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Error Bounds for Asymptotic Solutions of Differential 
Equations! 

I. The Distinct Eigenvalue Case 

Frank Stenger 2 

(May 26, 1966) 

The method of Olver for bounding the error term in the asymptotic so lutions of a second-order 
equation having a n irregular singul arity at infinity is extended to the general system of n first-order 
equations in the case when the eigenvalu es of the lead coefficient matrix are distinct. Vector and 
norm bounds are given for the difference between an actual solution vector and a partial su m of a formal 
so lution vector. Two cases are distinguished geometrica ll y: In one it is possible to express the error 
vec tor by a s ingle Volterra vec tor integral equat.ion; in the other it is necessary to use a simultaneous 
pair of Volterra vector integral equations. Some ne w inequalities for integral equations are given in 
an append ix. 

1. Introduction 

Let us first establish our notation. To refer to an m X n matrix A we s hall use A = [aij] (i = 1, 
2, ... , m j= 1,2, . _ . , n), while to refer to the (i, j )th element of A we shall use {A}ij = aij' 

We shall write IAI for the matrix of absolute values of the elements of A, and for A and B real and 
of the same dimensions, A ~ B will imply that {A}ij ~ {Bh for all (i, J)' All the integration paths 

f!lJ we shall use consist of a finite number of Jordan arcs t = t(5) (a ~ 5 ~ b) on each of which d~~) 

is continuous and non-vanishing. The notation t ~~ I V(t) I where V(t) is an m X n matrix will be 

used to denote the m X n matrix of non-negative numbers whose elements 
bounds on f!lJ of the corresponding elements of I V (t) I. 

The system of differential equations we consider takes the form 

are the least upper 

(1.1) 

where rand 5 are non-negative integers. Each Ak is a constant n X n matrix. The n2 ele ments 
of 2lS<z) are holomorphic in some domain !!lJ (which may be part of a Riemann ~ urface) extending 
to infinity. For any path f!lJ extending to infinity in !!lJ, we suppose that z s~Pf!lJ I {2l.(z)h I is finite for 

i, j= 1, 2, ... , n. For notational convenience we shall write 2lo(z) = 2l(z), A-l=O. The integer 
r denotes the rank of the system (1.1). 

It is known ([2]3) that the system (1.1) has a linearly independent set of n formal vector solu
tions which are asymptotic expansions of actual solutions of (1.1) as z~ 00 in !!lJ . The purpose of 
the present paper is to es tablish bounds for the difference between the actual solutions and the 
partial sums of formal solutions. This is achieved by an extension of the error analysis developed 
by Olver [1] for second-order differential equations. 

1 An invited paper based on the author's Ph.D. thesis, University of Alberta (1965). 
IIPresent address: University of Michigan, Ann Arbor, .Mich. 
3 Figures in brackets indicate the literature references at the end of this paper. 
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2. Transformations on the Original System and Formal Solutions 

For purposes of obtaining error bounds we require explicit rules for constructing formal solu· 
tions. In this section we therefore construct transformations which convert (Ll) into canonical 
form, and then we construct formal solutions for the transformed system. 

THEOREM 2.1: There exist constant nXn matrices To, Tl, ... ,Tr + 1 such that the transformation 

r + l 

X = :r(z)W = L T kZ - kW (2.1) 
k ~ O 

reduces (Ll) to the canonical form 

dW "dz" = zrG£(z)W, (2.2) 

where G£(z) can be expanded in the form 

r + 1 S-\ 

G£(z) = zr+l L CkZ-k + Z- 2 L Bkz-k + )8s(z)z-s. (2.3) 
k~O k~O 

Here the C k and Bk are constant n X n matrices, C k being diagonal and )8sCz) is an n X n matrix 
whose elements are holomorphic for all sufficiently large z in f?2 , and uniformly bounded on a path 
P/J extending to infinity in f?2. 

We prove this important theorem here in order to furnish an explicit algorithm for computing 
the coefficient matrices T k (k = 0, 1, . . ., r + I). For an earlier proof see Birkoff [3]. 

Since Ao has distinct diagonal elements there exists a nonsingular matrix To such that TolAOTo 
= Co, where Co is a diagonal matrix with distinct diagonal elements. Accordingly we assume that 
the transformation X = ToW has been made and that Ao is already in diagonal form. Then we 
may take To=I in (2.1). On making the transformation (2.1) in (2.2), we obtain 

dW [ d:r(z~ dz=zr:r-I(z) ~z):t(z)_z-r~J W. (2.4) 

We choose the matrices T 1, T 2 , ••• , TNI so that the matrix 

[ d:r(z)] G£(z) = :r- 1(z) ~l(z):r(z) _z-r~ (2.5) 

has the form (2.3). For this purpose we need only consider the coefficients of Z-I, Z-2, ... , 

z-r-I in the equation 

d:r(z) 
:r(z)C£(z) = ~(z)~(z) - z-r~. 

Expanding (2.6) and equating equal powers of z, we obtain 
I 

L (T1- kCk - AhT1- k) = 0 
k~O 

With [=0, (2.7) givesCo=Ao. With l=1 we have 
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(l=O , I, ... ,r+l). 

(2.6) 

(2.7) 

(2.8) 



Now for arbitrary TJ, the diagonal part of TICo - AoTI = TIAo - AoTI is zero. Thu s C = diag 
(Ad. The off-diagonal elements of Tl can be determined by the solution of 

under the assumption that the diagonal eleme nts of Ao are di s tinc t. We set the undeterminable 
diagonal elements of Tl equal to zero. 

