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A reading that is a long way from most of the others in a series of replicate determinations is called 
an outlier. A particular procedure for rejecting outliers, and a lso a particular procedure for modifying 
outliers , are considered for samples of size three, s upposed drawn from a common normal population 
except that one of the three readings may have an added bias . Numerical results are given illus· 
trating the effects of the procedures on es timation of the location paramete r. The calculations support 
a tentative general conclus ion that estimation by least squares shou ld us ually be tempered by suc· 
cessive application of both a rejec tion rule and a modification rule. 
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1. Introduction 

In a situation where one or more parameters are 
to be es timated by the me thod of leas t squares, each 
observation is regarded as a give n linear combination 
of the parameters plus a random observation error. 
When the parameters have been es timated , for every 
observed value a corresponding fitted value can be 
calculated ; the differe nce be tween the observed and 
the fitt ed value is the residuaL Any observed value 
for which the residual is much large r in magnitud e 
than most of the other residuals is called a n outlier. 

It has often been sugges ted that outliers s hould 
be treated differently from other observations. Three 
ways of treating them are 

(i) retain the outliers as th ey s tand , giving all ob· 
servations equal weight; 

(ii) rejec t the outli e rs, which means giving the m zero 
weight; 

(iii) re tain th e outliers with reduced weight - thi s is 
equivale nt to modifying the outli ers so th at they be· 
co me less differe nt from the othe r observed values, 
and th e n giving th e m full weight. 

Thi s s tudy deals with th e e ffec t of using a particular 
rejec tion procedure, or alternatively a partic ular modi· 
fi cation procedure, for outli ers in samples of size 
three. The three readings are assumed to be random 
inde pende nt observations drawn from a normal 
parent population, except that one of the readings 
m~y have an added bias. Our object is to es timate 
the mean of the normal population. 

To suppose that some readin gs are all drawn from a 
co mmon normal population , except th a t one has an 
added bias, may seem an implausible way to re present 
reality, but consideration of this situation throws useful 
light on the outlier problem, at less computational 
expe nse than some other schemes. 
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A sample of size three is the s malles t for whic h a 
s tudy of rejection or modification of outliers, with 
<Te neration of precise num erical results, is not trivi aL 
The res ults are of direc t inte res t because che mi cal 
de termi nation s are oft e n mad e in tri pli cate. More­
over, th ey provid e a c heck on approx im ate res ults and 
co nj ec tures re lat ing to larger samples. 

Lie blein [6] s tudi ed the e ffec t of regularl y di scarding 
the mos t disc re pa nt readin g from a sample of s ize 
three and us ing th e mean of the closest pair as es timate 
of th e popu lation mean. He found the variance of 
thi s es timate in variou s circ um stances . Our inves ti­
gation is similar in spirit to hi s, though there is no over­
lap in res ults. 

Dixon [3] was perhaps the fir s t to distingui s h clearly 
two ge neral problems co ncernin g outliers: (a) the 
proble m of ide ntifyin g a "significant" outlie r , in order 
to infer th a t so methin g has gone wrong with the expe ri­
me ntal procedure, or possibly to explore the outlier as 
an unu sual occurrence of interes t; and (b) the proble m 
of obtaining a procedure of analysis not appreciably 
affected by the prese nce .of abnormal observation s. 
He point ed out that the second proble m was important 
in the es timation of parameters in situation s where 
unavoidable occasional co ntamination occurred. 
Using mean squared error as the basis of co mpariso n, 
he examin ed seve ral es timates of the population mean 
(sample mean, medi an, and mean after application of 
various rejection rules) unde r various assumptions of 
co nta minated sa mplin g. Samples of size 5 and 15 
were considered, for which an attempt was made to 
formulate a reco mme nded procedure for processing 
data for outliers. 

Having unfortunately overlooked this work by Dixon , 
one of the present authors (Anscombe [1)3) independ­
ently made more sweeping suggestions in the same 
direction: choice of an outlier rejection criterion could 
often appropriately be based on consideration of its 
effect on the mean squared error of estimates of the 
parameters of interest in a least squares analysis, 

:: Figu res in bracke ts in dicate the literature references a t the end of thi s paper. 



rather than on the traditional rate of rejection. The 
percentage increase in variance of estimation errors 
due to using the rule, when in fact all observations 
came from a homogeneous normal source, would be 
an appropriate measure of the cost or premium of the 
procedure; and the reduction in mean squared error 
when spurious readings were present would measure 
the protection given by the procedure. 

