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Let R, and R, be m by n matrices of rank m.
that R,ST=R.S{=0.

Let S; and S: be n-m by n matrices of rank n-m such
Then RR% is nonsingular if and only if S;ST is nonsingular, in which case

RIRRY) 'R, + {S%(S:S))~1S:}" equals the identity matrix of order n.
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Let %mn denote the set of m by n matrices of rank m,
with entries from a field of characteristic 0. Given
ReRmn let /' (R) denote the set of SeZ, . » such that
RST”=0. Note that Se /(R) if and only if Re/ (S).

We assume as known the following results for

ReRmn and SeNV (R):

LEMMA 1. XR =0 if and only if X=0.
LEmMA 2. RY?"=0 if and only if Y=ZS, for some
matrix Z.

The obvious stipulations are that X, Y, and Z have
m,n and n-m columns respectively, and Y and Z have
the same number of rows. Using these lemmas we
prove:

THEOREM. If Ri, RoeZnn, Sief (Ri1), S:e/ (Rs)
then RiRY is nonsingular if and only if S;S} is non-
singular, in which case

R}(R]R{)71R| aF {55(8153)4151}1‘ == ]",

where 1, is the identity matrix of order n.

Suppose RiRY¥ is singular. Then there exists an
X # 0 such that XR\RT=0.

Let Y=XR,. By Lemma 1,
R.Y"= R,R1X"=(XRR%T=0.

By Lemma 2, this implies that there exists a Z such
that Y=ZS,. Clearly Z#0. We have (S:S9)Z7
=8S,YT=S,RTXT=0 (because S;R{=(RS))"=0), from
which we conclude that S,S% is singular.

The converse is proved in the same way, inter-
changing R, and S;, R: and S:. Thus R;R% is singular
if and only if S1S% is singular.

Now suppose RiRY and S;S% are nonsingular.

Y#0. We have

Let
M= RYRRE) 'R, + {S1(S:S5) 1S} — I,
= RY(RRY)'R; + ST(S>S1)~1S. —1I,.

! This work arose from some matrix-theoretic questions posed by Dr. U. Fano.

We wish to prove that M=0. We have
RM = R R3(R,R%)'R, + RiST(S2517) 'S — Ry
= Rl ar 0_ R]

=0.

Similarly S:M = 0.

By Lemma 2, Ri/M =0 implies that there exists an

N such that MT=NS,. Then
0=(S2M)T=M"ST= NS,S%.

Since S;S% is nonsingular, we conclude that N=0,
whence M=0. This proves the theorem.

The following example shows that the characteristic
roots (other than 0) of R;RY and S,5% need not have any
relationship. Let

Ri:Az(Im Om. n—m)
t=1,2
Si: Bl(on—m. m In—m)

where A4,, A and B;, Bs are any nonsingular matrices
of orders m and n—m respectively. Then R;, R:
€Rmn, Si1€eN(Ry), S:6/(Rz), but R;RY=A4,4Y and
SiST=B,BY. These latter two matrices are related
only in the fact that both are nonsingular.

This is in direct contrast to the known result that a
characteristic root of FG (F and GT matrices of the
same dimensions) is a characteristic root of GF', with
the possible exception of a characteristic root equal
to 0; i.e., FG may be singular and GF may be non-
singular, or vice-versa.
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Yet this result can be translated into one similar
to our theorem. Since 1 is either a characteristic
root of both FG and GF or neither, it follows that
I — FG is nonsingular if and only if /— GF is nonsingu-
lar. If both are nonsingular it is easy to show that

([—FG)'—F(I—GF)'G=1,,

where p is the number of rows of F' (and columns of G).
Finally we note that if Ry, Rs, Si, S are as in the

theorem and A is nonsingular matrix of order n, then

B=RiARY, C=S,4-1S7

are nonsingular together in which case

RIB'R\A+A1STC-1S,=1,,.

This follows from

S AT eV (RiA).
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the fact

that R,4AeZ, and
(Paper 70B2-177)
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