Assume that for some positive integer l ~ r we have solved for C I, . . . , C1 and the off-diagonal 
elements ofT1 , ••• , Tl and that we have set the diagonal ele ments ofT!, ... , Tl equal to zero. 
Then from (2.7) we have 

1 

T1+IAo- AoT1+1 + L (T'+I_"C.-- AkTI +I- k)+Cl +l- A1+ 1 = O. (2.9) 
.-= 1 

Again, the diagonal part of T 1+ lAo - AoTl+ I is zero. Thus the diagonal parl of 

, 
L (T /+ I- "C" - A.T /+I_,.) + C, + 1 - A, + I (2 .10) 
" =1 

is also zero. This e na bles us to determine C/+I. The off-diagonal elements of T 1+1 are determin· 
able from the scalar equation 

(2.11) 

since the diagonal elements of Ao are distinct. The diagonal elements of T 1+ 1 are again not de ter
minable and we set these equal to zero. This proves by induction that each T .. and C .. (k = 0, 1, 
... , r+ 1) can be determined as s tated in the theor em. 

To determine Bk and lBs(z) , we again expand (2_6) and equate coefficients of z -r- l - k , k ~ 1. 
We obtain 

min(k , -r + 1) 

Bk = A" +r+2 - L (T1B k - 1- AHr +2 - /T,) 
1= I 

r + 1 

L (T,Ck+r + 2 - 1- Ak +r+ 2- 1T a + kTk 
l = k + 1 

(2.12) 

for all k ~ 0, where we define T k=O for k > r+ 1. Since the elements of 9l(z), :;t(z), ~-I(Z) are 
holomorphic and bounded for all sufficiently large z in § , the elements of IBs(z) are similarly holo
morphic and bounded. 

This completes the proof of Theore m 2.1. 
THEOREM 2.2: The system (2.2), in which C£(z) has the canonical form (2.3), possesses a formal 

independent series soLution matrix of the form 4 

W(z) = U(z) exp O(z) 

• Bk 
4 Here and hence forth exp B = ~ kf for any square matrix B . 

t:o 
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where O(z) is diagonal and has the form 

_ r Qk , r+l-k _ r CkZr +l - k 
O(z)- L r+ 1-k z +Qr+l lnz- L r+ 1-k +Cr +1 lnz 

k ~ O k~O 

(2.14) 

and 5 

U(z)';'I+ ~ UkZ-k. (2.15) 
k~1 

PROOF: Substituting (2.13) into (2.2), canceling exp O(z) and equating coefficients of equal powers 
of Z-l, we find that 

min(k,r + l ) k-r-2 L (Uk - jQj-CjUA'_j)-(k-r-l)Uk-r-1 - L BjU k- r- 2- j=O(k=0, 1,2, . .. ) (2.16) 
j ~ O j ~ O 

provided that we define Uj = 0 for j < O. The proof of Theorem 2.2 will be complete after we 

prove the following lemma. 
LEMMA 2.1: With U o = I and O(z) diagonal, equation (2.16) uniquely determines U j and Qj , 

j=O, 1,2, .. . 

PROOF: With k = 0 we have 

Qo=Co. (2.17) 

With k = 1, we have 

(2.18) 

Now ifU I is an arbitrary nX.n matrix, the diagonal part ofUICo-CoU l is zero. By assumption, 
QI and C1 are diagonal; hence QI = C1. Since the diagonal elements of Co are distinct, the off
diagonal elements of U I given by the solution of {U dij( {CoLj - {Co};;) = 0 are zero. The diagonal 
elements of U I are not determinable at this point and all we can say here is that U 1 =D 1, where 
DI is an arbitrary diagonal matrix. 

Assume that for some integer k in the range 1 ~ k ~ r we have found Qj~ Cj and Uj = Dj 
where Dj is an arbitrary diagonal matrix and 1 ~j~ k. Then solving for U k+1 and Qk+l we have 
from (2.16) 

k 

Uk+ICO-'-COUk+1 + 2 (Dk+I -jCj-CjDk+l-j)+ Qk+1 - Ck+1 = 0 
j~ 1 

or, since diagonal matrices commute, 

(2.19) 

(2.20) 

On comparing (2.20) with (2.18) it follows by exactly similar arguments to those used for (2.18) 
that Qk+1 = CA' + I and that U k +1 = Dk+h where Dk+l is an arbitrary diagonal matrix. We have 
thus proved by induction that for every integer k in the range 0 ~ k ~ r + 1, Qk = Ck and U A' = D k , 

where the Dk are undetermined diagonal matrices. 

~ The symbol "=" here and henceforth de notes a formal equality. 
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With k = r+ 2, we have, from (2.16) and the above results , 

r+1 
U r +2CO- COU,.+2 + 2: (D r +2- jCj - Cj D,.+2- j) + BoD,= O. 

j=1 

or, since the sum on the left is a sum of diagonal matrices, 

U I'+2CO-COU"+2 - Bo - D, = 0. 

The diagonal part of U ,.+2Co-CoU r+2 is zero; hence D,=U,=-diag Bo. 
elements of U,.+2 are given by the solution of {U,.+2}u({CoL- {CO}ii)= {Bo}u. 
D"+2 of U r+2 cannot be determined at this point. 

