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Error Bounds for Asymptotic Solutions of Differential
Equations’

The Distinct Eigenvalue Case

Frank Stenger 2

(May 26, 1966)

The method of Olver for bounding the error term in the asymptotic solutions of a second-order
equation having an irregular singularity at infinity is extended to the general system of n first-order
equations in the case when the eigenvalues of the lead coefficient matrix are distinct. Vector and
norm bounds are given for the difference between an actual solution vector and a partial sum of a formal
solution vector. Two cases are distinguished geometrically: In one it is possible to express the error
vector by a single Volterra vector integral equation; in the other it is necessary to use a simultaneous
pair of Volterra vector integral equations. Some new inequalities for integral equations are given in
an appendix.

1. Introduction

Let us first establish our notation. To refer to an m X n matrix A we shall use A =|a;] (i=1,

2, ...,mj=12, ..., n), while to refer to the (i, j)th element of A we shall use {A};= aj.

We shall write |A| for the matrix of absolute values of the elements of A, and for A and B real and

of the same dimensions, A = B will imply that {A};; = {B};; for all (i, j). All the integration paths

dt(s)
ds

| V(¢)| where V() is an m X n matrix will be

P we shall use consist of a finite number of Jordan arcs t=1t(s) (a = s = b) on each of which ——

is continuous and non-vanishing. The notation

E 9’
used to denote the m X n matrix of non-negative numbers whose elements are the least upper
bounds on £ of the corresponding elements of |V (¢)|.

The system of differential equations we consider takes the form

%:Zr [2‘ Akz—"+?lx(z)z“3] W (L.1)
k=0

where r and s are non-negative integers. Each Ay is a constant n X n matrix. The n? elements

of Ay(z) are holomorphic in some domain & (which may be part of a Riemann surface) extending
sup

to infinity. For any path 2 extending to infinity in &, we suppose that | {Us(2)}4| is finite for

i,j=1,2,. . ., n. For notational convenience we shall write ?Io(z)=?l(z), A_,=O. The integer
r denotes the rank of the system (1.1).

It is known ([2]?) that the system (1.1) has a linearly independent set of n formal vector solu-
tions which are asymptotic expansions of actual solutions of (1.1) as z— ® in &. The purpose of
the present paper is to establish bounds for the difference between the actual solutions and the
partial sums of formal solutions. This is achieved by an extension of the error analysis developed
by Olver [1] for second-order differential equations.

! An invited paper based on the author’s Ph.D. thesis, University of Alberta (1965).
?Present address: University of Michigan, Ann Arbor, Mich.
3 Figures in brackets indicate the literature references at the end of this paper.
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2. Transformations on the Original System and Formal Solutions

For purposes of obtaining error bounds we require explicit rules for constructing formal solu-
tions. In this section we therefore construct transformations which convert (1.1) into canonical
form, and then we construct formal solutions for the transformed system.

THEOREM 2.1: There exist constant nXn matrices Ty, T4, ..., Ty11such that the transformation
r+1

X=3(z)W= 2 Tz *W 2.1)
k=0

reduces (1.1) to the canonical form

dW

dr =7'C(z)W, (2.2)
where &(z) can be expanded in the form
r+1 s—1
Cz)=z"1 E Gz X 72 2 B,z ¥+ B (z)z" (2.3)
k=0 k=0

Here the Cy and By are constant n Xn matrices, Cy being diagonal and B4z) is an n X n matrix
whose elements are holomorphic for all sufficiently large z in &, and uniformly bounded on a path
P extending to infinity in 9.

We prove this important theorem here in order to furnish an explicit algorithm for computing
the coefficient matrices Ty (k=0, 1, . . ., r+1). For an earlier proof see Birkoff [3].

Since A, has distinct diagonal elements there exists a nonsingular matrix Ty such that Tg1A,T,
= Cy, where Cy is a diagonal matrix with distinct diagonal elements. Accordingly we assume that
the transformation X=T,W has been made and that A, is already in diagonal form. Then we
may take To=1I in (2.1). On making the transformation (2.1) in (2.2), we obtain

dW d3(z
o = rF-1 ) s et
2T (2) [?I(z)N(z) 7 . ]W (2.4)
We choose the matrices Ty, T2, . . ., T,ri1 so that the matrix
T
60 =T10) [91 D@ -z %] 2.5)
has the form (2.3). For this purpose we need only consider the coefficients of z71, z72, . . .,
z7""!in the equation
T
6 = AT - L. (2.6)
Expanding (2.6) and equating equal powers of z, we obtain
l
Y Tkl —AT =0  (=0,1,. .. r+l). 2.7
k=0
With [ =0, (2.7) gives Co=Ao. With /=1 we have
T1C0—A()T1 aF C] _A1 = O. (28)
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Now for arbitrary T,, the diagonal part of T,C)—AT,=TA,— AT, is zero. Thus C,=diag
(A1). The off-diagonal elements of T can be determined by the solution of

{Ti}ii({Ao}ji— {Aoti)={A1}y

under the assumption that the diagonal elements of A, are distinct. We set the undeterminable
diagonal elements of T, equal to zero.

