uy, r+2 are arbitrary u; X u; matrices, then

(gip — @ip)Uij, r+2-p T+ Bijp =0 (2.24)

and this equation uniquely determines the hitherto unspecified Uij,r+2-p. Thus we see that the
wiXw; matrices Ujj; are uniquely determined for i, j=1, 2, . . . , [, and hence that U; has been
completely and uniquely determined.

Assume that for some integer £ =0 we have completed solving (2.16) for u=r+2, i
r+2+k; that we have uniquely determined U,, . . . , U;;,x and that we have determined all
blocks of the other matrices Uy, s > k, as far as possible. More precisely, we make the following
assumptions for each (¢, j)th block Uy, 1+p of Uiy, O=pu=r+2+k). If giu—qju=0, n=0,

1, . . ., r, then assume that Uy, . . . , Uy r+24x are arbitrary wXu; matrices. On the other
hand, if p is the smallest nonnegative integer in 0 = p = r for which ¢, —¢gj, # 0 then assume that
Uijit, - - - 5 Uijri24k—p have been uniquely determined while Uy ri546-p, . . . , Uijrs2 are

arbitrary u;Xu; matrices, to be determined later.

With w=r+3-+#k, (2.21) becomes

r+l (et [
E (qlé q]s)UU,r+.3+A s+ Jp. ij, 2+k Uu,2+l\Jp. +(A+2)UU,2+1\+ 2 Bi,U vj, ’\'+1—S:0' (225)
$=0 §=0 v=1

If gis—qjs=0(s=0, 1, . , 1), then with the assumption that Uj;, r+3+x is an arbitrary p;Xp; matrix,
the above induction hypothesis, and the assumptions of Theorem 2.1, we see that (2.25) is an
equation in Uy, x4z of exactly the same type as (2.10) was in Ty, and thus uniquely determines
Ujj. k+2.  On the other hand, suppose that p is the smallest nonnegative integer in 0 =p =r for
which ¢ip—¢qjp #0. Then assuming Ujj, riask—p, - - -» Ui, r+3+xtobe arbitrary ;X u; matrices,
we see that eq (2.25) may be written

r+1 el U
(@ip— @i Uij, resrk-p=—> (qis— qis)Uij, re3sk—s — (k+ 20Uy, kr2— > BusUpj k15 (2.26)
s=p+1 s=0 v=1

By the induction hypothesis, all matrices on the right of (2.26) are known; hence Ujj, r1545—p is
uniquely determined.

Thus the matrices Uy(u=1.2, . . .) are uniquely determined by eq (2.16).

The above proof can be easily modified for purposes of computing the jth column of blocks
only. Suppose we are interested in knowing the coefficients of a particular vector solution, say
the vth column W"(z) in the jth column of blocks W,(z) of W(z) If JMJ has a one in its vth column as

well as in its (v+1)th, . . ., (uw—1)th but not in its uth column where u = u;, then it is readily shown
that
: atlpgigeadiv et
) (Z)‘ 20{ ;, Ui (s—v)! L3Ry @20
where U3, is the sth (s=1.2, . . ., u ) column vector in the jth column of blocks of the matrix Uy.
Thus to obtain the vth formal solution vector in the jth column of blocks it is only necessary to
compute the uth, (w—1)th, . . ., vth columns of Uj; at each stage.
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3. Error Bounds for Formal Partial Sum Approximations to Actual Solutions

We shall obtain an actual solution vector of the system (2.3) to (2.5) corresponding to vth formal
solution vector in the jth column of blocks of formal solutions (eq (2.27)), and we shall obtain error
bounds for the difference between a partial sum of (2.27) and the corresponding actual solution
vector.

3.1. The differential Equation for an Approximation

Starting with the partial sum

m—1

Emiaied Waiiags (3.1)

where in the notation of Theorem 2.2, Uj; is the jth column of blocks of the matrix U, and
Q4i(2) = qj(2)1 . +Ju 2z (3.2)

we define Rj,u(z) by

1 o -
(;Z q)ﬂ" Z) - [S + P4 218(2 ](I)Jm j,,,(z)e 2} (3_3)

On expanding the (i, j)th block of (3.3) using (2.14) and (2.25) and denoting qi(z) — ¢j(2) = qij(2), we
obtain the following expression for Rjju(2)

4@ Uiimz~™ — [q;}(2) — (gip — qjp)z" " P]U ijmz™ ™

m+r+1 min (g, r+1)
+ [ (‘li.\'_(Ijs)Uij.u—x+JuiUij.u~r—l_Uij.u—r—l.lu.j
m=m+p+1 S=pu+1-m
—r—2 m—
+( ])Ul_[ n—r- l+ 2 {B Uj (== ’»\}1:| I ”_2 {Bm—s U,s},z m=2 (3.4)
s=0

$=0

if i # j, and for some p in 0 =p=r, q;p—qjp#0. On the other hand, if qip=qjp, 0 = p = r, then

m—1
R,-j,,,(z)z [((Ii. r+1 —qj, r+1 Sir m)Uijm+ J;L,-Uijm i Ijij')rz.lp.jzlzﬂ'hl - 2 {%m—s(z)Ujs} '.z\m—zﬁ (35)

s=0

where (3.5) includes the case i=.

3.2. The Various Possible Cases

It is demonstrated in [4] that for each fixed j j=1, 2, . . ., [) the complele vicinity of infinity
can be divided into a finite number N, say, of sectors % (k=1, 2, ..., N) such that for all i
(t=1,2, ..., for which g, — g, # 0 for some integer p in 0 = p = r, we have either Re ¢;(z)
bounded above, or else Re g¢ij(z) tending to +% as z— © in a particular sector .%%;. This fact
enables us to classify the various ways of constructing actual solution vectors corresponding to
formal solution vectors under two different headings: (a) those cases for which it is possible to
define an actual solution vector by a single Volterra integral equation; and (b) those cases for
which we require a simultaneous pair of Volterra integral equations to define a solution vector.