(2.21) 

(2.22) 

The off-diagonal 
The diagonal part 

Assume that for some positive integer I , the matrices U I, U 2, ... , U I as well as the off·diagonal 
elements of the matrices U ,+I, U /+2, ••• , U,.+I+ I have been determined while the diagonal mat
rices consis ting of the diagonals of Uk(l + 1 ~ k ~ r + I + 1) are still undetermined. The n, from 
(2.16) we have 

r + 1 l+ 1 

U r +l +2CO - COU r +I+2 + 2: (U r+2+I- jCj - CjU,.+1+2-j} + 2: Bj_, u,+I-j- (I + 1)U'+I = O. (2.23) 
j=1 j=1 

On writing Uj = Uj + Dj, j > I, where the diagonal elements of Uj are zero, and using the fact 
that diagonal matrices commute, we find that 

r+1 _ 1+1 _ 
U I'+I+2CO -COU r +I+2 + 2: (U r +I+2- jCj - CjU,'+1+2-j) - 2: Bj- lU,+I-j- (l + 1)(U'+I + D ,+,)= O. (2.24) 

j=1 j=1 

Thus each U j , j ~ 1, is uniquely determin ed. This co mple tes the proof of Lemma 2.1 and of 
Theorem 2.2. 

Clearly, the above procedure can be modified to compute a particular formal series solution 
vector independently of the others; the jth series solution vector is 

where Uj(z) is the jth vector in U(z) and qj(z) = {O(z)} jj. For later conve nience we set 

_" qjk' r+l-k , 
q/z)- 2: r+1-k z +qJ,r+,logz . 

k=O 
(2.26) 

The representation (2.25) illustrates that we have a one-to-one correspondence between the 
eigenvalues of Ao and the formal vector solutions. 
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3. Error Bounds for the Formal Partial Sum Approximation 

3.1. The Differential Equation for an Approximation 

We denote the jth column of Uk (k= 0,1, ... ) as defined by Theorem 2.2 by Ujk. Starting 
with the partial sum 

we de fine a vector Rj",(z) by the differential equation 

where (£(z) is defined by (2.3). 
Expanding (3.2) and using equations (2 .26) and (2.16), we obtain 

where U!k=Ujk if ° ~ k ~ m-l; 0 otherwise. 
Consider the ith element Rijm(z) of R j",(z). If i = j then using (2.16) again we obtain 

"'- I 

Rjjm(z) = mUjjmZ- m- l- L {(lSm - k(Z) Ujk) }jZ- m-2 
k~ O 

where {Vj}i denotes the ith element of the vector Vj. 
We also define 

For i =1= j we again make use of (2.16) in (3.3) to obtain 

where U ijk is the ith element of the vector Ujk. 

3.2. Two Possible Cases 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

In this section we shall set up integral equations for the error vector, that is. the difference 
between an actual solution vector of (2.2) and a partial sum of the formal solution vector (2.13). 
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Our aim is to construct actual solution vectors for which the formal solution vectors obtained in 
sec tion 2 are asymptotic expansions, as Izl~ 00 . For thi s reason, and for purposes of obtaining 
good error bounds we assume !!.J is such that we can choose our fixed end-points of integration , 
which we denote by ~h" at 00. We shall s how that under these conditions it is possible to express 
the error vector by at most a simultaneous pair of Volterra vector integral equations. 

The error bounds we shall obtain are considerably sharper in the case when we can express 
the error by a single Volterra vector integral equation than in the case when we require a simul
taneous pair of Volterra vec tor integral equations . It is thus desirable to use a single equation 
whenever possible. 

We have already noted at the end of sec tion 2 that with our construction of formal solutions 
there is a one·to·one correspondence be tween the eigenvalues of Co and the vector solutions. 
Let Aj be an eigenvalue of Co. 
DEFINITION 3.1: The eigenvalue Aj will be called an extreme eigenvalue if there exists a path 9 
lying in !!.J, joining some point z(lzl < 00) in !!.J with ~k(l~kl= cx::) such that Re qu(t) (see equation (3.1)) 
increases monotonically 6 as t traverses 9 from z to ~k' for i = 1, 2 , ... ,n. Otherwise Aj will be 
called an interior eigenvalue. 

Consider the eigenvalues of Co as points in the complex plane enclosed by the smallest pos· 
sible closed convex polygon II. Except for rotation, the polygon n and the differe nces between 
the variou s eigenvalu es of Ao are left invariant under the transformations W = X eAZ r+, lW = ;;t(z)X 
(~(z) as in Th eorem 2.1), z = w~, w a constant suc h that Iwl= 1. Thu s we may ass ume, without 
loss of generality, that the vec tor solution of interes t corresponds to the eigenvalue Aj = O. More· 
over, ill the case whe n zero is an extreme point of the polygo n IT , we may assume that all othe r 

eigenvalues of Ao are within the closed sec tor larg AI ~ a ~ ~ and that there is at least one eigen· 

value on each of the rays arg A = a and arg A = - a. In the case when zero is an interior point of 
n, we ass ume that no eige nvalue (othe r than the zero eige nvalue) is located on the im aginary axis, 
that there are some eigenvalues of Ao in each of the sectors larg AI~ a and 17T-arg AI ~ a, 0 ~ a 

< ~, and that there is at least one eige nvalue on each of the lines arg A = a and arg A = - a. 

