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Treatment of Outliers in Samples of Size Three®
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A reading that is a long way from most of the others in a series of replicate determinations is called

an outlier.

A particular procedure for rejecting outliers, and also a particular procedure for modifying

outliers, are considered for samples of size three, supposed drawn from a common normal population

except that one of the three readings may have an added bias.
trating the effects of the procedures on estimation of the location parameter.

Numerical results are given illus-
The calculations support

a tentative general conclusion that estimation by least squares should usually be tempered by suc-
cessive application of both a rejection rule and a modification rule.
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1. Introduction

In a situation where one or more parameters are
to be estimated by the method of least squares, each
observation is regarded as a given linear combination
of the parameters plus a random observation error.
When the parameters have been estimated, for every
observed value a corresponding fitted value can be
calculated; the difference between the observed and
the fitted value is the residual. Any observed value
for which the residual is much larger in magnitude
than most of the other residuals is called an outlier.

It has often been suggested that outliers should
be treated differently from other observations. Three
ways of treating them are

(i) retain the outliers as they stand, giving all ob-
servations equal weight;

(i) reject the outliers, which means giving them zero
weight;

(iii) retain the outliers with reduced weight —this is
equivalent to modifying the outliers so that they be-
come less different from the other observed values,
and then giving them full weight.

This study deals with the effect of using a particular
rejection procedure, or alternatively a particular modi-
fication procedure, for outliers in samples of size

three. The three readings are assumed to be random
independent observations drawn from a normal

parent population, except that one of the readings
may have an added bias. Our object is to estimate
the mean of the normal population.

To suppose that some readings are all drawn from a
common normal population, except that one has an
added bias, may seem an implausible way to represent
reality, but consideration of this situation throws useful
light on the outlier problem, at less computational
expense than some other schemes.
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A sample of size three is the smallest for which a
study of rejection or modification of outliers, with
generation of precise numerical results, is not trivial.
The results are of direct interest because chemical
determinations are often made in triplicate. More-
over, they provide a check on approximate results and
conjectures relating to larger samples.

Lieblein [6] studied the effect of regularly discarding
the most discrepant reading from a sample of size
three and using the mean of the closest pair as estimate
of the population mean. He found the variance of
this estimate in various circumstances. Our investi-
gation is similar in spirit to his, though there is no over-
lap in results.

Dixon [3] was perhaps the first to distinguish clearly
two general problems concerning outliers: (a) the
problem of identifying a “‘significant’ outlier, in order
to infer that something has gone wrong with the experi-
mental procedure, or possibly to explore the outlier as
an unusual occurrence of interest; and (b) the problem
of obtaining a procedure of analysis not appreciably
affected by the presence .of abnormal observations.
He pointed out that the second problem was important
in the estimation of parameters in situations where
unavoidable  occasional contamination occurred.
Using mean squared error as the basis of comparison,
he examined several estimates of the population mean
(sample mean, median, and mean after application of
various rejection rules) under various assumptions of
contaminated sampling. Samples of size 5 and 15
were considered, for which an attempt was made to
formulate a recommended procedure for processing
data for outliers.

Having unfortunately overlooked this work by Dixon,
one of the present authors (Anscombe [1]3) independ-
ently made more sweeping suggestions in the same
direction: choice of an outlier rejection criterion could
often appropriately be based on consideration of its
effect on the mean squared error of estimates of the
parameters of interest in a least squares analysis,

2Figures in brackets indicate the literature references at the end of this paper.



rather than on the traditional rate of rejection. The
percentage increase in variance of estimation errors
due to using the rule, when in fact all observations
came from a homogeneous normal source, would be
an appropriate measure of the cost or premium of the
procedure; and the reduction in mean squared error
when spurious readings were present would measure
the protection given by the procedure.

Jeffreys [5] forcefully attacked the use of any outlier
rejection rule on several grounds, one being that the
resulting estimate of the population mean was a dis-
continuous function of the observations. He and
others, notably Tukey [8] and Huber [4], have made
suggestions for assigning reduced but not zero weight
to outliers, the weight being a continuous function
of the magnitude of the residual. The modification
rule considered below is of Huber’s type.

With these previous studies in mind, we now formu-
late procedures for treatment of outliers (in sec. 2)
and consider their effectiveness (in secs. 3 and 4), for
samples of any size. Then in section 5 our computa-
tions for samples of size three are presented and
discussed. Tentative general conclusions are drawn
in section 6. Some notes on the computations appear
in section 7.