Assume that for some positive integer [ = r we have solved for C;, . . ., C; and the off-diagonal
elements of Ty, . . ., T; and that we have set the diagonal elements of Ty, . . ., T, equal to zero.
Then from (2.7) we have

!
T 1Ag— AgTr + 2 (Trr1-kCr — ATy 1-2) + Crr— A1 = O. (2.9)
k=

k=1

Again, the diagonal part of T;;;Ag—A¢T;.; is zero. Thus the diagonal part of

i
2 (Trs1-1Ch — AT 1)+ G — Ay (2.10)

k=1

is also zero. This enables us to determine C;;;. The off-diagonal elements of T, are determin-
able from the scalar equation

!
{Ti+1 }ij({A()}jj_{A()}ii)+{ Z (Tr41-1xCr — AI.'TI+17L<)}1'J':0 (2.11)
o=

since the diagonal elements of A, are distinct. The diagonal elements of T, ; are again not deter-
minable and we set these equal to zero. This proves by induction that each Ty and C; (=0, 1,
. , r+1) can be determined as stated in the theorem.
To determine By and By(z), we again expand (2.6) and equate coefficients of z=7~ 'k, k= 1.
We obtain

min(k,r+1)
Bi=Ariri2— 2 (TBr—i— Ak sri2-/T)

=1

~x
4L
-

o= (TiCrsr+2—1— Akt rv2—(T)) + KTy (2.12)

l +1

Il
b

~

for all £=0, where we define Ty=0 for £ >r+1. Since the elements of (z), T(z), T (z) are
holomorphic and bounded for all sufficiently large z in &, the elements of By(z) are similarly holo-
morphic and bounded.

This completes the proof of Theorem 2.1.

THEOREM 2.2: The system (2.2), in which C(2) has the canonical form (2.3), possesses a formal
independent series solution matrix of the form*

W(z)=U(z) exp Q(z) (2.13)

B+
&

=
4Here and henceforth exp B= ; for any square matrix B.
=
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where $(z) is diagonal and has the form

Ckzr+1 =K

Q(z)= z b, S9N ’+1_k+Q,+1 Inz= 2 +Cr+1 Inz (2.14)

ipear Ji==

and ®

Uo)=1+ 3 U~ (2.15)
k=1

PROOF: Substituting (2.13) into (2.2), canceling exp $2(z) and equating coefficients of equal powers
of z71, we find that

min(k,r+1) -r—2
(UA-_ij—CjUk_j)—(k—r—I)Uk_r_l 2 BUA r—2 j—O(k 0 1 2 ) (2.16)

=0 Jj=

provided that we define U;=0 for j<0. The proof of Theorem 2.2 will be complete after we

prove the following lemma.
LEMMA 2.1: With Uo=1 and Q(z) diagonal, equation (2.16) uniquely determines U and Q;,
j=0,1,2, . ..

Proor: With k=0 we have
Qo=10C,. (2.17)
With k=1, we have

U|C0_C0U1+Q1—C1=O. (218)

Now if U, is an arbitrary n X.n matrix, the diagonal part of U,Cy— CoU, is zero. By assumption,
Q; and C,; are diagonal; hence Q;=C,. Since the diagonal elements of C, are distinct, the off-
diagonal elements of U, given by the solution of {U,}ij({Co}jj— {Co}i)=0 are zero. The diagonal
elements of U, are not determinable at this point and all we can say here is that U, =D,, where
D, is an arbitrary diagonal matrix.

Assume that for some integer k in the range 1 =k =r we have found Q;=C; and U;=D;
where D; is an arbitrary diagonal matrix and 1 =j= k. Then solving for Ux;; and Q1 we have
from (2.16)

k
Uk+1Co— CoUp41 + E Di+1-jCj— CjDis1-j) + Qrs1 — Crs1 =0 (2.19)
=

or, since diagonal matrices commute,

Uk+1Co— CoUr+1+ Qrs1 —Ars1 = 0. (2.20)

On comparing (2.20) with (2.18) it follows by exactly similar arguments to those used for (2.18)
that Qx+1=Cx ;1 and that Uiy =Dx1, where Dyyy is an arbitrary diagonal matrix. We have
thus proved by induction that for every integer k in the range 0 =k =r+1, Qx=Cy and U, =Dy,
where the Dy are undetermined diagonal matrices.

3The symbol “=" here and henceforth denotes a formal equality.
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With k= r+2, we have, from (2.16) and the above results,

r+1

Ur+2C0 -~ COUr+2 =t E (Dr+2—jCj $i 1 CjDr+:!—j) e B()Dl - O- (221)
J=1

or, since the sum on the left is a sum of diagonal matrices,

U;4+2:Co— CoU,2—Bp—D,;=0. (2.22)

The diagonal part of U,;2Co—CyU,;» is zero; hence D,=U,=—diag B,. The off-diagonal
elements of U, are given by the solution of {U,.2}ii{({Co}jj— {Co}i)={Bo}i. The diagonal part
D, of U,+» cannot be determined at this point.

Assume that for some positive integer [, the matrices Uy, Us, . . ., U; as well as the off-diagonal
elements of the matrices Uiy, Upys, . . ., Uyysq have been determined while the diagonal mat-
rices consisting of the diagonals of Uy(l+1=k=r+1[+1) are still undetermined. Then, from
(2.16) we have

r+1

1+1
Ur+1+2C() i C()Ur+1+2 U (Ur+z+l~jcj_ CjUr+I+2—j) =+ 2 Bj—lUl+l—j_(l+ I)UIH =0. (223)
Jj=1

J=1

On writing U;=U;+ D, j > [, where the diagonal elements of U; are zero, and using the fact
that diagonal matrices commute, we find that

+

== — r
U, +142C0 — CoUr 142+

1 1+1
1

(ﬁr+l+2~jCj_Cjﬁr+[+2—j) - E Bj—lUI+1—j“(l+ 1)(61+1 A D[+1) =O. (224)
Jj=1

Thus each Uj, j= 1, is uniquely determined. This completes the proof of Lemma 2.1 and of
Theorem 2.2.