Jeffre ys [5] forcefully attacked the use of any outlier 
rejection rule on several grounds, one being that the 
resulting es timate of the population mean was a dis­
continuous function of the observations. He and 
others, notably Tukey [8] and Huber [4], have made 
suggestions for assigning reduced but not zero weight 
to outliers, the weight being a continuous function 
of the magnitude of the residual. The modification 
rule considered below is of Huber's type. 

With these previous studies in mind, we now formu­
late procedures for treatment of outliers (in sec. 2) 
and consider their effectiveness (in secs. 3 and 4), for 
samples of any size. Then in section 5 our computa­
tions for samples of size three are presented and 
discussed. Tentative general conclusions are drawn 
in section 6. Some notes on the computations appear 
in section 7. 

2. Definition of Estimation Procedures 

Suppose we are given some observations Yl, Y2, ... , 
YII, each of which is a determination or estimate of a 
common "true" value fL. We wish to combine the 
observations to form a single improved estimate of 
fL (or otherwise make inferences about fL). 

It is convenient to define the sample mean y, the 
residuals Zi (i = 1, 2, ... , n) and the number v of 
residual degrees of freedom by 

nY=LYi, Zi=Y;-y, v= n-l. (1) 
I 

The custom in this situation is to hope that (near 
enough) the y's are realizations of independent random 
variables each having the same normal distribution 
with mean fL. 

If this hope were believed to be accurately fulfilled, 
the estimation problem would be well defined and 
easy_ If the variance of the common normal distri­
bution were supposed known, the sufficient statistics 
y and n would constitute a complete summary of the 
data; and if the variance were not known, the suf­
ficient statistics y, n, and };i zf would be a complete 
summary. In either case, we could regard y as esti­
mating fL, with the other statistics ancillary. As is 
well known, y is the value for fL at which the sum of 
squares 

(2) 

is minimized. 

But ordinarily it is unreasonable to suppose that the 
hoped-for property of the Y's is accurately true. If 
we think in terms of a single estimate of fL, y is not 
necessarily the best to choose. In particular, we 
should usually bear in mind that the observations may 
have a propensity towards outliers. Two alternative 
theoretical descriptions of an outlier phenomenon 
are (i) some of the observations are affected by a gross 
error or mistake, which adds a bias onto the reading 
that would otherwise be obtained, (ii) the distribution 
of deviations of the observations from fL is not normal, 
but has lon,..ger tails, like a logistic distribution, for 
example. (Further theoretical descriptions are 
easily invented.) We therefore consider how to define 
a function fl of the observations that may possibly 
estimate fL satisfactorily when some kind of outlier 
phenomenon is present. The difficulty here arises 
from our reluctance to specify firmly the distribution 
of the observations in terms of a very few parameters. 

The traditional way of treating outliers is to reject 
them according to some rule and then let fl be the 
average of the remaining observations. We here 
consider the following rule, as an example. First a 
critical size K for a residual is chosen (K > 0). Then 
the rule is 

Rejection rule. Let M be a value of i for which 
IZil is greatest. (M may be expected to be unique if 
n ~ 3 and if the observations are recorded with high 
precision.) If n=2, or if n ~ 3 and also I ZM I ~ K, 
retain all observations and quote y as the estimate of 
fL· If n ~ 3 and also IZM I > K, reject YM from the sam­
ple and act as though the remaining n - 1 observations 
were the whole sample. With the observations re­
labeled and nand z's redefined, go back to the start 
of this rule. 

If the initial sample size is 2, the rule sets {L equal 
to the simple mean y in any case. If the initial sample 
size is 3, the rule leads either to retention of all three 
observations with equal weight (if IZMI ~ K), so that 
fl = y, or to rejection of just one observation, so that 
{L is the average of the other two observations. If 
the initial sample size n exceeds 3, the rule leads con­
ceivably to rejection of any number of observations 
from 0 to n-2, inclusive. 

To implement the suggestion that outliers ought to 
be given reduced but not zero weight, we also consider 
the following rule, which seems to be computationally 
the simplest possible such rule. A critical size K 
for a residual is chosen (K > 0). Then the rule IS 

Modification rule. Choose as (L a value for fL at 
which 

is minimized, where };( I) means summation over those 
values of i for which Iy;- fLl~ K and };(2) means sum­
mation over the remaining values of i. ({L is unique 
provided there is at least one value of i for which 
Iy;- (L I< K.) 