Let us establish our notation for purposes of characterizing cases (a) and (b) above. The
fixed limits of integration in the closure, Z, of the domain < in which G(z) is holomorphic will
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be denoted by {{}. In case (a) {{} consists of a single point , say, and in case (b) {{} consists of
two points, {;, and {», say. &, will denote a closed disc with centre at the origin and radius a.
If for all integers i in the range 1 =i =1 qip=gqjp for p=0,1, ..., r, then a=0 provided that
every member of {{} is unbounded. ,Put x=min [{|. If x <» we set a=x. If, in case (b), all
e

members of {{} are bounded then we assume thai {; # {» and |{;|=|{:|. If, for at least one i in the
range 1 =i =/, we have qi, # qjp for some p€ (0, 1, . . . , r), we let a, denote the maximum
modulus of the set of zeros of ¢j(z) for all such i, and set a=ay if x=2. If x < chose {{}in such
a way that x = @y and no member of {{} coincides with a zero of ¢/(2). Let 2*=2—&,— where
% is empty or {®} according to whether or not £(z) =0. The paths Z are defined as in [1].

Case (a) above is related to the extreme eigenvalue case in [1]. It is characterized as follows.
We define a region Z(z, {) to be the union of all points z, other than {, such that there is a path 2
connecting z€ Y(z, {) and { satisfying the following extreme eigenvalue conditions:

(1) If LE Z*— 2*, then 2 lies entirely in 2* except for {.

(2) For given { and z, all elements of the matrices exp{Qi(7)— Qi(t)—lui[qj(r)—qj(t)]}
(i=1,2, ... ,[:i#]) are bounded for all points t, 7 in the order {, t, 7,z on . If J,Lj #Q, or if for
somei(i=1,2, ... ,[i#]j) we have q,,=q;, forp=0,1, . . ., r, we require that 7/t be bounded.

(3) V,(t"") is bounded, where the fixed number n may be taken to be zero if J.;=O0 but other-
wise m is an arbitrary positive number less than 1.

Case (b) above is related to the interior eigenvalue case in [1]. It is characterized as follows.
We define a region Z({i, {2, m) to be the union of the points z for which there is a path 2 connecting
{1, z and ¢ (in that order) satisfying the following interior eigenvalue conditions:

(1) Except possibly for {; and {», £ lies entirely in Z*.

(2) The integers i=1, 2, . . . , [ are subdivided into two nonempty disjoint classes N; and N,
such that if {;, and ¢, are given, then for all points t and 7 in the order {;, t, 7, {> on #, the elements
of the matrix Qy(7, t)=exp {Q;(7) — Qy(t) — L, [g5(r) — g;(t)]} are bounded if i € Ny (i # j) while
if i € N, (i #j) then all elements of the matrix LQ;;(t, 7) are bounded. If Ju,- # 0, or if for some
i in the range (1, /) (i #j) we have q;,=q;, for p=0, 1, . . ., r, then we assume without loss of
generality that both i and j are in N, that {; is bounded, and that t/7 remains bounded for all points
t, 7 in the order §, t, 7, & on 2.

(3) 3{ait+as+ V(ay—as) +4azas}? (t"~') <1, where 1 may be taken zero if J,,=O,but
otherwise 7 is an arbitrary positive number less than 1, and a;, a», a3 and a4 are defined by (3.31).

We observe that it is no longer always possible to choose the points {{} at infinity, in contrast
to the cases in [1].

If =0 we can again represent the eigenvalues of Cy as points in the complex plane, and en-
close them by the smallest strictly convex closed polygon. As opposed to the distinct eigenvalue
case it is now possible to have several formal solution vectors corresponding to a particular eigen-
value qg; of Co. Nevertheless, if q; is an interior point of the polygon and if at least one endpoint
of integration is taken at infinity ® it will be necessary to express the error vector by a simultaneous
pair of Volterra vector integral equations. If go; is an extreme point of the polygon and only one
formal vector solution corresponds to qqj, it is again possible, as in the distinct eigenvalue case,
to express the error vector by a single Volterra vector integral equation. If qo; is an extreme
point of the polygon and more than one formal vector solution corresponds to qj, or if goj is any
other boundary point of the polygon, we can always determine whether we can express the error
vector by a single or a simultaneous pair of Volterra integral equations by testing whether or not
the above extreme eigenvalue conditions can be satisfied.

5 We are here attempting to construct actual solutions for which the formal solutions are asymptotic expansions.
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We are now prepared to set up the integral equations. Let a vector W¥z) of holomorphic
functions satisfy the differential equation (2.3). Denoting the vth column vector of ®;, by oy, we
find from (3.3) and (2.27) that the error vector

€§m(z) = (W(z) — Dj(z))e~4? (3.6)
satisfies the differential equation
d k 1 S—v
= ()~ [D}@) +2*B(2)efuls) =— 2 Riu(2) Og i) (3.7)

where Rj§,(2) is the sth column vector of Rjn(z), and Dj(z) = Q(z) — Ig;(2).

Hence for the extreme eigenvalue case, if the vector €, (z) satisfies

Safe)= L DDA 128 )€ (1)t + REX(2) 3.8)
where R¥(2) is defined by
) P oDaine N me o (og £y
RJ,*,‘,() L e D)~ D)) ; R}m(t) 5—)! dt, (3.9

and the path Z of integration satisfies the above extreme eigenvalue conditions, then €,(z) simul-
taneously satisfies (3.7).