2. Definition of Estimation Procedures

Suppose we are given some observations yi, ¥, . . .,
¥n, €ach of which is a determination or estimate of a
common ‘“‘true” value w. We wish to combine the
observations to form a single improved estimate of
W (or otherwise make inferences about w).

It is convenient to define the sample mean ¥, the
residuals z; (i=1, 2,...,n) and the number v of
residual degrees of freedom by

ny= Eiyi,

Zi=yi—Y, v=n—1. (1)

The custom in this situation is to hope that (near
enough) the y’s are realizations of independent random
variables each having the same normal distribution
with mean u.

If this hope were believed to be accurately fulfilled,
the estimation problem would be well defined and
easy. If the variance of the common normal distri-
bution were supposed known, the sufficient statistics
v and n would constitute a complete summary of the
data; and if the variance were not known, the suf-
ficient statistics y, n, and %; z? would be a complete
summary. In either case, we could regard y as esti-
mating w, with the other statistics ancillary. As is
well known, y is the value for w at which the sum of
squares

2ilyi— w)? 2)

is minimized.

But ordinarily it is unreasonable to suppose that the
hoped-for property of the y’s is accurately true. If
we think in terms of a single estimate of w, ¥ is not
necessarily the best to choose. In particular, we
should usually bear in mind that the observations may
have a propensity towards outliers. Two alternative
theoretical descriptions of an outlier phenomenon
are (i) some of the observations are affected by a gross
error or mistake, which adds a bias onto the reading
that would otherwise be obtained, (ii) the distribution
of deviations of the observations from M is not normal,
but has longer tails, like a logistic distribution, for
example. (Further theoretical descriptions  are
easily invented.) We therefore consider how to define
a function @ of the observations that may possibly
estimate u satisfactorily when some kind of outlier
phenomenon is present. The difficulty here arises
from our reluctance to specify firmly the distribution
of the observations in terms of a very few parameters.

The traditional way of treating outliers is to reject
them according to some rule and then let [ be the
average of the remaining observations. We here
consider the following rule, as an example. First a
critical size K for a residual is chosen (K > 0). Then
the rule is

Rejection rule. l.et M be a value of i for which
|zi| is greatest. (M may be expected to be unique if
n =3 and if the observations are recorded with high
precision.) If n=2, or if n=3 and also |zy|<K,
retain all observations and quote y as the estimate of
w. If n=3 and also |zy|> K, reject yy from the sam-
ple and act as though the remaining n— 1 observations
were the whole sample. With the observations re-
labeled and n and z’s redefined, go back to the start
of this rule.

If the initial sample size is 2, the rule sets i equal
to the simple mean y in any case. If the initial sample
size is 3, the rule leads either to retention of all three
observatlons with equal weight (f |zy|< K), so that
/.L y, or to rejection of just one observation, so that
[ is the average of the other two observatlons If
the initial sample size n exceeds 3, the rule leads con-
ceivably to rejection of any number of observations
from 0 to n—2, inclusive.

To implement the suggestion that outliers ought to
be given reduced but not zero weight, we also consider
the following rule, which seems to be computationally
the simplest possible such rule. A critical size K
for a residual is chosen (K >0). Then the rule is

Modification rule. Choose as @ a value for w at
which
— w2+ 2K{2]yi—

2y ul—K} 3)

is minimized, where 3(;) means summation over those
values of ¢ for which lyl u|< K and %(» means sum-
mation over the remaining Values of 1. (;,L is unique
provided there is at least one value of i for which
lyi—&l< K.)

This rule may be alternatively expressed by saying
that & is chosen to minimize the sum of squares (2),
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but under a condition that some observations are
modified if necessary so that no residual exceeds K in
magnitude. Specifically, each observation y; such
that |y;—4|> K is modified to a value y¥ such that
y¥—pm has the same sign as y;—pga but |y} —pn|=K
Which observations are to be modified (or in the pre-
vious language, which observations are to be included
in the second summation ;) must in general be dis-
covered in several steps of trial and error, a task of
quadratic programmmg (It has been considered,
for general regression analysis, by Sand [7].)

When n=2, we may always set &x=1y. This is the
unique possibility for f if the two observations are
spaced not more than 2K apart. Otherwise g may
be chosen anywhere in an interval of width |y, — .|
— 2K, centered at y.