This rule may be alternatively expressed by saying 
that {L is chosen to minimize the sum of squares (2), 
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but under a condition that some observations are 
modifi ed if necessary so that no residual exceeds K in 
magnitud e. Specifically, each observation Yi suc h 
that IY;- M- I> K is modifi ed to a value Y; such that 
y;-jl has the same sign as Yi- (L but ly;- jl l=K. 
Which observations ar e to be modified (or in the pre­
vious language, which observations are to be included 
in the second summation ~(2») must in general be dis­
covered in several ste ps of trial and error, a task of 
quadratic programming. (It has been considered , 
for general regression analysis, bySand [7].) 

When n = 2, we may always set (L = y. This is the 
unique possibility for fi if the two observations are 
spaced not more th an 2K apart. Otherwise fi may 
be chosen anywhere in an interval of width IYI - Y21 
- 2K , centered at y. 

When n =3, le t Y( l), Y(2), Y(3) de note the three ob­
servations, rearranged in ascending order of mag­
nitude . Then fi is d e termined as follows: 

(i) If Y- Y( l) a nd Y(3) - yare both not greater th an 
K , no obser va tion is modifi ed and (L = y-

(ii) If Y(2)- Y(n a nd Y(3)- Y(2) both exceed K , Y( l) 
and Y(3) are I:;o th modifi ed a nd (L = Y(2) , th e medi a n. 

(iii) Otherwise, eith er Y( l) or Y(3), but not bo th , is 
modified. If, for example, Y(3) is modifi ed (because 
Y(3)-y > K and Y(3) - Y(2» K >Y(2)-Y(t)), fi is de­
fin e d by 

fi lies be tween the m ean y and the me di a n Y(2) ' (In 
case (ii), the modifi ed obse rvations are Y(i') = Y(2) 

- K , Y(~)=Y(2)+ K. In case (iii), if Y(3) is modifi ed , 

Y(~)= fi + K and 3 !1 =y(t)+Y(2)+Y(~)') 

3. Distribution Assumption 

The above rul es yield es ti mates (L of /-t th a t a re 
desens iti zed to outli er s and may th erefore be prefe rred 
to y. For each rule, (i is a fun c ti on of the n obser va­
tions a nd of K. We could di stingui sh the two func ti ons 
with a suffix , but that will be unnecessary because we 
shall always make clear whi ch rule is unde r di sc ussion. 

In order to assess the e ffec ti veness of the r ules, 
seein g how the effecti veness of each vari es with K a nd 
how one rule co mpares with th e oth er , we need to 
s pecify th e true statis tical prope rti es of the observa­
tions. In thi s pa per we suppose th at the observations 
have the hoped-for property exac tl y, exce pt th a t 
possibly one observati on has a n added bias. Th at is , 
we make th e 

Assumption: the Y's a re reali zatio ns of independent 
random variables eac h normally di s tributed with the 
same var iance a- 2 and with these expec tations: 

E (Yi) = /-t (i = 1, 2,. . . , n - 1), E (YII) = /-t + ba-. 

(4) 

W e here ta ke the liberty of using Yi both as the nam e 
of the ra ndo m variable corresponding to the ith ob­
se rva ti on a nd as t he name of that observation. 

We s hall be in teres ted in the ratio of K to a- , whi c h 
we de note by C, thus : 

K=Ca- . (5) 

We shall ta ke expectations with respect to the above 
r a ndom vari a bles, for fixed /-t , a- , C, and b. Having 
a- and C fi xed implies that K is fixed and therefore not 
de termin ed b y the observations themselves (as it would 
be, for example , if K were chosen to be equal to a give n 
multiple of the sample standard deviation). 

An alternative distribution assumption that would 
be interes ting, but is not considered in this paper , 
would be that the observations were independe ntly 
drawn fro m a common nonnormal distribution with 
mean /-t , s uc h as a logi sti c di stribution. 

4 . Formulas 

For be tte r or worse, we shall assess the effec tiveness 
of the two rules fo r treating outli ers through the mean 
squ ared error of the sampun g di stribution of (i , under 
the above distribution ass um pti on. Ho pefull y, whe n 
b = 0, we shall find that th e vari a nce (w hi c h is a lso 
the mean squ ared error) of fi is l ittle larger th an that of 
y, na mely a-2(n , but when b is large E(fi - /-t)2 will be 
s maller th a n 

(6) 

To determin e E((L - /-t)2 prec isely, und er the above 
dis tribution ass ump tion, is a fo rmidable tas k even 
whe n n is as s mall as 3. If we defi ne a n orthogo nal 
li near tra nsformation (Helm ert tra nsform ati o n) of 
the y's, so th at the new vari ables are y V;;, X l , 

X 2 , ... , X" - l , say, these vari ables are indepen d­
e ntly normally di stri b uted with the sa me varia nce a-2 • 

We may wr ite 

whe re U is a fun c ti on of th e x's bu t not of y. He nce 

or 

(8) 

E(U2) can be expressed as an (n -I)-dimensional in­
tegral. The form of the integrand de pe nds on which 
of various linear inequalities among the x's are sat­
is fi ed , so that the region of integration is divided into 
many zones , in each of which the integrand has a 
simple expression, different from zone to zone. 