For the interior eigenvalue case we partition €,(z) into €},,(z) and €,,(z), Dfz) into Dji{z) and
Dj:(z) and R}, into R, (), RY,,(2), and in a corresponding manner B(z) into a,(z), A2(z), a3(z) and
4(2) so that (3.7) may be written

i(G}"ml(Z\)_(:( DJ’I(Z) O)+ z72 ((I](Z) ﬂg(Z) )} ( j"ll Z)) i ( J,,”(z) (l()g z)“ v,
dz -~ (s—p)!
ejmz(z o D_;z(z) az(z)  a4(z) e_}ml (2) Jjm z(z)

In (3.10) €}, (z) contains all the ith elements of €}, (z) for which i € Ny, and €}, (2) contains all the
ith elements for which iEN,. It follows that if €,(2) satisfies

5;{"‘1(3) f : 0 e D)= Dj(r), (1) ay(t) ast) JIYII( ) Rﬁ‘,,(l)
< >=< L ( 2 dt+ (3.11)
€5(2) 0 I l O ePA-Diy axe) i)/ \€%,,(1) Ry5.(2)
4

2

(3.10)

where

R;:,,\.(Z): f Djiz) — Dj(t) ﬁ A(l) (IOg t); d k— 1 2 (3.12)

and the path of integration satisfies the above interior eigenvalue conditions, then e€,(z) also
satisfies (3.7).
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3.3. Treatment of Rijn(2)

We shall derive expressions for the elements of the matrices (3.9) and (3.12) which will enable
us to obtain good bounds in the following sections. Let us consider the block ¢

R;‘m(z) =— J‘é el — ):"“)R,'jm(t)e):"(” —adt. (3.13)

We split (3.13) into its dominant part plus a remainder; thus we express Riu(?) in the form

m—1
Rij:n(t):[gg(t)Uijm—F_’? U,'jm‘—Ufij;-(t)] l—"""Pijm(t)— 2 {SBm—k(t)ljjk}il_m#2 (314)
k=0

where

Pijm(t) =—[[(gi, p+1— @j, p+)t" P71+ . . -+(qz',r+1—(1j,r+1)t’1+mt_1+Juit_’]Uijm—UijmJ“Jl_']t_’"

m+r+1 min (r+1, p)
[ (qik— q)Uij, u—kF JuilUij, u-r—1 = Uij, ur—1J

p=m+p+1 k=p+1-m

u—=r—2
+(—r=DUy,u-r-1+ Y, ABUj, u-r-2-s} i] fr-ue o (3.15)

k=0

The form of the first term in (3.14) is such that when substituted into (3.13) it can be readily
integrated by parts. We define Sifz, t) by

Sij(zv t)e"‘j‘Z)'(l"(ll :ex.,m—u.m Pijm(t)e (1) — gqj(2) (3'16)

Clearly,.knowing the form of (), we can express the matrix Sjj(z, ¢) explicitly. In any case
Sifz, t). is simply P;ju(¢) multiplied by a matrix polynomial in log (z/). On substituting (3.14) into
(3.13), integrating by parts and making use of (3.16), we find that

RE, (D=Ubd @ "= "+ Vi@ " =)= L # V2,.(z, 8) (m+ 1 —no)e-m+2-n0de,
(3.17

where 1, may be taken zero if J,,=O for all i=1, 2, . . ., [, otherwise it is an arbitrary positive

number less than 1. The matrices U}, (2), V};,(2) and V3;,(z, t) are defined by

ijm

0j(2)—g)(2) Q) — CADUU"‘Cﬂne’:«j(C)"qj(l)

% ()= Ui e i
Ujin(2) R (3.18)
 Sylz. Dlql(2)— 7T 1z, 0la (D).
Via@)= (3.19)

znl—m—l,_gnl—-m—l

6 Here and henceforth we interpret e L) —qit) = ¢ D) — luj‘lj(”-
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and

L d (Sijz t)> 95— 250, 1o 24— 1) & g D;(t)— gjlz) .
2, = s > \ tm+2 — oM {B —I\(t)U'k} e . 3.20
Vide, )= T ol i) el Sten.

Equations (3.19) and (3.20) hold, provided that there is an integer p in 0 = p = r such that g, — gy
#0. If this is not so we define Vin(2=0, and

’ = i 04)-9200 "&' ¢ f.m—qm]
) o 7 m— Ujy, i i
v um(zv 1) T [e k§=0 {B K(2) Jk} € (3.21)

The representation (3.17) was motivated by the following consideration. We observe that
each element of R, (2) is of the form

Pz, O=F)—AO+82)— 8O+ f bz, e, (3.22)

where |fiz2)|=0(]z| ™ [logz|#7) (see eq (2.27)),, |g(2)|=0O(|z|-™'|logz|+¥) and h(z, t) =O(|logz|*
[log t[*), as |z|, |t|—> o, where k and s are integers.  The reason for introducing terms like ¢, ¢~
where 7 and 7, are nonnegative numbers less than 1 is to eliminate logarithmic terms conveniently,
and at the same time obtain good bounds. From (3.22), we have

e, 0l SRR

|z"1 -m— C"l —m|

&l )_[-,'(C) -m— -m— ? - —m—
+z711—mfl_€nlfmq(zn1 N = l)+L h(z, t)t=mgm 2dt
Az) =AY

z
= ———\I(nl — m) J; 1”1_"'*‘(lt|

Zn-m _Cnl —m

)

X fz {(”fh —m— 1)(glz) — &)
4

Zn—m—1 _gn,—m—l

+ h(z, t)t‘"l} Mmi—m-2dt

from which

sup | flt) —f) o sup &(r)— &) h(r, Ht—m g 393
|p(Z, g)l éte.@ m % (["1 )+l, TE.@ Tnlfm~l_§nlfm—l+ Tnl—mfl %‘/’ (ln 1) ( )

where in the last supremum ¢ and 7 are points on & in order (, t, 7, z.

In each of the next two sections we first establish the existence and uniqueness of the solutions
to the integral equations (3.8) and (3.11), then we obtain the error bounds. Our procedure is, in
one aspect, similar to that in [6]n that we first establish that the conditions in sections 3.2 deter-
mine a domain. We then appeal to the contraction mapping principle (see e.g. [8], sec. 11) to
establish existence and uniqueness. Proofs by use of successive approximations are given in [7].