Suppose for example that we have the case indicated in figure 1, that ~(z) is regular for all 
Iz l> p , that r = O and that qi,r+l = qil = O (i=1, 2, 3,J). It is then clear that leAiZI (i=1, 2, 3,J) 

increases monotonically along any path for which larg ~~I ~~- a. Thus assuming the points 

Ai (i = 1, 2, 3, J) to be in the z·plane as indicated in figure 1, we can, for example, connect any point 

a 

F IGURE 1. 

a 
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in the interior of the overlapping sector I arg zl ~ ~ 1T - 0' - 0, 0 ~ 0 < ~ of figure 1 with + 00 by a 

path fYJ consisting of at most three straight lines along each of which I arg ~: I ~ ~ - 0' and none of 

which passes through the origin. 
For arbitrary rank r+ 1 it follows that, since larg lJij(t)-arg [(qiO-qjO)V+l/(r+ I» I can be 

made arbitrarily small by taking It I sufficiently large, we can connect any z (Izl sufficiently large) in 

I 21Tk I 1 (31T ) ( 1T) argz-r+l~r+l 2-0'-0 o~0<4,(k=O,I, ... ,r) 

to 

~k= 00 exp [21T k \1"=1] 
r+ 1 

by a path fYJ along which Re qij(t) increases monotonically for i = 1, 2, ... , n, provided that 

0' < ¥. In the case when 0' = ~ there may still be a region between two parallel straight lines (no 

longer a sector of positive angle) in which there is at least one path fYJ joining z with ~h' along which 
Re qij(t) increases monotonically for all i. 

Let us now consider a case in which Aj is an interior point of the polygon. If the eigenvalues 
of Co are as indicated in figure 2 then, given any number 0 in 0 ~ 0 < 1T - 0' there is a path joining 

- 00, any point z in the sector I arg z - ~I ~ 1T - 0' - 0 and + 00, consisting of at most four straight lines 

(none of which passes through the origin) such that Re (Alt), Re (A2t) increase monotonically while 
Re (A3t) decreases monotonically as t traverses fYJ from - 00 to 00. If we require that a neighborhood 
of the origin is to be avoided by fYJ , Izl may need to be taken large when 0 is small. Similarly, it is 
easy to see that there is such a path joining -00, any point z in the sector larg z+ !1TI~ 1T-0'-0 
and + 00. Thus these two families of paths, one of which passes around the origin in a positive 
sense and one in the negative sense as t traverses fYJ from - 00 to + 00, cover the complete neighbor
hood of infinity. 

In the general case when Aj is an interior eigenvalue of II, we divide the integers N = 1, 2, ... , 
n into two disjoint classes NI and N2 such that if Ai is in larg AI ~O' then i E NI while if Ai is in 
11T - arg AI ~ 0' then i E N2• Note that j may be taken either in NI or in N2 • Clearly there are 
two families of paths connecting ~~I) = exp [(2k ± 1)1T\I"=1/(r + 1)], and ~Jl) = exp [2k1T\I"=1/(r + 1)] 

a a 

FIGURE 2. 
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(k = 0, 1, . . . , n) such that as t traverses 9 from ~~l) to ~~) Re qij (t) decreases or increases mono· 

tonically according as i E Nl or i E N 2• These two families of paths cover the sectors I arg Z - (2k 

+!.)~I<7T-a 
-2 r+ 1 = r+ 1 . 

THEOREM 3.1: Let Aj be an eigenvalue of Co. IfA j is a vertex ofn, then it is an extreme eigen
value; if it is an interior point ofn then it is an interior eigenvalue. 

Let (f(z) be holomorphic in a domain ~ extending to infinity in the direction arg z = 27Tkj(r+ 1), 
for some integer k in ° ~ k ~ r. Let ft be the smallest closed disc with center at the origin con
taining the zeros of 'qi}t) (i = 1, 2, . . ., n; i 0/= j4, and let ~* = ~ - ft - {oo }. 7 We define a region 
~(z, ~k) to be the union of all points z such that there is a path 9 connecting z and ~k=exp [27Tk V-l/ 
(r+ 1)] satisfying the following extreme eigenvalue conditions: 8 

(1) Except for ~k ' f!lJ lies entirely in ~*; 

(2) For any two points tl and t2 in the order ~k' tt, t2, z on 9, we have 

I exp Lqij(t2) - qij(tl)] I ~ 1 (i = 1, 2, ... , n) ; 

'Yg, (t- 1) = J(1 lt -2dtl is bounded. 

The variation symbol introduced in condition (3) above is more generally defined as follows: 
If F = F(z) is a vec tor of holomorphic functions of z, we define 

(3.7) 

Let us set 

(3.8) 

If a vector Wj(z) satisfies (2.2), then by (3.2) the error vector 

(3.9) 

satisfies 

d 1 
-d «:jm(Z) - Dj (Z)«:jm(Z) = -Zm(z)«:jm(z) - Rjm(z). 

Z Z 
(3.10) 

where m(z) = lBo(z). Now if «:jm, k(Z) is a solution of 

(3.11) 

where the path of integration is chosen as described above, then «:j11l , iz) also satisfies (3.10). 
If Aj is not an extre me eigenvalue, let 2l(z) be holomorphic in a domain ~ which contains, or 

extends to infinity in , one of the sectors I arg z - (2k ± 1) r: 11~ (~~ ~ for some integer k in ° ~ k ~ r 

, (oo) = (e"l-oo ,;; 0 S 00). 
8 Compare [1]. sec. 5. 