Clearly, the above procedure can be modified to compute a particular formal series solution
vector independently of the others; the jth series solution vector is

W;(2) = Uj(2) e 9? (2.25)
where ﬁj(z) is the jth vector in fJ(z) and ¢j(z)={LQ(z)};;. For later convenience we set

4 qjk i \
gi@)= Y 27 kg 1 log 2. (2.26)
y gor+1—k 4

The representation (2.25) illustrates that we have a one-to-one correspondence between the
eigenvalues of Ay and the formal vector solutions.
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3. Error Bounds for the Formal Partial Sum Approximation

3.1. The Differential Equation for an Approximation

We denote the jth column of Ux (k=0,1, . . .) as defined by Theorem 2.2 by Ujx. Starting
with the partial sum

m—1
<I>jm(z) = ( E Uij’k> e 4j? (31)
k=0

we define a vector Rj,(z) by the differential equation

0D 5 o() = Ryl e 112 @2)

where €(z) is defined by (2.3).
Expanding (3.2) and using equations (2.26) and (2.16), we obtain

r+m+1 [min (u, r+1)
R =="3 | & (@—1gUis+(a—r—DUf,
k=0

w=

=

(== m—1
S B k| = S @B U . 63)
k=0 k=0

where Uji.=Uji if 0=k = m—1; O otherwise.
Consider the ith element R;ju(z) of Rjnu(z). If i=j then using (2.16) again we obtain

m—1
Rjjm(z) =mU; jmz=" = % {(Bu-(z) Ujn) }jz7m2 (3.4)
k=0

where {V;}; denotes the ith element of the vector V;.
We also define

qij(2) = qi(2) — g(2). (3.5)
For i # j we again make use of (2.16) in (3.3) to obtain

Ri in(2) = q1j(@)Ui jmz™™ — z[q ;@) (gio — @i 0)2"] Ui jmz—™1

(gix — @)Uy, p-x+ (@ —r— DUy, u—r-1

m+r+1 l:min (w, r+1)

p=m+1 L k=p+1-m
u—r—2 m—1
F 2 {B.U;j, u—r—z—k}i:| G = 2 {8Bm-@)Uj}i z7m2 (3.6)
k=0 k=0

where Uj ji is the ith element of the vector Ujy.

3.2. Two Possible Cases

In this section we shall set up integral equations for the error vector, that is. the difference
between an actual solution vector of (2.2) and a partial sum of the formal solution vector (2.13).
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Our aim is to construct actual solution vectors for which the formal solution vectors obtained in
section 2 are asymptotic expansions, as |z|—> . For this reason, and for purposes of obtaining
good error bounds we assume Z is such that we can choose our fixed end-points of integration,
which we denote by {y, at .  We shall show that under these conditions it is possible to express
the error vector by at most a simultaneous pair of Volterra vector integral equations.

The error bounds we shall obtain are considerably sharper in the case when we can express
the error by a single Volterra vector integral equation than in the case when we require a simul-
taneous pair of Volterra vector integral equations. It is thus desirable to use a single equation
whenever possible.

We have already noted at the end of section 2 that with our construction of formal solutions

there is a one-to-one correspondence between the eigenvalues of C, and the vector solutions.
Let Aj be an eigenvalue of Co.
DEFINITION 3.1: The eigenvalue \; will be called an extreme eigenvalue if there exists a path &
lying in &, joining some point z(|z|< %) in & with (| |= ©) such that Re qj(t) (see equation (3.1))
increases monotonically® as t traverses P from z to {, fori=1,2, ..., n. Otherwise \; will be
called an interior eigenvalue.

Consider the eigenvalues of C, as points in the complex plane enclosed by the smallest pos-
sible closed convex polygon 1.  Except for rotation, the polygon Il and the differences between
the various eigenvalues of Ay are left invariant under the transformations W——‘Xe"zrtlwz T(2)X
(2(2) as in Theorem 2.1), z=w{, w a constant such that [w|=1. Thus we may assume, without
loss of generality, that the vector solution of interest corresponds to the eigenvalue \;=0. More-
over, in the case when zero is an extreme point of the polygon I1., we may assume that all other

. . I T . .
eigenvalues of Ay are within the closed sector |arg A\|= o = 5 and that there is at least one eigen-

value on each of the rays arg A=« and arg A\=—a. In the case when zero is an interior point of
I, we assume that no eigenvalue (other than the zero eigenvalue) is located on the imaginary axis,
that there are some eigenvalues of A, in each of the sectors |arg A\|= @ and |[mr—arg A\|[= o, 0 = «

T . . .
< —, and that there is at least one eigenvalue on each of the lines arg A\ =« and arg A\=—a.

2
Suppose for example that we have the case indicated in figure 1, that ©(z) is regular for all
|z|> p, that r=0 and that ¢i, ,+1=¢a=0 (i=1, 2, 3, j). It is then clear that |e*#| (i=1, 2, 3, j)

increases monotonically along any path for which

dz . .
arg a'é%—a. Thus assuming the points

i (i=1, 2, 3, j) to be in the z-plane as indicated in figure 1, we can, for example, connect any point

6 For any two points z,, z, in the order z, z,, z;, { on 2 we have Re gifz)) = Re qij(z2).

FIGURE 1.
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: 3 :
in the interior of the overlapping sector |arg z|= v a8, 0=29 <% of figure 1 with + by a

o : : ; d
path 2 consisting of at most three straight lines along each of which |arg d—;’é g—a and none of

which passes through the origin.
For arbitrary rank r+1 it follows that, since |arg gi;(t) —arg [(gio— gjo)t"**/(r+1)]| can be
made arbitrarily small by taking |t| sufficiently large, we can connect any z (|z| sufficiently large) in

2wk 1 (3@ T v
argz—r+1|§r+1 (7—a—6> <O§8<Z)’ (k=0,1,...,0n
to
L= ex [M_ "_1]
i P r+1
by a path & along which Re g;j(t) increases monotonically for i=1, 2, . .., n, provided that

T ™
a< bX In the case when a=3

longer a sector of positive angle) in which there is at least one path £ joining z with {;. along which
Re gij(¢) increases monotonically for all i.