3.4. Error Bounds for the Extreme Eigenvalue Case

We use the following notation to refer to the elements of a partitioned n X n matrix A.
Aj= {A}; will denote the jth column of blocks in A, A= {A;}i= {A}; the (i, j)th block, A¥= {A;}"
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the vth vector in the jth column of blocks, and Ay ={A4}¢*={A%}¢ the (w,v)th element in the (i,j)th
block.

LEMMA 3.1: If under the extreme eigenvalue conditions of section 3.2, Z(z, {) contains at least
one finite point z*, distinct from {, then Y(z, {) is a domain, that is, an open connected set of points.

ProoF: The region 2* defined in Section 3.2 is certainly a domain. By assumption there is
a path Z in Z* connecting z* with { satisfying the three extreme eigenvalue conditions. Simi-
larly there is such a path connecting an arbitrary finite point zo on 2 with . We can clearly choose
a sufficiently small positive number p such that the disk #(p): |z—z|< p lies entirely in 2*, and
when an arbitrary point z, of the disk is joined to z by a straight line #, then conditions (1) and (3)
are satisfied on 2 U #,. It remains to be shown that condition (2) is also satisfied.

To show this we define matrices

K@= """ lexp [Qu)— Qi) — L@ —g@)]|  G=1,2, ..., [:i#)) (3.24)
T, tEP
Ki@)= P |exp[Qir)— Qe — Lugsir)— a1, (3.25)
TRin t1€.@1

where 7, £, 71, t; are points on Z UZ,; in the order z, 71, t1, 20, 7, t, {, and the suprema apply to
individual elements of the matrices, as in [1]. Clearly, by hypothesis each of these matrices has
nonnegative bounded elements. We now choose 7 and ¢t on ZUZ, in the order z;, 7, ¢, {. We
then consider

: = Qi) — Odt)— 1 (@) — g
Keuzy=_ 0 5,639 (20— 240~ Ly (60— 4(@)]|

where i is a part of the range (1, /) other than j. If 7 is on & then so is ¢, and in this case by hypoth-
esis the matrix on the right consists of nonnegative bounded elements. Similarly when 7 and ¢
are on ;. Suppose then, that 7is on &% and ¢ is on Z. In this case

lexp [Q4(r) = Qu(t) — Ly, (g (1) — gi(e)]|=exp [LQilz0) — Qi(t) — L (qi(z0) — ¢(0)] exp [Qi(r) — Qi(zo)

— L (qi(7) — qi(z0))]| = lexp [Qilz0) — Li(t) — Lu(qi(z0) — qse)]] [exp [Lu(7) — Liz0)— Ly(qi(1) — q5z0)]]
(3.26)

so that K(2UZ,) = K(#)K/(#:). This shows that the elements of Ki(Z?U%,) (i=1, 2, . . ., [
{ #J) are bounded, and therefore that Z(z, {) is a domain.

We next establish the existence and uniqueness of the solution of the integral equation (3.8).
To this end, we observe that all known functions in (3.8) are holomorphic and single-valued in
every simply-connected subset of Z(z, {). If Y(z, {) is multiply-connected, we interpret Y (z, {)
to be a Riemann surface on which all known functions of equation (3.8) are holomorphic and
single-valued.

Consider the set 9() of all n X1 vectors h(z) of functions holomorphic in Z(z, {) such that
zh;n ¢ h(z)=0, where z— { along some path £ belonging to the family described above. The set
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D(Q) together with the metric vector

d(h,, h2)=lsell;|h1(t)‘—h2(t)| (3.27)
forms a complete 7 metric space.
Let
U= 201U (3.28)
Yin=,, SUP IV;,‘n(T)+V”2 (7, t)] (3.29)
= 1—_1;’ [t, g el O ] (3.30)

where for example V4, (k=1,2) is the vth column vector in the column of blocks V£, (k=1,2), and ¢
and 7 are on 2 in the order {, t, 7, z. By the analysis of the previous section, all elements of the
vectors and matrices defined in (3.28) to (3.30) are bounded. It follows that with €%,(t) replaced by
h(¢), the right of (3.8) is a contraction mapping of a complete metric space into itself, so that the
solution to (3.8) exists and is unique.

On substituting the bounds (3.28) to (3.30) into (3.8) and using Lemma 2 of the appendix in
[1], we obtain:

THEOREM 3.1: If, corresponding to a formal vector solution W" (z) of equation (2.3), we can
determine a region 2 (z, {) satisfying the extreme eigenvalue condmons of Section 3.2, then equation
(2.3) possesses an actual solution vector of functions holomorphic in 2 (z, {), given by

b (2= LD g R e
in which
€t (z) | = exp {BY; (17" )} {Us?5 (™) % 75 (1™ 1)} (3.32)

for all z in 9(z, {), where the matrix B and the elements of the vectors Uy and Vi are defined by
equations (3.28) to (3.30). The solution W (z) depends on { and an arbztrary positive integer m.
The function q;(z) is defined in Theorem 2.1. The integers u and v and the vectors Ur (=10,
1,2,...:s=12,...,u aredefined as for equation (2.27). Ifeach J,,=0 (i=1,2, . . . ,))
then the numbers m and m, can be taken to be zero; if J u=0 then m can be taken to be zero; other-
wise M and 1, are arbitrary positive numbers less than 1.