175 



and all z sufficiently large. We reorder, and if necessary relabel, the elements of the equation 
(3.10) so that we may write them in the form 

(3.12) 

where the top line contains all rows of (3.10) such that iEN I and the bottom line contains all 
rows of (3.10) such that iEN2 (see page 174). The diagonal matrix Dj{z) in (3.10) is accordingly 
subdivided into two diagonal matrices D51)(z) and D5Z)(z); the matrix m(z) is accordingly partitioned 
into four blocks ch(z) , (k = 1, 2, 3, 4) and Rjm(z) is split into two vectors in the same manner as 
Ejm(Z) was split. 

Let iif be the smallest closed disk with center at the origin containing the zeros of q;j(t) (i = 1, 
2, ... , n; i -,6 j) and let :!lJ* = :!lJ - iif - {oo}. We next define a region :!lJ(~)fl, ~\l» to be the union 
of all points z (z -,6 W), z -,6 ~\l» such that there is a path fl)' connecting ~~t), z and ~~2) (in that order) 

where ~~I) is one of the points 00 exp [(2k± l)7TvCl/(r+ 1)], and ~~2)=00 exp [27TkvCl/(r+l)], 
and satisfying the following interior eigenvalue conditions: 

(1) Except for ~~) and ~~), fl)' lies entirely in :!lJ*; 
(2) For any two distinct points tl and t2 in th~ order ~)p, tl, t2, ~\l), on fl)' we have lexp [qij(t2) 

- qu(tl)] 1 ~ 1 if i E Nt, 1 exp [qij(tl) - qij(tZ)] 1 ~ 1 if i E Nz; 
(3) With ai, a2, a3, and a4 defined by equation (3.32) below, Hal + a4 + Y(al - a4)Z + 4a2a3} 

r (j' (t- I ) < l. 
It follows that the vector of analytic functions which satisfies 

(3.13) 

where the integrals are taken along a path fl)' as described above, is a solution of (3.12). 

3.3. Treatment of Rijm(z) 

In this section we examine the integral 

(3.14) 

where the path fl)' of integration satisfies either of the sets of conditions described in the previous 
section and ~ is a point appropriately chosen at infinity such that as t traverses fl)' from ~ to z, 
Re %(t) decreases monotonically. The equations (3.4) and (3.6) show that when i = j, Rijm(t) 
=0(ltl - m - 1), Itl~oo, but if i -,6 j, then Rijm(t)=O(ltl r- m - I ), Itl~ 00. For this reason we cannot 
proceed directly as in [1] to bound the error. 

When i -,6 j we first integrate (3.14) by parts to obtain a good bound for Rrjm(z). The equation 
(3.6) may be written 
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qij(Z) d - qij(Z) _ [ , . . m] _ _ 
Rij"'(z) = - e dz (e UijlllZ Ill) - Z q i/Z) - (qiO - qjO)Z' + ~ UijmZ m 1 

(3.15) 

The first term on the right .of (3.15) is already in a form suitable for integration by parts. Consider 
now the polynomial P ij",(z) co nsis ting of all of the right-hand side, excluding the first and last terms. 
It is dear that the dominant term of Pij",(z) is of order z,.- m- I as /z/ ~ 00. On substituting Pijlll (t) 
for Rijm(t) in (3.14), integrating by parts and denoting the resulting integral by PU11l ' we obtain 

P * (z)= - PU.11l(z) +fz eq ij(Z )- 'I iA/)/.!i t:Pijm(t )) dt. 
')'" q!iZ) , / dt \ q!;(t) 

(3.16) 

Collecting term s, we obtain 

R 'I< ( ) = 1z 
[ U ·· t - III - I + ( 'I iAz) - q ij(t ) -1) .!i (P ijlll(t)) - q iAz)- qij(I/,.:..;:.1 {ffi ()U} 111 2] d 

Ij lll Z m Ij lll e d / ( ) e L. :.0111 - 1.' t jk it- - t, 
, t qij t 1.= 0 

(3. 17) 

and since 

/t/~ 00, the right of (3. 17) is readily bounded. In the nex t sec tion, we use this bound in obtain
ing vector and norm bound s for Ej lll(Z). 

On the other hand for i = j, we see from (3.4) that 

(3.18) 

and obtaining a bound for this integrand is even easier than for (3.17). 

3.4. Error Bounds for the Extreme Eigenvalue Case 

We shall first obtain a vector bound. With tl and t2 in the order ~k, tl, t2, Z on Pi', we define 

sup I ) [ d (PUI1I(t)) (m+ 1)'V·· = eQij·(12 ) - Qij·(/ 1 t ,,1+ 2 - ---
Iljll! I dt q' ·(t) _ 

tl, t 2 E Pi' Ij I - II 

~l{ro ()U} d (PijU/(I)) m+ 1 I + L.. ;.urn - k t I jk i - -d ----.:-() t I 
k = 1 t q'j t /=/ 1 

(3.19) 

(i #- J) 
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We also denote by ')Ijm the vector with ith element ')Iijm; i.e. {')Ijm}i = ')Iijm, and define 

B =[ sup I q .. (t 2)- q.·(t){(U(t)}·IJ . -12 E /J}) e t) I) 1 ;u 1 IS ,~, S - , , ••• , n. 
tl, t2 ;::r - .-