Let us now consider a case in which A; is an interior point of the polygon. If the eigenvalues
of Cy are as indicated in figure 2 then, given any number & in 0 = 8 < 7 — « there is a path joining

there may still be a region between two parallel straight lines (no

A . T N : y
— o, any point z in the sector |arg 2=y = 7m— a— 8 and + =, consisting of at most four straight lines

(none of which passes through the origin) such that Re (\t), Re (A2f) increase monotonically while
Re (A\3t) decreases monotonically as ¢ traverses & from —© to «. If we require that a neighborhood
of the origin is to be avoided by 2, |z| may need to be taken large when 8 is small. Similarly, it is
easy to see that there is such a path joining — %, any point z in the sector |arg z+ i7w|=7m—a—8
and +. Thus these two families of paths, one of which passes around the origin in a positive
sense and one in the negative sense as ¢ traverses & from — to + %, cover the complete neighbor-
hood of infinity.

In the general case when A is an interior eigenvalue of I, we divide the integers N=1,2, ...,
n into two disjoint classes N; and N, such that if \; is in |arg \| =« then i € N; while if A; is in
|m—arg A|=a then i € N;. Note that j may be taken either in N; or in N;. Clearly there are
two families of paths connecting {{V) = exp [(2ki1)’rr\/—_1/(r+ 1)], and ¢P=exp [2k77\/:T/(r+ 1)]

FIGUuRE 2.
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(k=0,1, . . ., n)suchthat as t traverses Z from {{Vto ) Re g¢;; (t) decreases or increases mono-

tonically according as i € N; ori € N,. These two families of paths cover the sectors | arg z— (2k

I

r+1| r+1°

THEOREM 3.1: Let \; be an eigenvalue of Cy. If \; is a vertex of 11, then it is an extreme eigen-
value; if it is an interior point of Il then it is an interior eigenvalue.

Let €(z) be holomorphic in a domain & extending to infinity in the direction arg z=27k/(r+1),
for some integer £ in 0 = k=r. Let & be the smallest closed disc with center at the origin con-
taining the zeros of qjjt) (i=1,2, . . ., n;i#j4, and let * =9 — & — {x}.7 We define a region
D(z, k) to be the union of all points z such that there is a path £ connecting z and {x=exp [27k V-1
(r+1)] satisfying the following extreme eigenvalue conditions:3
(1) Except for {x, P lies entirely in 2%*;

(2) For any two points ¢; and ¢ in the order i, t1, t2, z on &, we have

=)

[exp lqij(tz)‘qij(ll)]l <1 (L= 1’ 2a e ey n):
% (1) =fy|t‘2dt| is bounded.

The variation symbol introduced in condition (3) above is more generally defined as follows:
If F=F(z) is a vector of holomorphic functions of z, we define

%(F)=Jp,ldFl=L,%dz- (3.7)
Let us set
D;(2)=L(2) — ¢ (2)L. (3.8)
If a vector Wj(z) satisfies (2.2), then by (3.2) the error vector
€jnlz) = {W;j(2) — Dju(z)}e 4 (3.9
satisfies
d 1
e €jm(z) — D (2)€jm(z) = ;%(z)ejm(z) — Rjm(2). (3.10)
where B(z)=Bo(z). Now if €jm, (2) is a solution of
€m, k(2)= L i e D@D [1-298(t)€jm, 1(t) — Rjm, (t)]dt (3.11)

where the path of integration is chosen as described above, then €;ju, i2) also satisfies (3.10).
If \jis not an extreme eigenvalue, let 2(z) be holomorphic in a domain & which contains, or
T T—a
S _—
r+1{= (r+1)

extends to infinity in, one of the sectors |arg z— (2k =+ %) for some integer kin 0=k =r

T{o}={e?| —w0 =6 =}
8 Compare [1], sec. 5.
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and all z sufficiently large. We reorder, and if necessary relabel, the elements of the equation
(3.10) so that we may write them in the form

o ej‘}r%(Z) DiV(2)€ihlz) = 22 [ (2)€iillz) + a:(2)€fil2) ] — Rfz)

(3.12)

diz €2)(2) — DP(2)eRNz) =z 2 [ a3(2)€l2) + au(2)e@Nz) ] — REZNz)

where the top line contains all rows of (3.10) such that iEN; and the bottom line contains all
rows of (3.10) such that iEN. (see page 174 ). The diagonal matrix Dj(z) in (3.10) is accordingly
subdivided into two diagonal matrices D{V(z) and D?(z); the matrix B(z) is accordingly partitioned
into four blocks ax(z), (k=1, 2, 3, 4) and Rjn(z) is split into two vectors in the same manner as
€jm(z) was split.