When n=3, let yu). ¥, Y3 denote the three ob-
servations, rearranged in ascending order of mag-
nitude. Then & is determined as follows:

(i) If y—ya) and yi) —y are both not greater than
K. no observation is modified and = y.

(ll) ” Ye) — Ya) ‘dl](] Yi3) — Y2 l)l)lh (‘X('(‘(’d K, Y1)
and y) are both modified and 4= y@), the median.

(iii) Otherwise, either yu), or ys), but not both, is
modified. If, fnr example, yu) is modified (because
Yo —y > K and yu—ye) > K>y —y)),
fined by

@ is de-

2,&2 .\'(1)‘{‘ _Y(z)+ [\

f lies between the mean ¥ and the median ye). (In
case (i), the modified observations are

—K, 4=y + K. In case (iii), if yy is modified,
y&y=A+K and 3a=yo)+ v+ ¥3)-)

‘(n*‘(’)

3. Distribution Assumption

The above rules yield estimates p of w that are
desensitized to outliers and may therefore be preferred

to y. For each rule, & is a function of the n observa-
tions and of K. We could distinguish the two functions
with a suffix, but that will be unnecessary because we
shall always make clear which rule is under discussion.

In order to assess the effectiveness of the rules,
seeing how the effectiveness of each varies with K and
how one rule compares with the other, we need to
specify the true statistical properties of the observa-
tions. In this paper we suppose that the observations
have the hoped-for property exactly, except that
possibly one observation has an added bias. That is,
we make the

Assumption: the y’s are realizations of independent
random variables each normally distributed with the
same variance o2 and with these expectations:
n— l)s E()/n):

E(Y,):[.L(Izl,z,., I"L+b0

(4)

We here take the liberty of using y; both as the name
of the random variable corresponding to the ith ob-
servation and as the name of that observation.

We shall be interested in the ratio of K to o, which
we denote by C, thus:

1K= C@re (5)

We shall take expectations with respect to the above
random variables, for fixed u, o, C, and b. Having
o and C fixed implies that K is fixed and therefore not
determined by the observations themselves (as it would
be, for example, if K were chosen to be equal to a given
multiple of the sample standard deviation).

An alternative distribution assumption that would
be interesting, but is not considered in this paper,
would be that the observations were independently
drawn from a common nonnormal distribution with
mean u, such as a logistic distribution.

4. Formulas

For better or worse, we shall assess the effectiveness
of the two rules for treating outliers through the mean
squared error of the sampling distribution of &, under
the above distribution assumption. Hopefully, when
b=0, we shall find that the variance (which is also
the mean squared error) of @ is little larger than that of
y. namely o2/n, but when b is large E(ii— w)? will be
smaller than

E(y— 2= (o2/n) {1+ (b%/n)}. (6)

To determine E(p— w)? precisely, under the above
distribution assumption, is a formidable task even
when n is as small as 3. If we define an orthogonal
linear transformation (Helmert transformation) of
the y’s, so that the new variables are ?\/;, X1,
X2, . . ., Xn-1, say, these variables are independ-
ently normally distributed with the same variance o2,
We may write

p—p={y—p—(bo/n}+Us, (7
where U is a function of the x’s but not of y. Hence
E(— wn)?=(o%/n) + oc2E(U?),

or
(nfo?)E(n— p)? =1+ nE(U?). (8)

E(U?) can be expressed as an (n— 1)-dimensional in-
tegral. The form of the integrand depends on which
of various linear inequalities among the x’s are sat-
isfied, so that the region of integration is divided into
many zones, in each of which the integrand has a
simple expression, different from zone to zone.

The main purpose of this paper is to present results
of the calculation of E(i— w)> when n=3. Values of
(3/0?)E(fr— w)? are shown for an assortment of values
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of C and b in table 1 (for the rejection rule) and table 2
(modification rule).

The case n=3 is important in its own right, and
moreover may give some indication of the behavior
of E(fi—uw)? for larger values of n. For the latter
purpose, 1t is useful to have some information about
limiting values and approximations. These are now
summarized.

Rejection rule. When b=0, the following approxi-
mate expression for the variance (mean squared
error) of w has been given [1]:

(n/o?) var() = 1+ (n/v){2twp(ts) + o}, (9)

where

ta=CVnJv, a=2D(—t,)

and the functions ® and ¢ are defined thus:

This result is asymptotically correct as C— « with n
and v fixed, and may be expected to be fairly good if
C is somewhat greater than 2.