(3.20) 

In the part II of the present paper we shall show that there exists a unique vector €jm,k(Z) of 
holomorphic functions which tends to zero as z~ ~k and satisfies (3.11). The elements of €jm,k(Z) 
are holomorphic in a domain (actually a Riemann surface) which includes the region £e(z, ~k) 

defined by the extreme eigenvalue conditions in Section 3.2. 
On combining equations (3.19) and (3.20) with (3.11) we obtain 

(3.21) 

Let a be the value of s -for which t(s) = Z t(s) as defined in the Introduction. We apply Lemmas 
1 and 2 of the appendix with E(a)=1, F(s)ds=Blt -2dtl, cp(s) = !Ejm,k(t) I , G(s)ds=(mIUjm t - 1Il - 1 1 
+ (m + 1)')Ijmlt - m-21)dt to obtain 

THEOREM 3.2: Corresponding to an extreme eigenvalue of Aj of Co, the equation (2.2) possesses 
an actual solution vector WJm, k(Z) depending on 'k and an arbitrary positive integer m such that 

(3.22) 

where 

(3.23) 

and £e(z, ~k) is defined in section 3.2. In (3.22) each vector U Jk (k=O, 1, 2, ... ) is the jth column 
vector of the matrix Uk defined by Theorem 2.2; qj(z) is the jth diagonal element of the diagonal 
matrix G(z) (equation (2.13)). In (3.23) B is an n X n matrix of non-negative elements defined by 
equations (2.3) and (3.20), while the ith element (i = 1, 2, ... , n) of the vector 'Yjm is defined by 
equation (3.19). 

Let us now obtain a norm bound for Ejm,k(Z) in equation (3.22). For this purpose we define a 
vector Vj{t2, tl) as follows: Let the ith element (m + 1)Vij(t2, tl) of (m + 1)Vj(t2, tl) be the number 
inside the absolute value signs on the right of (3.19). With tl and t2 defined as for equation (3.19) 
we define 9 

B = sUPdll~(t)11 
t E :7 

THEOREM 3.3: A norm bound for the vector €jm,k(Z) in Theorem 3.2 is given by 

9Here and henceforth we assume that compatible matrix and vector norms are take n, i.e ., I IBVII ~ UBI! II VII .. 
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3.5 . Error Bounds for the Interior Eigenvalue Case 

Put t2=Z, tl = t , and let Vj(z, t) be de fin ed as for (3.24). We split the vec tor Vj(z, t) into two 
vectors V)I)(Z , t) and V j2)(Z, t) in a manner corres ponding to the way in which R jn/t) was split in 
(3.13). We analogously split the vector V jm into V j!l, and V j7}" such that the equation (3.13) may be 

written 

[

(I) ()] [I' O]{[ [)i/ '(z)- IYj'(t ) 0 J E jlll,k Z _~,.n e 
t - 2 

-'2) () - ° I' 0 e D\'~z)- O~,,(. ) 
'=)111 , 1. Z ~.t) 

n.rt )] [~. J) (t)] [ - mv(l)t - III - I +(m + l )V (.J)(Z t)t - 1Il - 2 ]1 l\ jln,k )111 J ' 

Q4( t) ej;,~)t ) + - mVS1/,t - lIl - 1 +(m+ l)VS2)(z, t )t - III - 2 dt. 
(3.26) 

Again we s hall firs t obtain a vector bound. To achieve thi s, we de fin e 

(k = 1,2,3,4) 

(3.27) 

where in the last of (3.27) fl a nd t2 are on !!J in the order ~ I , fl ' t2, ~ 2 for s = 1, and ~I, t 2, tl, ~ 2 for 

s = 2 res pec tively. 

D'·'(z)- I)I."(' ) 
In addition , each e le me nt of the diagonal matrices e J J (s = 1, 2) on the right of (3.23) has 

an upper bound of l. 
In part II of the present paper we shall show that the re exists a unique n X 1 vector of function s 

satisfying (3.26) suc h that ES:L.(z) ~O as z~ ~,I), e);L.(z)~ O as z~ (1,,2). Furthermore , each ele · 
ment of thi s vector is holomorphic on a Rie ma nn surface which includes the region 2)(~~~) , (}l)) 
de fin ed by the interior eigenvalue conditions of section 3.2. 

On subs tituting the above results in (3.26), we obtain 

(3 .28) 

On transforming to real variables as fot (3.21), using Le mma 5 of the appendix and transform· 
ing back to complex variable notation , we ohtain 

THEOREM 3.3: If, for an interior eigenvalue Aj of Co, the interior eigenvalue conditions of 
section 3.2 are satisfied, then the equation (2.2) possesses an actual solution vector 

(3.29) 

where 
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and 

(s = 1, 2) (3.30) 

Here 1 I designates the K X K unit matrix, and 12 designates the (n - K ) X(n -K) unit matrix, K being the 
number of elements in N I (Section 3.2). All integrals and variations on the right of(3.30) are taken 
along 9 . The bound on the right of (3.30) is valid provided that every eigenvalue of the matrix 
C2C 1Wkl), ~:)) is less than 1 in magnitude. Moreover, an exactly similar result holds for Ej~ , k(Z), 

Let us now obtain a norm bound. We define 

(3.31) 

where t I and t2 are any two points on f!JJ in the order S)) ), tl, t2, S~2) for s = 1 and in the order (,<,)) , 
t2, t" ~2) for s =2. Similarly, with the notation of (3.27) we put 