Let & be the smallest closed disk with center at the origin containing the zeros of 4;j(t) (i=1,
2,...,n;1#j) and let 2* =9 —& —{x}. We next define a region Z({{, {¥¥)) to be the union
of all points z (z # (i, z # {?)) such that there is a path # connecting ), z and {§’ (in that order)
where () is one of the points ® exp [(2k=1)m V—1/(r+1)], and (P = exp [27k V=1/r+1)],
and satisfying the following interior eigenvalue conditions:

(1) Except for {{V and {2, 2 lies entirely in Z*;

(2) For any two distinct points ¢; and ¢, in the order {0, t1, t2, {2, on & we have |exp [qij(t2)
_(Iij(tl)]l =1lifi €Ny, lexp [qij(tl)—qij(tg)]l =1ifi € Ny;

(3) With a1, a2, as, and a4 defined by equation (3.32) below, 3 {a:+ as+ V(a1 — a4+ 4a.as}
Vi, ()<l

It follows that the vector of analytic functions which satisfies

(1) ‘ e D@D 0
,k(2) _ J;I({n : }X[t‘z {Cﬁ(t) C(z(t):| lie(},{k(t)} {Rﬂ,{(t)}] i (3.13)
€3, 1z 0 f it it as(t) ai)] Ll x()]  [REA)
3%

where the integrals are taken along a path Z as described above, is a solution of (3.12).

3.3. Treatment of R;;n(2)

In this section we examine the integral

Rl*jm(z) :J; 9if2) — qis{t) Rz jm( )dt (3‘14)

where the path Z of integration satisfies either of the sets of conditions described in the previous
section and { is a point appropriately chosen at infinity such that as ¢ traverses # from { to z,
Re gij(t) decreases monotonically. The equations (3.4) and (3.6) show that when (=}, Rijn(t)
=0 (|t|=™-1), |t| >, but if i #j, then Rijm(t)=0 (|t|~m-1), |t|—> . For this reason we cannot
proceed directly as in [1] to bound the error.

When i # j we first integrate (3.14) by parts to obtain a good bound for R¥j,(z). The equation
(3.6) may be written
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aiz) d —qi;@) m
Rijmz)=—ce e (e Uijmz™™) =z | q(z) —(qio— gjo)z" + - U=t
m+r+1 [min (w, r+1)
= 2 2 (qir — @)U, - +(—r— DUy, y—r—1
p=m+1 k=p+1—m

w—r—2 m—1
ar E {BiUj, y—r—2-k} i] FAIT = 2 {Bm-r2)Uj) }i z7m-2 (3.15)
=0

k=0

The first term on the right.of (3.15) is already in a form suitable for integration by parts. Consider
now the polynomial Pjj(z) consisting of all of the right-hand side, excluding the first and last terms.
It is clear that the dominant term of Pjju(z) is of order z7~""! as |z| = . On substituting P;ju(t)
for Rijm(¢) in (3.14), integrating by parts and denoting the resulting integral by P, we obtain

Pi'm(z) fz &)= qu(th d Pi'm(t)
PrG="+ = <——=L) dt.
2 @ qij(2) ¢ ¢ odt qi’j(t) ! (5:10)

Collecting terms, we obtain

2 qij(z)— qijlt Pi'm =
R;E,;;(Z):J; I:mUijmtimil +(€I Bl _ 1) i <"‘j_(—t)> — € q”miq”mg {%m—k(l)UjI{}it_m_z:l dt’ (-3]7)

dt \ qijt) k=0
and since
ij(2) — qijlt Pi‘m
qu (2)— qislt) |§ 1 and % <ﬁl(;)> =O(|[i*m-2)’

|t|> o, the right of (3.17) is readily bounded. In the next section, we use this bound in obtain-
ing vector and norm bounds for €;,,(z).

On the other hand for i=j, we see from (3.4) that

r4 =l
R (@)= [ [ Ut =S (00Ut .18

k=0

and obtaining a bound for this integrand is even easier than for (3.17).

3.4. Error Bounds for the Extreme Eigenvalue Case

We shall first obtain a vector bound. With ¢, and ¢, in the order {, t1, t2, zon 2, we define

e ai-(u)—q,--<t)[ m+2i(fM>
(m+1)')’um € P e’ij\'2)~ %\ | L] L Qilj(t) -
. P (3.19)
+ S {Bn-k(t)Ujk ,-——(%—) i | #
I\ZI{ k( 1) _;A} d[ qij(t) t:tll (L j)
m-=1
(m+ Tyysm=, Sélpgz, N B Ui}
k=0
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We also denote by y;n the vector with ith element y;jm; i.e. {Yjm}i=Yijm, and define

sup
B:
[tl, t,E P

%2~ a5t {B (41) }is

], i,s=1,2,...,n. (3.20)

In the part II of the present paper we shall show that there exists a unique vector €y, x(z) of
holomorphic functions which tends to zero as z— {; and satisfies (3.11). The elements of €jn, «(2)
are holomorphic in a domain (actually a Riemann surface) which includes the region 9(z, )
defined by the extreme eigenvalue conditions in Section 3.2.

On combining equations (3.19) and (3.20) with (3.11) we obtain

| €jm, (2)] éfgk [£=2Be&jm, 1(t)| +m|Usmt =™~ + (m ~+ Lyyjmt =™ 2]|ds]. (3.21)

Let o be the value of s for which ¢(s)=z t(s) as defined in the Introduction. We apply Lemmas
1 and 2 of the appendix with E(o)=1, F(s)ds=B|t72dt|, ¢(s)= |€jm,i(t)|, G(s)ds= (m|Ujmt "1
+ (m~+ 1)yjm|t—™2|)dt to obtain

THEOREM 3.2: Corresponding to an extreme eigenvalue of \; of Co, the equation (2.2) possesses
an actual solution vector Wiy (z) depending on { and an arbitrary positive integer m such that

Wi (2) = [m_l Uz ™ + €, k(z)]eqi(z) (3.22)
§=0
where
|€m,k(2)] = exp{B75 t")}H{|Un|7> ™™ +yim?> (™™ 1)}, 2 € Dz, {) (3.23)
and D(z, ) is defined in section 3.2. In (3.22) each vector Uy (k=0,1, 2, . . .) is the jth column

vector of the matrix Uy defined by Theorem 2.2; qi(z) is the jth diagonal element of the diagonal
matrix $(z) (equation (2.13)). In (3.23) B is an n X n matrix of non-negative elements defined by
equations (2.3) and (3.20), while the ith element (i=1, 2, . . . , n) of the vector v, is defined by
equation (3.19).