A more easily calculated formula, alternative to (9)
when 6=0, can be obtained, similar to one given by
Anscombe and Tukey [2]:

(nfo®) var(fi) = 1+ (n/v)D(—=N), (10)

where N is defined in terms of the above t, by
te=1.40+0.85 N.

When b— o with C fixed, rejection of the “bad”
observation y, becomes certain, and if no further
rejection occurred we should have for the variance
(mean squared error) of [

(n/o?) var(a)— 1+ (1/v). (11)
This is accurately true when n=3, because no further
rejections are allowed. For n =4, the right side of
(11) should be increased to allow for the effect of pos-
sible further rejections. A lower bound for E(x — )2
when b is large but not infinite has been given ([1],
eq (6.3)), but appears from the present calculations to
be a very poor approximation.*

Modification rule. When =0, the result for the
modification rule corresponding to (9) above for the
rejection rule is

(nfa®) var(@) = 1+ (n/v){(1 + th)a—2tep(ta)},  (12)

+The b-values in table 3 of [1] are presumably substantially too low, but possibly the
remarks based on them are correct.

to and « being defined as before. This formula may
be expected to be less helpful than (9). Both formulas
are derived assuming C to be so large that few obser-
vations are rejected or modified (as the case may be)
and the negative correlation between residuals within
a sample is unimportant. But the values of C that are
of practical interest are smaller for the modification
rule than for the rejection rule.

When b— o with C fixed, modification of the “bad”
observation y, becomes certain, and if no further
modification occurred we should have

(n/o?)E (i — ) = 1+ (1/v)+ (nC* /). (13)

In fact, however, other observations may be modified,
and because of the positive bias resulting from y, the
tendency will be for low readings to be modified up-
wards rather than for high readings to be modified
downwards. It follows that the right side of (13) is
too low. For n=3, v=2, it is not hard to show that
the correct result is

NE (i — upp— o4 3¢ 3C (€
BloE (== 5+ + 2o )

A1-Spl-5)

Note. Although in section 2 we explicitly men-
tioned only the possibility that the y’s were all deter-
minations of the same location parameter w, much of
what has been said can be adapted to regression
analysis, u being replaced by a linear function of
parameters (3,. Formulas (6), (9), (10), (11), (12), and
(13) are valid with the following amendment and rein-
terpretation. The y’s are observations in a factorial
experiment with n experimental units (n being even)
and an orthogonal design matrix. We focus attention
on one particular two-level factor; this appears n/2
times at its upper level, n/2 times at its lower level.
Let B; stand for one half of the response to this factor,
so that 23; is the change in the expectation of an obser-
vation caused by changing the level of the factor from
lower to upper; let b; denote the usual estimate of 34
(total of observations for which the factor is at the
upper level minus total of other observations, divided
by n); and let B; denote the estimate of B yielded by
the rejection or modification rule (as the case may be).
Let {z;} be the residuals and v the number of residual
degrees of freedom after the estimation of all factor
effects by least squares, and let the n X n matrix (g;))
be defined by

(14)

Zi=Y ;.
7

We assume that for all i and j

qi=vln, lgil <wvln (@ #)).
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On the 1efi sides of the above mgntioned formulas,
replace w, v, and & by Bi, b1, and .

5. Results of Computation

Tables 1 and 2 present the mean squared error of
& when n=3. The nine values for C are the “round”
numbers 1, 1.5, 2, 3, and o, and also the values for
which the entry in the first row (for 5=0) is 1.04, 1.02,
1.01, and 1.005. The last column (C=x) refers to
use of the unadjusted mean, ¥, as the estimate of u:
the values are given by formula (6). Various values
for the bias factor b are shown. In the last line of
each table, except for the entry in the last column (C
=), the entries are exactly equal (to the number of
decimal places shown) to the limiting values as b— o
given in formulas (11) and (14).

The percentage increase in sampling variance re-
sulting from use of & instead of ¥, when all the obser-
vations have a common normal distribution (the hoped-
for property), may be termed the premium charged
by the rule. The premium may be read from the
first line of tables 1 and 2 (for 6=0) by subtracting
the initial 1 and multiplying by 100.

In figure 1 mean squared error is graphed against b
for (i) the unadjusted mean ¥, (ii) & given. by the re-
jection rule with 2 percent premium, (iii) & glven by
the modification rule, also with 2 percent premium.

