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If A = (aij) is a row s tochas ti c matrix of order n then Idet A I "" (1- 2;~ , min i (/ij),H . ][ a is a 1 b y 
n real vec tor suc h th at e very e le ment of aA is nonnegative then Idet AI"" s(a)/ Ig(a) l, wh ere s(a) is th e 
sum of the e leme nt s of a and g(a) is the e le ment of", of greates t absolute value. The condition s fo r 
eq uality a re determined in both cases. 
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It is known that if A is a row stochastic matrix then 
Idet A I,,;;; 1 with equality if and only if A is a permuta­
tion matrix . We will use thi s result to exte nd itself. 

The res ult is equivale nt to the followin g s tate me nt 
about nonnegative matrices. I Le t A be a nonnegative 
matrix of order n , le t I~) denote th e sum of the ele me nts 
in the ith row , le t 

and 

Note that rA = 0 if and only if some row of A is all O's . 
Otherwise RAIA is row stochasti c. Thus Ide t A I,,;;; rA 
with equality if and only if either r A = 0 or A = RAP 
for some permutation matrix P. 

We use the followin g procedure. Given a row 
stochasti c matrix A, le t B be a nonsingular matrix 
such that AB ~ 0 (i. e. , AB is nonnegative). Then the 
above res ult implies that 

I I r AB 

det A ,,;;; Ide t BI 

with equality if and only if e ith e r rAIJ = O or A= RAIJPB- I. 
The same procedure with CA ~ 0 yield s a s imilar 
result. Since B (or C) need not be nonnegative we 
have room for improvement. 

From thi s point on A will de note a row stochas ti c 
matrix of order n. 

Lower case Greek le tters will de note 1 by n real 
vectors including 

E=(ll ... 1) and 0;=(0 .. 010 .. . 0)=(Oij). 

I A matrix is nonnega ti ve if each element is rea l a nd nonnega tive . It is row s tochastic 
jf. in addition . each row slim equals 1. 

For a vector a, s(a) will de note the s um of its elements, 
g(a) will de note its ele me nt of greates t absolute value, 
a nd M;(a) will denote the ma tri x 

0, 

M ;(a)= a 

i.e., the identity matrix with th e ith row replaced by a. 
For future clarity we note now that 

while ETa is the matrix 

Finally AET = ET. We s hall prove: 
THEOREM 1. Let A be a row stochastic matrix of order 
n , and let 

Then 
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n 

c= 2: min au· 
j = l .j 

Ide t AI,,;;; (l- c)11-) 



with equality if and only if 

for some vector (3 ~ ° with 1 ~ s((3), and some permuta· 
tion matrix P. 
THEOREM 2. Let A be a row stochastic matrix and 
a a real , nonzero vector such that aA ~ 0. Then 

sea) 
Ide t AI ~ I g(a) I 

with equality if and only if either sea) = 0, or a has 
exactly one positive element (in the i·th position) and 

for some permutation matrix P, with 

1 
y = g(a) {(g(a) + s(a))8 j - a}. 

To prove Theorem 1 let Cj= mini aij and let 

II 

B = 1-2: CjE1'8j. 
j~ 1 

The matrix E1'8j has l' s in the jth column and 0' s 
elsewhere , so that AB=(aij-cJ By the definition 
of the Cj, AB is nonnegative. 

The row sums of AB are the elements of the vector 

II 

ABET=AE1' - 2: CjE1'8jE1'=(1- c)ET. 
j~ 1 

Thus rn = 1 - C for all i, so that 

It is a simple exercise (left to the reader) to prove that 

and 
det B = 1-c 

II 

B - 1 = 1+ (1- c)- t 2: CjE1'8j 
j~ 1 

C oft 1. 

If C oft 1 then, from our previous discussion, the neces· 
sity case of Theorem 1 follows with 

In the case of sufficiency, if A = (1 - s((3))P + E1' (3 then 
all the row sums of A equal l(AET = E1'), A is nonnega· 
tive if (3 ~ 0, and 1 ~ s((3), (3 = (CtC2 ••• Cn) with the 
Cj defined as above , and I det A 1= (1 - S((3))" - I. 

A short discussion of the value of c will complete 
our proof. Since A is row stochastic the sum of all 

of its elements is n. Thus 

It 1/ n. It 

n= 2: 2: aij ~ 2: 2: Cj = nc 
j~ I i ~ t j~ 1 i ~ 1 

with equality (c= 1) if and only if aij = Cj for all L, j, 

in which case A is of rank 1. Then det A = 1 for n 
= 1, and det A = ° with n > 1, and A = ET(3. This 
checks with the statement of Theorem 1 and completes 
our proof. , 

To prove Theorem 2 let C=Mi(a). The rows of ' 
CA are the rows of A except for the ith row which is I 
aA. By hypothesis aA ~ ° so that CA is nonnegative. 

The row sums of CA are 1 except for the ith row 
whose sum is 

Thus rCA = sea) and RCA is the identity matrix trans· 
formed by replacing the 1 in the ith position on the 
diagonal by sea). Note that, if sea) oft 0, we have 

The determinant of C is the product of its diagonal 
elements. Let 

Then det C= Cli. By our previous discussion Idet AI 
~ rCA/ldet cr. Thus 

sea) 
IdetAI~-' 

lail 

This inequality holds for all i; the best of the inequal· 
ities is 

sea) 
Idet AI~ 19(a)I' 

Suppose g(a)= ai. We have equality if and only if 
either sea) = 0, (whence aA = 0, a oft 0, so that det 
A = 0) or, if sea) oft 0: 

A = C- tRcAP=(K;JMi(a))- IP = (Mi(a/s(a)) - IP 

for some permutation matrix P. 
But (Mi(a/s(a))) - t = Mi(Y) with 

Since A =M;(y)P is nonnegative we must have aj ~ ° 
for j oft i. This completes the proof of Theorem 2. 
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