Let us now obtain a norm bound for the vector € #n(2) in Theorem 3.1.  To this end we use the
definitions (3.18) to (3.21), and define

1 sup 20D
—— £ N
“T=n: reoll® Be)e|l, (3.33)
o sup > , _ su
Vin= cpllUnall.  y=, "2 lIVian+ Vi, ), (3.34)
7 This is easily verified by use of Vitali’s theorem.
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where ¢ and 7 are on 2 in the order {, t, 7, z. Substituting these quantities into (3.8) and using [1]
Lemma 2, appendix, we obtain
THEOREM 3.2: A norm bound for the vector €, (z) in Theorem 3.1 is given by

|l€n@I|= exp{B7 t""WHURT @™+ 7 (™}, (3.35)

where m and m, are defined as in Theorem 3.1 and B, Uv* and v}, are defined in (3.33) and (3.34).

3.5. Error Bounds for the Interior Eigenvalue Case

We shall first establish the existence and uniqueness of the solution of (3.11) by use of norms.
We split the vectors U%n(z), Vik(k=1,2) defined in (3.18) in the manner corresponding to the way
(3.7) was split in (3.10) into lower dimensional vectors U%ny(z), V¥, (s=1,2). We change { to s if
iEN; (s=1,2: in the notation of the interior eigenvalue conditions). We then define

Ykt v) =t:“;pg, IV st )| [, g7~

su
T, b f:B@ {1 V52 + Via(te, t)| [}, oem7 ) (k=1,2)  (3.36)

where t; and ¢, are on 2 in the order {;, t1, ts, (o if k=1, or {4, ts, t1, (> if k=2. The fixed number
M may be taken to be zero if J,, =0 (i=1,2,. . ., [) but n, is otherwise an arbitrary positive num-
ber less than 1.

Similarly, we define

_ sup 2 Dji(t) = Dislta) U, (¢ {s: 1, k=1, 2 3.37
e tl,tze.@ l—ne i l) s=2,k=3,4 ( )

where t; and ¢, are again on £ in the order {;, t1, t2, & if s=1, k=1, 2 and in the order (i, t2, t1, &
if s=2, k=3, 4. The number n may be taken to be zero if Juj=0 but otherwise 7 is an arbitrary

positive number less than 1.
LEMMA 3.2: If under the interior eigenvalue conditions of section 3.2, Z((1, {2, m) contains at
least one finite point z* distinct from {; and (s, then D (41, {2, m) is a domain.

PROOF: By assumption there is a path 2 in Z* (2™ defined in sec. 3.2) connecting {1, z* and
L (in that order) and satisfying the three interior eigenvalue conditions. The same path & con-

P

FIGURE 1
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nects an arbitrary point zy on & in this manner. By an argument similar to that used in the proof
of Lemma 3.1, we can clearly choose a sufficiently small number p > 0 such that when we alter 2 to
pass through an arbitrary point z, in the interior of the disk .#(p) instead then (1) and (3) of the
interior eigenvalue conditions remain satisfied. To prove that condition (2) also remains satisfied
we need merely show that if p— 0 and the altered path #’ in figure 1 tends to 2, then

sup D7) — Dj(2) = sup 1(r)— Dy,
b gl Y (e - Pt [P0, (1)e=n| (3.38)

where ¢ and 7 are points located on the paths 2 and 2’ in the order ;. t, 7, {>. A convenient way
of achieving this is to put

D;,(r)— Dy,

e 7P 0, (1) (3.39)

where 7 and ¢ are located as described above; outside #(p), t; =t, 7, =7 while in the interior of
Z(p) t: and 7, are arbitrarily located on #2’. Let us denote the norm on the left of (3.38) by ',
that on the right by a. Then it follows that

A(t, tla T, T]):ern(’n)—Djz(h)al(tl)tl—n_

a' =a+sup| A, ti, 7, T, (3.40)

where the supremum is taken for t;, 71 € 2" and t, 7 € . The norm on the right is clearly a con-
tinuous function of its elements, and tends to zero as p— 0. A similar argument applies to s,
as and a;. Moreover the difference 75 (1"~')—72/("~!) can be made as small as we please by taking

p sufficiently small. The truth of Lemma 3.2 is now evident.

We again observe that if Z({;, {», m) is simply connected then all known functions appearing
in equation (3.11) are single valued in this domain. If, on the other hand, 9((y, L2, m) is multiply
connected then we interpret 2((1, {2, m) as a Riemann surface on which all known functions appear-
ing in eq. (3.11) are single valued.

Consider the set® (1, &)= (D141, &), DG, £2))T of n X1 column vectors h(z) = (hy(z), hs(z))"
of functions holomorphic in 2(¢;, {s, ), such that hi(z) € D1(41, &) is k X 1, ha(z) € Da(l1, L) is
(n—k) X1, and all elements of h(z) are bounded as z— {;, z— { along any path 2 of the family de-
scribed above. If we take

sup

s e MO =y
(¢ ol =101

as metric for 9, where xx(t), yi(t) EDr(l1, L) (k=1, 2), then it follows that H({i, {2) together with
the metric (3.41) form a complete metric space.  Substituting (3.36) and (3.37)in (3.11) and using
the fact that the eigenvalue of largest modulus of the matrix (al’ ll:;) Vp (e 1) is § {ar+as

az, ai

+ V(a1 — as)* +4asas }7 (t7-1) and therefore less than 1, we see that the right of (3.11) is a contrac-
tion mapping of a complete metric space into itself. Hence the solution of (3.11) exists and is
unique.