Let us now obtain a norm bound for €jn, «(z) in equation (3.22). For this purpose we define a
vector Vits, t1) as follows: Let the ith element (m+1)Vijts, t1) of (m—+1)Vjts, t1) be the number
inside the absolute value signs on the right of (3.19). With ¢, and ¢, defined as for equation (3.19)
we define?

sup

BES e g)'“%(t)“

sup

Yin=, e Vit ol (3.24

THEOREM 3.3: A norm bound for the vector €, (z) in Theorem 3.2 is given by

|| €m. (@) = exp{B75 (t"H}H Ul 75 ™™ +yim?5 @™ 1}, (3.25)

9Here and henceforth we assume that compatible matrix and vector norms are taken, i.e., [BV||=[B]| [V]..
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3.5. Error Bounds for the Interior Eigenvalue Case

Put t,=z, t;=t, and let V;(z, ¢) be defined as for (3.24). We split the vector V;(z, t) into two
vectors V{(z, t) and Vi&(z, t) in a manner corresponding to the way in which Rj,(t) was split in
(3.13). We anal()ﬂ()usly split the vector Ujy, into US), and U, such that the equation (3.13) may be
written

2
DV(z) — DP(e)
[est,’, A(z)} { Jo 0 } He 0
t %
3 D(z) — D)
E(Jm W2 ,fg{l 2) e’

a(z) ax(t)] [ €m.it) —mUipe=" =1+ (m+ DVP(z, e—"—2
X 4 } dt. (3.26)
ae)  adn) ) Ler (0] [—mURe="=1+(m+1)VP(z, )r=—"-2

Again we shall first obtain a vector bound. To achieve this, we define

__ sup o
ar= Eg,[l{ak(t)} s 1 (k=1,2,3,4)

sup
CRO=m|UR [t +t1, ,EP|(m+ 1) V) (ta, t1) | [772] (3.27)

where in the last of (3.27) ¢, and ¢, are on 2 in the order (i, t1, ts, { for s=1, and ¢, ts, t1, {2for
s =2 respectively.

D{z)—

P"%s=1, 2) on the right of (3.23) has

In addition, each element of the diagonal matrices e
an upper bound of 1.

In part 11 of the present paper we shall show that there exists a unique n X 1 vector of functions
satisfying (3.26) such that €} ,(2)—>0 as z— {), €2) ,(2) >0 as z— 2. Furthermore, each ele-
ment of this vector is holomorphic on a Riemann surface which includes the region (£}, {?)
defined by the interior eigenvalue conditions of section 3.2.

On substituting the above results in (3.26), we obtain

] [ 07 ([ as[len ol )
]é H 62| + ] |dt. (3.28)
ol Lo [T I e adLien o e

'y

On transforming to real variables as for (3.21), using Lemma 5 of the appendix and transform-
ing back to complex variable notation, we obtain

THEOREM 3.3: If, for an interior eigenvalue \; of Co, the interior eigenvalue conditions of
section 3.2 are satisfied, then the equation (2.2) possesses an actual solution vector

W(l) k(t) B U(l) ef“!r{ k(Z) @
Z 25+ e (3.29)
Wi iz s=0 LU €2 (2)])

where
l€ (@)= exp {ai?gp, - (t")}HNEY, z) + CLY, z)[exp {ads (tHIYR(LY, {2)+B], zE ALY, &)
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and

W, v)= f “copldt]  (s=1,2) (3.30)

B=[L—C.C\(g", §)]'Cofexp {a:?5 (" HIAGY, 8§2)+ Cu(L. §2) exp {ady ()G, §2)]

C(f, z)=ai'[exp {a17» (")} —ILi]ax Co=a;'[exp {as) (t7)} —L].

Here 1, designates the k X k unit matrix, and I designates the (n —k) X(n—k) unit matrix, k being the

number of elements in N, (Section 3.2). All integrals and variations on the right of (3.30) are taken

along ?. The bound on the right of (3.30) is valid provided that every eigenvalue of the matrix

C.Ci(gY, §?) is less than 1 in magnitude. Moreover, an exactly similar result holds for € | (z).
Let us now obtain a norm bound. We define

sup

e p VR, El7 ) (3.31)

'1”17)(”’7 'l)): ”U§‘2 ”Vu’ l,(t*ﬂl) _+_t

where ¢, and ¢, are any two points on Z in the order {{V, ti, t», {¥ for s=1 and in the order {{!,
ts, t1, P for s=2. Similarly, with the notation of (3.27) we put
sup

ar= 20 ool (k=1,2,3,9). (3.32)

Thus we obtain an inequality similar to (3.29); using Lemma 6 and the inequality (32) of the
appendix we then obtain
THEOREM 3.4: Let ay (k=1, 2, 3, 4) be defined by (3.32), let 3 (k=1, 2) be defined by (3.31),
and let

f(z)=77..(t™")

wa (3.33)
Flz)= m [e@tadt@® ] —(a;+ a)f(z)]
where the variations are taken along Z. IfF({{?) <1 then the norm of the vector €) (z) (equation
(3.29)) ts bounded by the quantity

(A =FG){e™[F(z) + 1= F({2) 1ym(", 2)

d243 —(a1+a)f(2) | [ o (@ +a)fii®) _ a(ar+aoi(z)]./41) (2)
—————— P— 4 —e < &
+(a1+a4)2 (B —c ][e 1Y(z, {2
a» af2)+afll) [ — a—(ar+ani(z) ] (2 [{1)  7(2)
S B TG, ). (3.3

Moreover, an exactly similar result holds for €2 |(z).