Table 3 compares approximations (9), (10), and (12)
with the correct values. (For (9) see also table 4 of [1].)

So far so good. The burning question that faces
us is what do these computations show concerning
the relative merits of the two methods of treating out-
liers, and if we decide to use either one, how should

TaBLE 1. Values of (3/a?)E(u - w)? for the rejection rule
C=1.00[ 1.50 2.00 |[2.46003 |2.66184 | 2.84623 3.00 T 3.01724 ©
b=0.00]| 1.7318 | 1.4116 | 1.1496 | 1.0400 | 1.0200 [ 1.0100 | 1.0054 | 1.0050
25| 1.7731 1.4510 | 1.1812 | 1.0650 | 1.0433 | 1.0322 | 1.0270 | 1.0266
50| 1.8931 1.5664 | 1.2753 | 1.1403 | 1.1133 | 1.0991 1.0921 1.0916
1.00 | 2.3163 | 1.9896 | 1.6404 | 1.4422 | 1.3956 | 1.3688 | 1.3546 | 1.3534
1.50 2.1969 | 1.9395 | 1.8682 | 1.8229 | 1.7969 | 1.7946
2.00 2.8401 | 2.5914 | 2.5097 | 2.4522 | 2.4161 | 2.4126
3.00 3.7634 3.9340 | 3.9698 | 3.9917 | 3.9936 Ir (N)()()
4.00 BIOT22 4.4702 | 4.7967 | 5.0682 | 5.0980 () 3333
6.00 2.0674 2.4143 | 2.6761 | 2.9854 | 3.0259
8.00 1.5712 1.5780 | 1.5872 | 1.6025 | 1.6048
10.00 4 : 1.5045 o 1.5045 | 1.5045 | 1.5045 | 1.5045
12.00| 1.5001 [ 5001 1.5001 I.,)i)()] 1.5001 | 1.5001 | 1.5001 1.5001 | 49.0000
15.00| 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 1.5000 | 76.0000
TABLE 2. Values of (3[a?E(iL— w)? for the modification rule
C=1.00/1.29420 | 1.50 | 1.52486 |1.73307 [1.92458| 2.00 3.00 0
b=0.00| 1.0860 | 1.0400 | 1.0216 | 1.0200 | 1.0100 | 1.0050 | 1.0038 | 1.00004| 1.0000
25| 1.1106 | 1.0631 | 1.0439 | 1.0422 | 1.0316 | 1.0263 | 1.0249 | 1.0209 | 1.0208
50 1.1830 | 1.1315 | 1.1102 | 1.1082 | 1.0962 | 1.0899 | 1.0883 | 1.0834 | 1.0833
1.00 | 1.4512 | 1.3909 | 1.3651 | 1.3627 | 1.3480 | 1.3404 | 1.3385 | 1.3333 | 1.3333
1.50| 1.8295 | 1.7743 | 1.7532 | 1.7516 | 1.7424 | 1.7400 | 1.7401 | 1.7487 | 1.7500
2.00 | 2.2380 | 2.2156 | 2.2189 | 2.2202 | 2.2354 | 2.2540 | 2.2616 | 2.3256 | 2.3333
3.00| 2.8859 | 2.9970 | 3.1075 | 3.1223 | 3.2546 | 3.3830 | 3.4333 | 3.9014 | 4.0000
4.00 [ 3.1789 | 3.4116 | 3.6342 | 3.6642 | 3.9389 | 4.2212 | 4.3376 | 5.7419 | 6.3333
6.00| 3.2675 | 3.5619 | 3.8520 | 3.8920 | 4.2701 | 4.6861 | 4.8677 | 8.0425 |13.0000
8.00| 3.2687 | 3.5645 | 3.8566 | 3.8970 | 4.2789 | 4.7014 | 4.8867 | 8.3350 |22.3333
10.00 | 3.2687 | 3.5646 | 3.8566 | 3.8970 | 4.2790 | 4.7014 | 4.8867 | 8.3396 |[34.3333

FIGURE 1. Curves showing (3/o*)E(x— p)?* as a function of b.

K be chosen? No set of calculations such as ours
can settle the matter beyond dispute, because we do
not know that reality is well represented by the dis-
tribution assumption that we have used, nor by any
other distribution assumption that we might have
used instead. However, in the light of such theoretical
knowledge as we have, the calculations do seem to
support some clear-cut conclusions that may have
general validity in regression analysis.