The main purpose of this paper is to present results 
of the calculation of E((L - /-t)2 when n = 3. Values of 
(3( a-2)E((L - /-t)2 are shown for an assortment of values 
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of C and b in table 1 (for the rejection rule) and table 2 
(modification rule). 

The case n = 3 is important in its own right, and 
moreover may give some indication of the behavior 
of E(fl- J..t)2 for larger values of n. For the latter 
purpose, It is useful to have some information about 
limiting values and approximations. These are now 
summarized. 

Rejection rule. When b =0, the following approxi­
mate expression for the variance (mean squared 
error) of J..t has been given [1]: 

(n/u2) var(Ji) ;2: 1 + (n/v){2ta<P(ta) + a} , (9) 

where 

and the functions <l> and cp are defined thus: 

<l>(t) = f oo cp(u)du , 

This result is asymptotically correct as C ~ 00 with n 
and v fixed, and may be expected to be fairly good if 
C is somewhat greater than 2. 

A more easily calculated formula, alternative to (9) 
when b = 0, can be obtained, similar to one given by 
Anscombe and Tukey [2]: 

(n/u2) var(J1,) = 1 + (n/v)<l>(- N), (10) 

where N is defined in terms of the above t" by 

ta= 1.40 + 0.85 N. 

When b~ 00 with C fixed , rejection of the "bad" 
observation Yll becomes certain, and if no further 
rejection occurred we should have for the variance 
(mean squared error) of fl 

(n/u2) var(fl) ~ 1 + (l/v). (11) 

This is accurately true when n = 3, because no further 
rejections are allowed. For n ~ 4, the right side of 
(11) should be increased to allow for the effect of pos­
sible further rejections. A lower bound for E(jL - J..t)2 
when b is large but not infinite has been given ([1], 
eq (6.3)), but appears from the present calculations to 
be a very poor approximation.4 

Modification rule. When b = 0, the result for the 
modification rule corresponding to (9) above for the 
rejection rule is 

"The b-values in table 3 of [11 a re pres umably s ubs tant ially too low , but possibly the 
remarks based on them are correct. 

to and a being defined as before. This formula may 
be expected to be less helpful than (9). Both formulas 
are derived assuming C to be so large that few obser­
vations are rejected or modified (as the case may be) 
and the negative correlation between residuals within 
a sample is unimportant. But the values of C that are 
of practical interest are smaller for the modification 
rule than for the rejection rule. 

When b ~ 00 with C fixed, modification of the "bad" 
observation Yn becomes certain, and if no further 
modification occurred we should have 

(13) 

In fact, however, other observations may be modified, 
and because of the positive bias resulting from Yn the 
tendency will be for low readings to be modified up' 
wards rather than for high readings to be modified 
downwards. It follows that the right side of (13) is 
too low. For n=3, v=2, it is not hard to show that 
the correct result is 

A 3 3C2 3C (C) (3/u2)E(J..t- J..t)2~ -+-+-cp -
2 4 V2 V2 

(14) 

Note. Although in section 2 we explicitly men­
tioned only the possibility that the y's were all deter­
minations of the same location parameter J..t, much of 
what has been said can be adapted to regression 
analysis, J..t being replaced by a linear function of 
parameters {3r. Formulas (6), (9), (10), (11), (12), and 
(13) are valid with the following amendment and rein­
terpretation. The y's are observations in a factorial 
experiment with n experimental units (n being even) 
and an orthogonal design matrix. We focus attention 
on one particular two-level factor; this appears n/2 
times at its upper level, n/2 times at its lower level. 
Let {31 stand for one half of the response to this factor, 
so that 2{31 is the change in the expectation of an obser­
vation caused by changing the level of the factor from 
lower to upper; let bl denote the usual estimate of {31 
(total of observations for which the factor is at the 
upper level mil!us total of other observations, divided 
by n); and let {31 denote the estimate of {31 yielded by 
the rejection or modification rule (as the case may be). 
Let {Zi} be the residuals and v the number of residual 
degrees of freedom after the estimation of all factor 
effects by least squares, and let the n X n matrix (qij) 
be defined by 