It is noteworthy that the conditions of Theorems 3.3 and 3.4 can always be satisfied by taking
contours Z sufficiently far away from the origin.
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4. Appendix. Some Inequalities for Volterra and Fredholm Integral Equations

4.1. Bellman’s Lemma in Matrix Form

We begin with an extension of Bellman’s Lemma [5] to matrices.
LEMMA 1: Let ¢, G and H be kX 1 vectors and E and F be k X k matrices of continuous non-

negative functions of a variable o in an interval a = o = b such that F(o) E(o) and fﬂ F(s)E(s)ds
commute. [f 1

\@(0’)§E(O’)[ [F(s)g(s) +G(s)]ds +H(o) (a=o=h) (1)

then the following inequality also holds in a = o = b:
elo) = Hio) + E(o) f " exp { f ' F(T>E<T>dr} {Gls)+ Fis)H(s)}Hds. 2)

The proof of Lemma 1 is a straightforward extension of the one-dimensional result in [5,
page 135].

LEMMA 2: With the conditions of Lemma 1, let E-(0) and 7", o(E-'H) exist for o in (a, b).
Then

@(o) = E(o) exp {f” F(T)E(T)dr} {E"(u)[l(a)+/ . AE"HH"J'W G{s)ds}. (3)

To prove this result we integrate the right of (2) by parts.

If E-'(s)H(s) increases monotonically over (a.b), then 77, (E-"H)= E (o)H(o) — E - («)H(a):
in this case the inequality (3) may be simplified. If, in addition, E(s) is a scalar quantity then (3)
reduces to

«

o(o) = exp {flr F(T)E(T)([T} {H(o’)-F E(o) f ' (;(.\')(/s}. 4)

1 a
4.2. Bellman’s Lemma for Fredholm Vector Integral Equations

The following lemma extends the above results to Fredholm integral equations.
LEMMA 3: When the variables o, 7, and t lie in the interval (a, b), let X(o, 7) (k X k), ¢(7) (k X 1),
and 0(t) (k X 1) be matrices of non-negative continuous functions such that

X(o, 7) X(7. 1) = X(0o, t) X(7, 7) (5)
and

b
(o) éj X(o. 7)e(r)d7+ 0(0). (6)

Suppose that each eigenvalue of the matrix

b
F:f X(7, 7)d7 (7)
a
is less than 1 in magnitude. Then

b
olo) = 0(0')+f X(o, ) (I=F)"19(r)dr (a = o = b). (8)

a

1°1f (a, b) is not compact we assume that the integral on the right of (1) exists and that each element of the resulting vector is uniformly bounded.
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PRroOF: From the conditions of the Lemma there exists a unique kX 1 vector ¥(o) of non-
negative continuous functions such that we can replace the inequality (6) by the equality

b
olo)= f . X(o, e(r)dr + 6(0) — V(o). 9)

The equation (9) is a Fredholm integral equation in ¢ which we can solve by successive approxi-
mations. Defining a sequence {¢,}(¥r=0, 1, . . .) by ¢o=0,

<p.,+1(0')='[b X(o, 7)@u(1)dr + 6(c) — ¥(0), v=0,1,... , (10)

and using (5), we easily establish by induction that

Oé‘Pv+1(U)_‘Pu(U)§Lb X(o, DF-1(0(r)—¥(r)dr, v=1,2, ... . 11)

If the eigenvalues of F are all less than 1 in magnitude, we have

I—F)'=3 Fr (12)
rv=0

and clearly the sum of the power series on the right is a matrix of non-negative elements. On
summing the inequalities (11), we obtain (8) with 0 replaced by § — VW, since it is well known that
this sum bounds the true solution of (9). Decreasing the magnitude of the elements of ¥ on the
right of this sum increases the elements of ¢. The inequality (8) now follows.

The proof of the following Lemma is similar to that of the above Lemma, and is omitted.
LEMMA 4: With the conditions of Lemma 3 let (5) be replaced by

X(o, 7) = G(o)H(7) (5)

where G and H are k X k matrices. Let each eigenvalue of
b
FZJ- H(7)G(7)d~ (7
be less than 1 in magnitude. Then

b
¢(0) = 6(0) +j G(o)I—F)"'H(n)0(r)dr (a=o =bh). 8"

4.3. Extensions to a Simultaneous Pair of Volterra Vector Integral Equations

Here we consider the pair of inequalities

LY f (i) B i ]ois) + 016)} da
4 13)
eAa) éf {[ye1(s) + 8¢a(s) lw(s) + x(s) } ds

where ¢; (kX 1), @2 (n—k)X1), 8; (kX1), 6 (n—k)X1), ® (1X1) are matrices of nonnegative
continuous functions on (a, b), and n=2,0< «k <n. Also, a,f,7, and & are constant matrices
of orders kXk, Kk X(n—k), (n—k) Xk and (n—k) X (n—k) respectively, whose elements are

nonnegative.
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On applying Lemma 1 to each of the equations (13), we obtain

¢i0) §f’ o) =) f Boo(s)w(s)+ 04(s)} ds

b (14‘)
v:0) éf ‘sﬁ"_sﬂ"’{ywl(s)w(s) + Os(s) } ds
where
f(s)=f w()dr. (15)
Substituting the second of (14) for ¢ in the first of (14), we get
o (b
<P1(O')§f f e =Y [Be 0= {yp(T)o(7) + 0(7) }dTew(s) + 04(s)]ds. (16)

The repeated integral (16) may be interpreted as a double integral over the shaded region indicated
in figure 3. Splitting this region into a triangle and a rectangle and interchanging the order of
integration, we obtain

01(0) = 03(0) +L f e @) =afs) Be D=3 Loy (T)w(T) + Oa(t) }w(s)dsdr

b (o
+f f e WA Be ¥ Lo (Dew(r) + 0:(7) }w(s)dsdr, (17)
where
03(0')=f e Y@ —af) 9 (s)ds. (18)
SA

FIGURE 3.