TABLE 3. Approximations to (3/o?) var ()
when b =0
C=1.00| 150 [ 2.00 | 3.00
Rejection rule:
Correct Value 1.7318 | 1.4116 | 14496 1.0054
Approximation (9) 2.0234 | 1.5060 | 1.1674 1.0055
Approximation (10) 1.8725 |1.4553 | 1.1627 1.0056
Modification rule:
Correct value 1.0860 | 1.0216 | 1.0038 1.00004
Approximation (12) 1.1351 | 1.0277 | 1.0043 1.00004

We see from the tables that if b is small, in the range
0 to 1.5, both rules give estimates inferior to the un-
adjusted y. If b is in a middle range, roughly from 2 to
4, the modification rule fares best. If b is above 5
or 6, the rejection rule is much better than the modi-
fication rule, which in turn is very much better than .
These comparisons hold fairly consistently, when we
compare a rejection rule with a modification rule either
having the same premium (as in fig. 1) or having the
same value for C. Thus which type of rule is to be
preferred depends on how large we expect b will be
(insofar as our distribution assumption can be ac-
cepted as a description of the facts).

Now we can distinguish two quite different processes
that lead to outliers in a series of readings. On the
one hand there may be mistakes or failures to do what
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is intended —instrumental failures, errors in tran-
scription or in arithmetic, mixed-up records, etc. A
reading affected by an accident of this sort may easily
lie a great distance from other readings. Therefore
if we wish to guard against such gross errors, it is
reasonable to choose a rejection rule. In practice,
most observers discard extremely aberrant readings
as obviously wrong, without any explicit rule, pro-
vided that they actually examine the readings. More
and more nowadays the output of instruments is fed
directly to a computer for processing, and then it is
important that proper provision should be made for
intercepting gross errors.

On the other hand, outliers may arise in good ob-
servations when no blunder or failure has occurred.
The normal law of errors beloved of statistical theorists
is not a law of nature, and observational errors do not
have to conform to it. Probably many actual error
distributions have somewhat longer tails than the
normal. Jeffreys [5] reports some investigations of
errors in astronomical readings, and suggests that a
homogeneous series of readings by one observer may
be expected to follow a Pearson Type VII distribution,
having the same shape as a Student distribution with
7 deg of freedom. Tukey has pointed out (privately)
that this distribution has nearly the same shape as a
logistic distribution —the difference could hardly be
detected empirically. In view of the distribution
assumption of the present paper, it is interesting to
note that the Student distribution with 7 deg of freedom
is even more closely approximated by the distribution
of the sum of two independent random variables,
X+Y, where X is normally distributed and Y has
chance 0.95 of being equal to 0 and chance 0.05 of
being equal in magnitude to three times the standard
deviation of X (positive or negative with equal
chances).” This suggests that, to represent Jeffreys’s
type of long-tailed distribution of errors with the dis-
tribution assumption of this paper, we should regard b
as taking the values 0 and 3 with something like a 6:1
frequency ratio. (Our distribution assumption cannot
exactly represent samples of size 3 from the distribu-
tion of X+Y, because in a few such samples (less
than 1 %) there would be more than one non-zero
Y-value, and our calculations do not apply.) For
these values of b, our tables indicate that the modi-
fication type of rule should be used.

This finding fits well with the consideration of maxi-
mum likelihood estimation of w when the errors have
a long-tailed distribution (see [2], sec. 8). In particu-
lar, maximum likelihood estimation of the location
parameter of a logistic distribution is closely approxi-
mated by our modification rule, when K is about 1.1
times the true standard deviation of the logistic dis-
tribution, or about 1.25 times a pseudo standard devia-
tion estimated from the slope of the middle part of
the cumulative frequency curve plotted on “proba-

5 The middle ordinate of the density function, multiplied by the standard deviation, makes
a good index of shape. For (i) the Student distribution, (ii) the logistic, (iii) the distribution
of X +Y, as specified, this index is approximately (i) 0.4555, (ii) 0.4534, (iii) 0.4566. Fisher’s
shape coefficient y, (fourth cumulant divided by squared variance) comes out: (i) 2, (i) 1.2,
(iii) 1.637.

bility”” graph paper (this being the sort of estimate
of o that we might make from past records if we be-
lieved that the error distribution was normal except
for some outliers).