Following [1] we shall again first obtain a vector bound. We thus define Yiui(u, v) and ay as
in (3.36) and (3.37) respectively, except that the norms in these equations are now replaced by
absolute values. Thus y,x and a; are now matrices of absolute values. On substituting these

bounds into (3.11) and proceeding as in [1] we obtain

8 The index T denotes matrix transposition.
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THEOREM 3.3: If, corresponding to the vector W]'.’m(z) (cf., eq. (2.26)) we can determine a region
D&, L2, M) satisfying the interior eigenvalue conditions of section 3.2, then the eq. (2.3) possesses
an actual solution vector of functions holomorphic in 2(¢1, >, m) and depending on m, {; and {»,

given by
EO-ERDE e om

s=V

Here

| €hmi(2)| = exp {ax? 7y, (") W1, 2) + Ca(&s, 2)[exp {a?y (7)) }ma(Lis L)+ B (3.43)

and a;, as, a3, and a4 are defined by (3.37), Vy(u, v) (k=1, 2) are defined by (3.36) with norms in
these equations replaced by absolute values, and

B=[I,—C,Ci(&1, {)]71Ce X exp {a1% (6" )} Wini(&r, &)+ Callrs &) exp {a?y ()} W a(lr, &)
(3.44)

Ci(L1, Z)=a;[exp {ai?7 ("~} —1]as; Co=a;[exp {as?; (1" 1)} —L,]. (3.45)

In (3.44) I, designates a k X k unit matrix and I, designates an (n — k) X (n — k) unit matrix, k being
the number of elements in N; (sec. 3.2). All variations on the right of (3.43), (3.44), and (3.45) are
taken along #. The function g;(z) is defined as in Theorem 2.1. The vector Uj, given by Theo-
rem 3.1 is partitioned into lower dimensional vectors as described in section 3.2. The numbers
7 and m; are defined as in Theorem 3.1. The bound (3.43) is valid when every eigenvalue of the
matrix C,Ci({;, &) is less than 1 in magnitude. An exactly similar result holds for € 5(2). We
also have

THEOREM 3.4: Let a,, az, a3, and a4 be defined by (3.37), ¥ (k=1, 2) be defined by (3.36), and

flz)=7",, A",
(3.46)

Flz)= —2&

= Gdap MO - @),

where the variations are taken along P. If ¥({;) <1 then 1—F({;) times the norm of the vector
€,.(2)(cf. eq. (3.42)) is bounded by the expression

e @[F(z)+ 1 —F(&) 1 ¥mi(s, 2)

a,a,
S 1] ) — O, )
az
a;+ay et B tANLI] — e-(OctaIE o, &) (3.47)

An exactly similar result holds for € 2(2).
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4. Example: The Case n=2

In this section we consider the special system X' =z"%(z)X (h an integer), that is
X1y X1 a11(2) a2(2)\ (211 X12
’ “pjeg 4.1)
Xa1 X229 azi(z) @22(2)) \x21 X22

where for each arbitrary positive integer s

s-1
aifd) = apwz ¥+ ap@z* (G, j=1, 2), 4.2)
k=0

and the functions aijs(z) (s=0, 1, 2, . . .) are holomorphic in a domain &’ and uniformly bounded
on some path Z € 2' extending to infinity.

We begin by transforming the system (4.1) to canonical form. The flow chart on the following
pages indicates the steps involved in transforming the system (4.1) to canonical form. The chart
is constructed along the lines of the proof of Turrittin’s theorem [3], and it contains all the trans-
formations used in [3] for arbitrary n. The process terminates in all cases.

Box #2 in the chart contains the normalizing transformation, box #8 the exponential trans-
formation, box #19 the shearing transformation, box #27 the zero-inducing transformation, and
box #31 the root-equalizing transformation. Box #7 also contains a modified form of the zero-

inducing transformation.

The resulting system takes the form

%V =7CW=[Q'(2)+22B(z)]W (4.3)

in which r is an integer, and

42 0 0 0 bi(z)  bia2)
7€) = + +2z72 : (4.4)
0 q5(2) GZalll () ba1(z)  bes(2)

§2'(z) is the first matrix in braces on the right, B(z) is the second, and

z Qi

ST 271k i ri1 log z @=1,2). 4.5)
k=0

qi(2)=
If r=—2then Q'(z)=0. If for some integer p in the range 0 = p = r+ 1, we have ¢ # ¢sp, then
£=0. Otherwise ¢ is either 0 or 1. The functions b;(z) (i=1,2) have the expansion
8—1
bij)=Y biwz*+ bijsl2)z", (4.6)
=0
where the elements of b;j(z) are holomorphic and uniformly bounded on a path # extending to
infinity in 9. .
By the analysis of sections 2 to 4, the system (4.3) has a formal solution matrix of the form
W(z)= fJ(z)e 2@ 4.7)
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FLOW CHART ILLUSTRATING TRANSFORMATION OF THE
SYSTEM TO CANONICAL FORM WHEN n=2

2

Make transformation
X=To Z taking A,
to Jordan canonical
form.

Relabel

Aj

Make transformation

X [m] PRLES PIPACESITRS AR z""]z

diagonalizing A; Ay, ..., A,

Make transformation
a2t

X=Ze with (r+1)X

eigenvalue of Ag.

FIGURE 2
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27

/9

Make transformations
222, g2
[P ===

'

Redefine ak s by
bij, 2k+1 +——0(i#j);
— 0;

bii, 2k

b12, 2k
byy, 2k < 24y

~— 2ay2, k+1

bii,2kﬂ = 2"ii,lul
(kzol'lzl...)
b

N, 2r+1

Qijk

e Iy

ot by

Make transformation

# 0
X = 74

20
Yes No

—©

(k:olllzl'..)

24

Eigenvalues X\, X, define
integers k; ,k,,x and
number s by

kj SRe xy<kj +1

ky S Re Xg< ko #1

K <— Ik] 'k2|, s<— A\ " \p

3/

22

Redefine ajjk s
(i#j) and 9, re by
baik *—99),k-p
biak <912, kep
(k=-p*l, -p+2,)
ajik < bjjk (i#))
(k=-p+l,-p+2, )

A1 TR

27

If solution corresponding to
X\, is desired, make transfor-
mation.

ky+v

z 0
X = 7L
0 zk2

Otherwise

Make transformation
X=(1+T,27%)z

reducing Ak to O

32

mation made.