Zi=Lqim· 
j 

We assume that for all i and j 

qii= v /n, Iqijl < v/n 
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On the left sides of the above mentioned formulas, 
re place /1- , y, and il by f31 , b l , and ~1' 

5. Results of Computation 

Tables 1 and 2 present the mean squared error of 
(i when n = 3. The nine values for C are the "round" 
numbers 1, 1.5, 2, 3, and 00, and also the values for 
which the entry in the first row (for b = 0) is 1.04, 1.02, 
1.01, and 1.005. The last column (C= (0) refers to 
use of the unadjusted mean, y, as the estimate of /1-; 
the values are given by formula (6). Various values 
for the bias factor b are shown. In the last line of 
each table, except for the entry in the last column (C 
= (0), the entries are exactly equal (to the number of 
decimal places shown) to the limiting values as b ~ 00 

given in formulas (11) and (14). 
The perce ntage increase in sampling variance re­

sulting from use of (i instead of y, whe n all the obser· 
vations have a common normal distribution (the hoped· 
for property), may be termed the pre mium charged 
by the rule. The premium may be read from the 
firs t line of tables 1 and 2 (for b = 0) by subtrac ting 
the initial 1 and multiplying by 100. 

In figure 1 mean squared error is graphed against b 
for (i) the unadjusted mean y, (ii) (i give n. by the re­
jection rule with 2 percent premium, (iii) (i given by 
the modification rule , also with 2 percent premium . 

Table 3 compares approximations (9), (10), and (12) 
with the correct values. (For (9) see also table 4 of [1].) 

So far so good. The burning ques tion that faces 
us is what do these computations show concerning 
the relative merits of the two methods of treating out­
liers , and if we decide to use e ithe r one, how should 

T ABLE 1. Values of(3/(J'2)E((L - J.L )2 for th.e rejection rule 

C = I.00 1.50 2.00 2.4600.3 2.66 184 2.8462.3 3.00 3.0 1724 00 

b = O.OO 1.7318 1.4116 1. 14% 1.0400 1.0200 1. 0100 1.0054 1.0050 1.0000 
.25 1. 773 1 1.45 10 1.181 2 1.0650 U)433 1. 0322 1.0270 1.0266 1.0208 
.50 1.8931 1.5664 1.2753 1.1403 1.11 33 1.0991 1.0921 1.09 16 1.0833 

1.00 2.3 163 1.9896 1.640'1 1.4422 1.3956 1.3688 J.:l.546 1.3534 1.3333 
1.50 2.8488 2.5649 2. 1969 1.9395 1. 8682 1.8229 1.7969 1.7946 1.7500 
2.00 3.3 18.5 3. 1297 2.8401 2.591 4 2 . .5097 2.4.522 2.4 16 1 2.4 126 2.3333 
3.00 3.6602 3.6782 3.7634 3. 8R52 3.9340 3.9698 3.99 17 3.9936 4.0000 
4.00 3.2476 3.3066 3 . .5722 4.1362 4.4702 4.7967 5.0682 5.0980 6.3333 
6.00 2.0323 2.0353 2.0674 2.2339 2.4143 2.6761 2.9854 3.0259 13.0000 
8.00 1.5712 1.57 12 1.57 12 ). 5737 1.5780 1.5872 1.6025 1.6048 22.3333 

10.00 1.5045 1.5045 1.5045 1.5045 1.5045 1.5045 1. 5045 1.5045 34.3333 
12.00 1.5001 1.5001 1.5001 1.500 1 1.5001 1.500 1 1.5001 1.5001 49.0000 
15.00 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 76.0000 

TABLE 2. VaLues of(3/a2)E(fl - J.L )2 fo r the modifica tion rule 

C = I.OO 1.29420 1.50 1.52486 1.73307 1.92458 2.00 3.00 00 

6 = 0.00 1.0860 1.0400 1.0216 1.0200 1.0100 1.0050 1.0038 1.00004 1.0000 
.25 1.1106 1.0631 1.0439 1.0422 1.03 16 1.0263 1.0249 1.0209 1.0208 
.50 1. 1830 1.1 315 1.1102 1.1082 1.0962 1.0899 1.0883 1.0834 1.0833 