(k= 1,2,3,4). (3.32) 

Thu s we obtain an in equality similar to (3.29); using Lemma 6 and the inequality (32) of the 
appendix we then obtain 

THEOREM 3.4: Let ak (k = 1, 2, 3, 4) be defined by (3.32), let t/f~) (k = 1, 2) be defined by (3.31), 
and let 

(3.33) 

where the variations are taken along f!JJ. IfF(slZ)) < 1 then the norm of the vector ~j~. k(Z) (equation 
(3.2 9)) is bounded by the quantity 

(3.34) 

Moreover, an exactly similar result holds for E\~ . k(Z), 
It is noteworth y that the conditions of Theore ms 3.3 and 3.4 can always be sati sfied by taking 

contours f!JJ s uffi ciently far away from the origin. 
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4. Appendix. Some Inequalities for Volterra and Fredholm Integral Equations 

4.1. Bellman's Lemma in Matrix Form 

We begin with an extension of Bellman 's Lemma [5] to matri ces. 
LEMMA 1: Let cp, G and H be k X 1 vectors and E and F be k X k matrices of continuous non-

negative functions of a variable a in an interval a ~ a ~ b such that F(a) E(a) and JO" F(s)E(s)ds 
commute. Iflo 

Icp(a) ~ E(a) {O" [F(s)cp(s) + G(s) ]ds + H(a) 

then the following inequality also holds in a ~ a ~ b: 

(a ~ a ~ b) 

cp(a) ~ H(a) + E(a) L' exp {L' F(T)E(T)dT} {G(s) + F (s)H(s)}ds. 

(1) 

(2) 

The proof of Lemma 1 is a straightforward extension of the one-dimensional result in [5, 
page 135]. 

LEMMA 2: With the conditions of Lemma 1, let E - I(a) and ra, b(E - IH) exist for a in (a, b). 
Then 

To prov e thi s res ult we integrate the right of (2) by parts. 
If E - l(S)H (s) in creases monotoni cally over (a, b) , then r ,l. j E - l H ) = E - l(a)H (a) - E - l(u) H(a ); 

in this case the inequality (3) may be simplified. If, in addition, E(s) is a scalar quantity the n (3) 
redu ces to 

(4) 

4 .2. Bellman's Lemma for Fredholm Vector Integral Equations 

The following lemma ex tend s the above res ults to Fredho lm integral eq uation s. 
LEMMA 3: When the variables a , T, and t lie in the interval (a, b), let X(a, T) (k X k) , cp(T) (k X l) , 

and (J(T) (k X 1) be matrices of non-negative continuous functions such that 

X(a, T) X(T, t) ~ X(a , t) X(T , T) (5) 

and 

(6) 

Suppose that each eigenvalue of the matrix 

(7) 

is less than 1 in magnitude. Then 

(8) 

10 If(a. b) is not c() mpac t we ass um e that the integral on the right of (1) ex is ts and that eac h e lement of the resulting vecto r is till ifurrnl) bound l'd. 
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PROOF: From the conditions of the Lemma there exists a unique k X 1 vector 'l'(o-) of non
negative continuous functions such that we can replace the inequality (6) by the equality 

cp(o-) = 1: X(o-, T)cp(T)dT+O(o-)-qr(o-). (9) 

The equation (9) is a Fredholm integral equation in cP which we can solve by successive approxi
mations. De fining a sequence {cpv}(v=O, 1, ... ) by cpo = 0, 

v=O, 1, ... (10) 

and using (5), we easily establish by induction that 

v=I,2, ... (11) 

If the eigenvalues of Fare all less than 1 in magnitude, we have 

'" (I-F)-I= L F" (12) 
v=O 

and clearly the sum of the power series on the right is a matrix of non-negative elements. On 
summing the inequalities (11), we obtain (8) with 0 replaced by 0 - '1', since it is well known that 
this sum bounds the true solution of (9). Decreasing the magnitude of the elements of 'I' on the 
right of this sum increases the elements of cpo The inequality (8) now follows. 

The proof of the following Lemma is similar to that of the above Lemma, and is omitted. 
LEMMA 4: With the conditions of Lemma 3 let (5) be replaced by 

X(o-, T) ~ G(o-)H(T) 

where G and Hare k X k matrices. Let each eigenvalue of 

be less than 1 in magnitude. Then 

(a ~ 0- ~ b). 

4.3. Extensions to a Simultaneous Pair of Volterra Vector Integral Equations 

Here we consider the pair of inequalities 

CPI(o-) ~ J: {[acpI(s)+/lCP2(s)]w(s)+01(s)}ds 

CPiJT) ~ J: {['YCPI(S)+OCP 2(S) ]W(s)+ Ois)}ds 

(5') 

(7') 

(8') 

(13) 

where CPI (K XI), CP2 ((n - K) XI), 01 (K XI), ()2 ((n - K) XI), W (1 X 1) are matrices of nonnegative 
continuous functions on (a, b i), and n ~ 2, 0 < K < n. Also, a, /l, 'Y, and 0 are constant matrices 
of orders K X K, K X (n - K), (n - K) X K and (n - K) X (n - K) respectively , whose elements are 
no·nnegative. 
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On applying Lemma 1 to each of the equations (13), we obtain 