Apply inverse of each
—P@———b exponential transfor-

FIGURE 2— Continued
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where

1 0 0 0
Qz)= iy oF ) 4.8)
0 q2(2) £log z 0

U@ 23 Urr; Uo=1
k=0

Uik U2k
Uk——— k=0, 1,2, 6 ¢ o o
U21k Uz2k

Suppose that p is the smallest integer in the range 0= p =r+1 such that gip # gzp. Then
the wjx are computed from?

wipn=1 (@=1,2)

wp=0 ifi#jand0=k=r+l-p (,j=12)

k=1 ;
Uriikz_% 2 (birsttri, k—1-s T bizsliai, k—1-s) @=1,2;k=1)
5=0 5
1 r+1
Wij, r+2+k-p = S i, reok-s(@is— gis) T (k+ Dt k1
qip — Gjp s=p+1
k . .
+ 2 (bilsutij, k—s T+ bi2sll/2j, k—s) (l 7&]; k= 0)
§=0
If, on the other hand, gip—¢2p=0 for p=0,1, . . ., r+1, then Upyi (k= 0; Ug=1) is com-
puted from
k
(k 3F 1)Uk+1 + JU[c.H - Uk+ 1J aF z BsUk—s = 0 (4'.10)
§=0
with
0 0
J= 5 ¢£=0or 1. (4.11)
£ 0

In either case, whether £=0 or 1, eq (4.10) with Uy=I uniquely determines each Uy, A =1. If
£=0 each column vector can be computed independently of the other. If £=1 the second column
vector in Ux (k=0,1, . . .) can be computed without computing the first. If, on the other hand,
£—=1 and only the first column vector in Ui (k=0,1,2 . . .) is required, the second column vector
must also be computed, and the computations for the second column vector must precede the com-
putations for the first.

We shall obtain a bound on the difference between a partial sum of the first formal solution
vector and a corresponding actual solution vector. Since the analysis is similar to the preceding
extreme eigenvalue case, we only present the main points.

r+1
9 The sum E is to be replaced by zero if p=r+1.

s=p+1

206



In order to define a domain, we choose a nonnegative number a such that if gi,=gs, for
p=0,1, . . ., r, then a=0if [{|= and a=[{| if [{|<®. Let us denote the largest zero of g, (z)
by ao. If for some p€(0,1, . . ., r) gip # g2 then we set a=|aolif |{|=, while if [{|< o we as-
sume that { € 2, { does not coincide with a zero of g,,(2) and |{|=|ao|. Let 2*=2 —&,—S where
&4 is the closed disk with center at the origin and radius @, and S is empty or {} according to
whether or not Q/(2) =0. We define a region Z(z, {) to be the union of all points z, other than ¢,
such that there is a path & connecting z and { which satisfies the following conditions:

(1) If LED* — D*, 2 lies entirely in Z* except for {;

(2) For given { and z, exp {q21(7) —¢21(2)} is bounded for all points ¢, 7 in the order {, t, 7, z
on 2. If qip=gqsp for p=0,1, . . ., r and either qi, r+1 # g2, r+1 or £ #0 we also require that 7/t
remain bounded;

(3) 7, (1) is bounded, where n may be taken to be zero if £=0, otherwise 7 is an arbitrary
positive number less than 1.

By section 3.3 9 (z, {) is a domain.

If ¢o1(2) = go(2) — qi(2) # 0 (and hence £=0) let

m—1
Riim(z)=muyimz ™1 — E [ D11, m—s(@)u11s + b1z, m—s(2)12]z=™2
§=0

r+1

Rsim(z)= qél(z)uglmz""— E (qZk—qlk)zr_ku‘Zlmz_m
k=p+1

m+r+1 min (u, r+1)
- 2 [ 2 (‘hs_(hs)uzl, u—s+(IL"F— 1)”21, w—r—1

p=m+p+1 Ls=pu+1-m

mn—r—2 m-1
+‘-2 (b11s®11, p—r—2—s+ brasttar, u—r—2—s):| Zit 2 [ b11, m—s@)u115+ b1z, m-s(2)un1s)z= ™2, (4.12)

$=0 $=0

where p is the smallest nonnegative integer such that g;; # gip.  On the other hand, if g:(z)= qi(2)
then

Rum(Z) Uitm  UWizm) [0 O m 0 (unm Ui2m
= — 4 z—m-1

Rzm(z) U21m  U2zm f 0 f m U2im  U22m

S bu,m—s(z) b12,m—s(z) Uris  Urzs }(1 >

—z i © (4.13)
bo1, m—s(z) b2, m—s(2)) \U21s Uses ¢log z

$=0

The integral equation for the difference between an actual solution vector and a partial sum
of a formal solution vector thus takes the form

€1m(z)= L ’ exp [Q(z) — Q) — 1(g12) — q1(8)) {17 2B(t)€1m(t) — Ruim()} dt (4.14)

where the path of integration satisfies the above conditions, and Ryu(z2)= (Ri1m(2), Ra21m(2))7.
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We define nonnegative numbers u};,, and u,,, to be the suprema when 7 € 2 of the respective

expressions

(@1im+ Eurgm log T)77™ — (wyym + Euzim log O™

Tn—m— C"x‘m

(t21m + EUsam log T)T etz )= 21 0)|— {u21m+§ [log% (@11m + U21m log {) + usem log {]} (= ‘
‘ (4.15)

™Mi—m — g’ﬂl—m

where n; may be taken to be zero if ¢ =0 but otherwise 7, is an arbitrary positive number less than 1.
Similarly with ¢, and ¢ points on 2 in the order {, t;, t2, z we define

su t™ =i
711m=-t c ; m sgo {bu, m—s(t)[uns"' f logt ulzs] + b12, m—s(t)[u213+ f logt U»zzs]}’