~Y
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We evaluate the inner integrals in (17) to find that

b
oi(o) = 03(0')+f X(o, I{yei(Dw(7) + 0x(7) }dr (19)

where X(o, 7) satisfies

eaf(tﬂ [Be 8f(r) — e —af(7) B], T=0
aX(o, 1)+ X(o, 1)86= { (20)

[e@B—Be- ¥ ]e¥™ =g,

The equations (20) have unique solutions for X(o, 7) provided that u;+v; #0(@=1,2, . . . ,
k;j=1,2, ... ,n—k), where w; and v; are the eigenvalues of & and 8, respectively. Moreover,
this condition can always be satisfied by an arbitrarily small change in the elements of @ and 8, if
necessary. Nevertheless an exact explicit expression for the right hand side of (20) is generally
not feasible, and in practice we make a slight sacrifice of sharpness of error bound in order to
achieve a matrix bound which is simpler to evaluate. Several simplifications are possible; one
of these is as follows: !!

T . T
f e/ @—af) Be M-85 wls)ds= f e/ @=af() Bed ) axs)ds
a

a

—a- [V — eV H) 18 YO < g1 ¥ —_1,]Be ¥ (21)
Similarly
f 7 e oo-afBe - qs)ds = a1 [e ™ —L,]Be ™™ = G(o)H(), (22)
a
where
Go)=a'[e¥—L].  Hr)=pe™. @3)

Combining (22) and (23), we obtain

ei(0) = 05(0) + J: lb G(o)H(N){yp (n)w(7) + 07)} dr. (24)

We apply Lemma 4 to this inequality to obtain:
LEMMA 5: Let @1, ¢2, @, B, Y, 8, o, 8, and 0 be defined as in (13) and the functions G and H

as in (23). If the inequalities (13) hold and if each eigenvalue of the matrix

F= f : H(7)yG(7)w(7)dT (25)

is less than 1 in magnitude, then

oi(o) = 0(0’)+Lb G(o)(I—F) '"H(s)y0(s)w(s)ds, 26)

11Since a~ '[exp(a)—1I] = 3 _L the possibility of @ being singular is not excluded.
= (k+1!
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where

(o) = f G(o )0s(7)dT (27)

and 05 is defined by (18). Moreover an exactly similar result holds for ¢s(o).
In the case when n=2 and k=1 the equations (20) can be solved explicitly. We then have

(19) with

_% e e —e—afn ], 1= 0
«
X(O', )= B (28)
ed/in) eaﬁrr)_e*(sﬂm T=0.
a+o [ ]

It is easily verified that for arbitrary points o, 7 and t on (a.b), X(o, 7)X(7, 1) = X(o, t)X(7, 7); i.e.,
the conditions of LLemma 3 are satisfied. On applying Lemma 3 to the inequality (19) we obtain
LEMMA 6: Let @1, @2, @, B, 7y, 8, o, 61 and 6, be defined as in (13), with n=2, k=1, and

i By (@+&)fo) ] 7 c
F(o) @tor [e ¢ 1 —(a+8)f(0)], (29)

where {(s) is defined by (15). If the inequalities (13) hold and if F(b) <1, then

b
¢1(0) = 05(0) + 1_;% X(a, 7)[yo(7)0s(7) + Os(7) | dT (a=ag=hb) (30)

a

where X(o, 7) is defined by (28) and 05 is defined by (18).
On expanding the right hand side of (30) and using the inequality X(o, 7)X(7, t) = X(o, t)X(7, 7)
once more, we get

eilo) = = Fl‘;(([));/;y; 3 [f" {a;—ﬁ [F(o)—F(s)+ 1 —F(b)]e “0,(s)+ [ —e V] 92(8)} ds

b
+ 1 — —(a+8)f(o)
L= ] - {a+ )

[(, (a+8)f(b)__ €1a+8)f(s)] e—a_/lslal(s) + 66”3)02(8)} ds:| . (31)

For ease of evaluation we make some over-estimates in (31) to obtain

01(0) = 7= { ¢ Fo)+ 1= F)] [ ounrds

L p’)’ [l . e*la+5)f(rr) ] [e (@+d)f(b) __ e (@ Fﬁ)f((r)] v 0 (T) Ir
(o + &) ’ , e

B s [] — p—tat i fb } 32
+a+8€ [1—e ] . 0s(7)dT (32)

In conclusion, we observe that if we replace all inequalities in Lemmas 1, 2, 3, and 4 by equali-

ties, then the results of these lemmas are exact; hence the inequalities are sharp. However, since
X(o, 7) < G(o)H(7) almost everywhere in @ = o, 7 = b the result of Lemma 5 is not sharp. The
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result of Lemma 6 also is not sharp because, although X(o, 1)X(7, t)=X(o, t)X(, 7) for o, 7, t in
the order o, 7, t or ¢, 7, o on (a,b), X(o, X(7, t) < X(o, )X(7, 7) when this order of o, 7 and ¢ is
violated.

The work described above was supported by the U.S. Army Research Office, Durham, North
Carolina (Project No. 4238—-M) and by a Province of Alberta Graduate Fellowship. The author is
grateful to Dr. F. W. ]J. Olver for many valuable criticisms.
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