IPla) ~f<T ajl<T) - afts){ PIP2(S)W(S) + t9 1(s)}ds 
a 

(14) 

where 

/ (S) = f w(T)dT. (15) 

Substituting the second of (14) for IP2 in the first of (14), we get 

(16) 

Th e repeated integral (16) may be interpreted as a double integral over the shad ed region indicated 
in fi gure 3. S plittin g thi s region into a triangle and a rectangle and interchan ging th e order of 
integration, we obtain 

where 

220- 6120-66-2 

+ f J(~ e af(<T) - af(s) p e fjf(T) - fjf(s) {I'IPt(T)W(T) + t92(T)}W(s)dsdT, (17) 

FI GU RE 3. 

t93(a) = f <I e af(<T)- af(s) t9 1(s)ds. 
(I 
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b ------ ~------------:--- --~;1 
I / I 
I I / I 

1 : /// : 

: :// 1 
(1' -- -----1--------------

/ 
/ 

/ 
/ 

/ 
/ 

/ 

a b T 

(18) 



We evaluate the inner integrals in (17) to find that 

where X(<T, T) satisfies 

Ie af(u) [pe 8f(T) - e -. af(T) p], T ~ <T 

exX(<T, T) + X(<T , T)8= 
[e af(u) P - pe- 8f(u) ]e 8f(T) , T ~ <T. 

(19) 

(20) 

The equations (20) have unique solutions for X(<T, T) provided that JA-i + Vj =;f 0 (i = 1, 2, . . . , 
K; j= 1, 2, ... , n - K), where J-ti and Vj are the eigenvalues of ex and 8, respectively. Moreover, 
this condition can always be satisfied by an arbitrarily small change in the elements of ex and 8 , if 
necessary. Nevertheless an exact explicit expression for the right hand side of (20) is generally 
not feasible , and in practice we make a slight sacrifice of sharpness of error bound in order to 
achieve a matrix bound which is simpler to evaluate. Several simplifications are possible; one 
of these is as follows: \1 

J ~ e af(u) - af(,) p e 8f(T) ,-8f(,) w(s)ds ~ J: af(u)- af(,) pe 8f(T) w(s)ds 

=ex-l[eaf(<r)_eaf(fT)- a/(T) ]pe 8f (T) ~ ex - l[eO'./(u) -IK]Pelif(T). (21) 

Similarly 

(22) 

where 

H( T) = Jk 8ftT) . (23) 

Combining (22) and (23), we obtain 

CPl(<T) ~ IM<T) + J: G(<T)H(T){'Ycpb)w(T) + Ih(T)}dT. (24) 

We apply Lemma 4 to this inequality to obtain: 
LEMMA 5: Let cpt, CP2, ex, j3, y, 8 , w, 8, and 82 be defined as in (13) and the functions G and H 

as in (23). If the inequalities (13) hold and if each eigenvalue of the matrix 

F = r H(T)'YG(T)w(T)dT (25) 

is l ess than 1 in magnitude, then 

(26) 

. , 
II S ince a - I[exp (a)~ I] == ~o (It: I)! the pos~ . ibilit y of a being singular i s nol excl uded. 
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where 

O(a ) = Oia) + f G(CT)H (T)(}i T)dT (27) 

and 03 is defined by (18). Moreover an exactly similar result holds for CP2(CT). 
In the case whe n n = 2 and K = 1 the eq ua tions (20) ca n be solved expli c itly. W e the n have 

(19) with 

X (CT , T)= 

~ eaj(fI) [ ellJ(T) - e - aj(T) ] T :S CT· a+o ' - , 
a!o ellj(T) [ e"j(rr)-e - llj(fI l ] , T ~ a. 

(28) 

It is easily verified that for arbitrary points CT , T a nd t on (a,b), X(CT , T)X (T, t) ~ X(CT , t)X(T, T); i. e . , 
the conditions of Lemma 3 are sati sfi ed. On a pplying Le mma 3 to th e in equality (19) we obtain 

LEMMA 6: Let cpt, CP2, a , /3 , ,)" 0 , W , OJ and O2 be defined as in (13), with n = 2, K = 1, and 

(29) 

where [(s) is defined by (15). If the inequalities (13) hold and if F(b) < 1, then 

(a ~ CT ~ b) (30) 

where X (CT , T) is defined by (28) and O;J is defined by (18). 
On expan din g the right hand side of (30) and using th e inequ ali ty X(CT , T)X (T, t) ~ X (CT, t)X(T, T) 

once more, we get 

For ease of evalu ation we ma ke some over·estimates in (31) to obtain 

In conclu sion , we observe that if we re place all inequalities in Le mmas 1,2,3, and 4 by equali· 
ti es, then the res ults of these le mmas are exact; hence the inequalities are s harp. H owever , s in ce 
X (CT , T) < G(CT)H(T) almost everywhere in a ~ CT , T ~ b the result of Le mma 5 is not sharp. The 
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result of Lemma 6 also is not sharp because, although X(O", r)X(r, t)=X(O" , t)X(r, r) for 0" , r , tin 
the order 0" , r , t or t , r , 0" on (a,b), X(O" , r)X(r, t) < X(O", t)X(r , r) when this order of 0" , rand tis 
violated. 

The work described above was supported by the U.S. Army Research Office, Durham, North 
Carolina (Project No. 4238- M) and by a Province of Alberta Graduate Fellowship. The author is 
grateful to Dr. F. W. J. Olver for many valuable criticisms. 
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