Y2im =

sup  |pa(ty)/ QQ1(t2)_€f"('2)fq2‘(€) p21(9)/ q_él(o : rm l:eqzl(w),qz‘(’,) {_ d(pgl(tl))

el f [LELIANTY m+2
t1,t,EP l L — (ni=m M m—i—l—'m dt, qél(tl)} 2

m

1

g {[bgk, m—s(t1) + &€ log (i—f) bk, m—s(tl)] [tr1s+ € log tlum]} TP e L (pll—(tl)) ] ‘ (4.16)

+
dt, qél(tl

[\

§

where

m—1
P21m(t) = Roym(t) — g3y (@)uzimt =™+ 2 [bi, m-s(t)U11s+ b1z, mes(t)ars)t ™2 (4.17)

$=0

with Rsi, given by (4.12), and ¢, ¢, points on 2 in the order {, ti, ts, z. Note that p.i(t)=0 if the

smallest integer p such that gy # qup is r+1.
We define

A —mar= fg;l £ blku)l

t
(1 —m)as= tlj‘:‘é P [bzk(t1)+§ log ( f) blk(tl)] e"zl"z’ﬂzl“l’* (4.18)

(k=1,2 ; s=k+2).

In (4.18) ¢, and ¢, are defined as in (4.16), and m may be taken zero if ¢ is zero; otherwise M is an
arbitrary positive number less than 1.
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Summarizing we have

THEOREM 4.1: If, corresponding to the formal vector solution Wl(z) of equation (4.3), we can
determine a domain 9(z, {) satisfying the conditions above, then the equation (4.3) possesses an
actual solution vector of functions holomorphic in 9(z, ), given by

Wiim(z) e || Ujag €11:m(2)
Win(z) = =I' +¢ log 2 *+ oo
W2]m(z) k=0

Uz U222k €21m(2) (4.19)
where
|€11m(2)] a ag uf, 7% (") + yip?p (tmmm-1)
= exp % (1) X (4.20)
|€21m(2)] az ay u) Yo (tnmm)+ ya e (™)

for all z in D(z, {). The solution Win(z) depends on { and an arbitrary positive integer m. The
function q.(z) is defined by (4.5); the numbers 0}, Yim and ai, as, as, a, are defined by (4.15), (4.16),
and (4.18). If ¢=0, both m and M1 may be taken to be zero; otherwise m and m, are arbitrary positive
numbers less than 1.

The right side of (4.20) may be explicitly evaluated by use of

inh a—3 P
P {3 g}: [Smx 2 5—a T cosh x I:| el/Aa+d).
Y 2

x=}% Vie—52+4py.

5. The Choice of Paths

The conditions on the paths of integration in this paper are somewhat weaker and define a
larger domain of validity for the asymptotic expansions than the conditions givenin[1]. The paths
which minimize the error bounds under the present conditions are not known. In application, we
suggest that paths similar to those of [5] be tried; the possible loss in accuracy is offset by the
greater ease of evaluation of the variations.

Often the error bound can be appreciably reduced by the following simple procedure. Con-
sider for example, the distinct eigenvalue case 1. Let T, be a matrix such that T;'A,Ty) = A is
diagonal. Then (T D)'Ay(ToD) =A, where D is an arbitrary nonsingular diagonal matrix. We
choose D so that the least upper bound of the off-diagonal elements in the resulting coefficient
matrix is minimized on the path . This applies also to the more general case of this paper, ex-
cept that here we may destroy the similarity of the canonical form to the Jordan canonical form.
If we want to preserve the canonical form then for every Jordan leading subblock of €(z) of the form

"
N qiwz" k14 qi, r+1J log z
k=0

where J has a full set of units in its first lower diagonal and is zero elsewhere, we must make the
corresponding elements of D equal.

On inspecting the proof of Theorem 2.1, [1], we observe that the undeterminable diagonal
elements of Ty(k=1,2, . . ., r+1) were chosen to be zero. By introducing nonzero diagonal
elements we may again be able to improve on the error bounds. A similar observation applies
to the zero-inducing transformations used in [3].
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6. Summary

The results of this paper and the preceding paper extend the work of Olver [5] for the second-
order equation to a system of first-order equations. In the majority of applications it is expected
that the eigenvalues of the lead coefficient matrix A, are distinct. The analysis for this case is
considerably simpler and different from the analysis for the case when the eigenvalues for the lead
coefficient matrix are not distinct, and this is the main reason that the presentation has been split
into two parts.

In all cases the procedure was to transform (1.1) to canonical form, to obtain formal solutions
for the transformed system, and to obtain actual solutions such that the formal solutions are
asymptotic expansions of the actual solutions of the transformed system, as z— % in some sector
of the complex plane. Two cases arise when the eigenvalues of A, are distinct: the extreme eigen-
value case and the interior eigenvalue case. They are characterized geometrically by the relative
location of the eigenvalues of Ay in the complex plane. The main distinction between these two
cases is that in the extreme eigenvalue case it is possible to express the error vector —that is, the
difference between an actual solution vector and a partial sum of a formal solution vector —by use
of a single Volterra vector integral equation, while in the interior eigenvalue case it is necessary to
use a simultaneous pair of Volterra vector integral equations. As a consequence, the error bounds
are considerably sharper in the extreme eigenvalue case.

When the coefficient matrix in (1.1) is regular for all sufficiently large z and when the eigen-
values of A, are distinct, it is always possible to choose end-points of integration in the Volterra
vector integral equations at infinity. This is no longer the case when the eigenvalues of A, are
not distinct. Further, in this latter case we can no longer always give a simple geometric char-
acterization of extreme and interior eigenvalue cases in terms of the relative location of the eigen-
values of Ao. We can, nevertheless, always express the error vector by at most a simultaneous
pair of Volterra vector integral equations.

The case n=2 is likely to be the most important in applications. The complete solution for
this case is given in detail, including a full statement of the transformation to canonical form.

The work of this paper was supported by the Harold Hayward Parlee Memorial Fellowship
at the University of Alberta. The author is grateful to Dr. F. W. J. Olver for many valuable
criticisms.
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