Thus our calculations support the following general
conclusions which are closely in line with suggestions

made by Tukey [8].

6. Tentative Conclusions

Whenever we think of applying the method of least
squares to some readings in order to estimate a param-
eter or parameters of location, we shall do well to
recognize the two possibilities that (i) occasionally
a reading may be “bad”, grossly in error and useless
for the estimation purpose at hand (though possibly
interesting for other reasons), and (ii) the “good’ read-
ings may have a somewhat longer-tailed distribution
than the normal. In view of these possibilities (es-
pecially when the statistical analysis is computerized),
it will be advisable to use first a rejection rule and then
a modification rule. The rejection rule should have
K so large that it will almost never reject “good”
observations, but will protect against really “bad”
ones. The modification rule will have a lower value
for K and will aim to yield good estimates if the error
distribution does not greatly differ from a normal or a
logistic distribution. Actually the choice of K for the
modification rule is likely to depend not only on con-
siderations of efficiency of estimation but also on speed
in computation. The smaller K is, the more iterations
may be needed to carry out the modification procedure.
It may therefore be wise to choose K so that not more
than a few percent of readings (on the average) will
be modified.

How to estimate from the data the precision of
estimates obtained through the modification rule
seems not to be well understood at present. But
one thing at a time! (For a sample of size 3 such
estimation is ludicrous anyway; hence the assumption
in our calculations that o was known.)

Of course when large collections of similar data
are available for study, it is possible to investigate
their statistical properties and adjust the estimation
procedures accordingly. But in the absence of a
special study it would be good routine practice always
to temper the method of least squares by the combined
rejection-modification procedure just outlined.

7. Notes on the Computation

We may set

y) _Zz

"= Ve

_2ys—yi—y2_ \[3
Y V2
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Under the distribution assumption, x; and x» are in-
dependently normally distributed with means 0 and

bo V2/3 and with the same variance o2. Expressing
U in terms of x; and x., we evaluate E (U?) by integra-
tion over the (xi, x2)-plane. The region of integration
is divided into zones, as sketched in figure 2. The
inner zone is a hexagon bounded by the three pairs of
parallel lines,
—==C o z22—=+=Co, zz==*Co.

For the rejection rule, the region outside the hexagon
is divided into six zones, corresponding to the six
possible combinations of three values for M and two
signs for zy. For the modification rule the region
outside the hexagon is divided into twelve zones,
corresponding to the above six possibilities concerning
zy when y) is the only modified observation, plus
six possibilities for choosing a pair of observations
to be modified, one of the residuals being positive and
the other negative.

Inside the hexagon U has the constant value b/3.
In each of the other zones U is a linear function of
x1 and xs. For example, the zone labeled A in the
rejection-rule part of figure 2 is defined by the prop-
erties:

A4 ::3, 23 >’(j0Z

and in this zone we have

b X2

U:———-
3 oVé6

The zone labeled B in the modification-rule part of
figure 2 is defined by the properties:

M=3, z3 > Co, only y3 is modified,

and in this zone we have

The zone labeled C is defined by the properties:

ye and y3 are modified, y;—y, > Co, y,—y.>Co,

and in this zone we have

+x1\/§—x2
oV6

In all the above it is convenient and permissible to set
o=1.

_b
U—s

|
1 2 !
H 12
I A e S
X, SO
FIGURE 2. Zones of integration.
The diagram on the left is for the rejection rule, that on the right for the modification rule.

In principle it is possible to evaluate the double
integral over each zone by expressing it as a single
integral in terms of the normal integral and density
functions and then using single numerical quadrature.
But because that would involve much tedious detail
in rotating axes, it seemed cheaper to use double
nunierical quadrature, integrating first for x, and then
for x; by Simpson’s rule. Integration was carried out
over a square area of the plane, so that x; and x» ranged
5.50 above and below their means. The integrand is
well behaved within each zone but is singular on every
boundary between zones. A not quite uniform grid
of points was used for evaluating the integrand, so that
boundaries were always encountered as end points of
individual applications of Simpson’s rule, never as
interior points. The interval width in x, and x» of
0.100 (or less as needed to hit the boundaries cleanly)
was found satisfactory. The program was tested by
finding the expectation of simple random variables
whose form did not change from zone to zone. The
work was done at the Yale Computer Center (IBM
7040-7094 DCS).
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