1.00 1.45 12 1.3909 1.3651 L.3627 1..3480 1.3404 1.3385 1.3333 1.3333 
1.50 1.8295 1.7743 1.7532 1.7516 1.7424 1.7400 1.7401 1.7487 1.7500 
2.00 2.2380 2.2 156 2.2189 2.2202 2.2354 2.2540 2.26 16 2.3256 2.3333 
3.00 2.8859 2.9970 3. 1075 3. 1223 3.2546 3.3830 3.4333 3.9014 4.0000 
4.00 3. 1789 3.4 116 3.6342 3.6642 3.9389 4.2212 4.3376 5.7419 6.3333 
6.00 3.2675 3.5619 3.8520 3.8920 4. 2701 4.6861 4.8677 8.0425 13.0000 
8.00 3.2687 3.5645 3.8566 3.8970 4. 2789 4.7014 4.8867 8.3350 22.3333 

10.00 3.2687 3.5646 3.8566 3.8970 4.2790 4.7014 4.8867 8.3396 34.3333 

7 
(j) 

6 

5 

liii) 

2 
Iii) 

OL----L----~2----~3~---4~--~5----~6----~7~--~8~--~9 

FI GU RE 1. Curves showing (3/(J'2)E(ji, - J.L )2 as a fu nction of b. 

K be chosen? No se t of calculation s s uc h as ours 
can se ttle the matter beyond dispute, because we do 
not know that reality is well represented by the dis­
tribution assumption that we have used , nor by any 
other di stri bution ass umption that we might have 
used ins tead. However, in the light of suc h theoreti cal 
knowledge as we have, the calculations do seem to 
support some clear·cut conclusions that may have 
general validity in regression analysis. 

TABLE 3. Approximations to (3/(J'2) var (Ii ) 
when b = O 

C = 1.00 1.50 2.00 3.00 

I{ t'jt·(·tiull nile: 
Cor rect Valu(~ 1. 73 18 1.4 116 I.H96 1.0054 
Approxi mat io ll (9) 2.0234 1. '>060 1.1674 1.0055 
AplHi )xirnatioll (10) 1. 3725 1.4.,53 1. 1627 1.0056 

Mudi fi c atioll rul t:': 
Cor re ct value 1.0860 1.0216 1.0038 1.00004 
Apprvxi matiu n ( 12) 1. 13'> I 1.0277 1.0043 1.00004 

W e see from the tables that if b is s mall, in the range 
o to 1.5, both rules give estimates inferior to the un· 
adjusted y. If b is in a middle range, roughly from 2 to 
4, the modification rule fares bes t. If b is above 5 
or 6, the rejection rule is much better than the modi· 
fi cation rule , which in turn is very much better than y. 
These comparisons hold fairly consistently, when we 
compare a rejection rule with a modification rule either 
having the same premium (as in fig. 1) or having the 
same value for C. Thus which type of rule is to be 
preferred depends on how large we expect b will be 
(insofar as our distribution assumption can be ac· 
cepted as a description of the facts). 

Now we can distinguish two quite different processes 
that lead to outliers in a series of readings. On the 
one hand there may be mistakes or failures to do what 
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is intended - instrumental failures, errors in tran­
scription or in arithmetic, mixed-up records, etc. A 
reading affected by an accident of this sort may easily 
lie a great di stance from other readings. Therefore 
if we wish to guard against such gross errors, it is 
reasonable to choose a rejection rule. In practice, 
most observers discard extremely aberrant readings 
as obviously wrong, without any explicit rule, pro­
vided that they ac tually examine the readings. More 
and more nowadays the output of instruments is fed 
directly to a computer for processing, and then it is 
important that proper provision should be made for 
intercepting gross errors. 

On the other hand, outliers may arise in good ob­
servations when no blunder or failure has occurred. 
The normal law of errors beloved of statistical theorists 
is not a law of nature, and observational errors do not 
have to conform to it. Probably many actual error 
distributions have somewhat longer tails than the 
normal. Jeffreys [5] reports some investigations of 
errors in astronomical readings, and suggests that a 
homogeneous series of readings by one observer may 
be expected to follow a Pearson Type VII distribution, 
having the same shape as a Student distribution with 
7 deg of freedom. Tukey has pointed out (privately) 
that this distribution has nearly the same shape as a 
logistic distribution - the difference could hardly be 
detected empirically. In view of the distribution 
assumption of the present paper, it is interesting to 
note that the Student distribution with 7 deg of freedom 
is even more closely approximated by the distribution 
of the sum of two independent random variables, 
X + Y, where X is normally distributed and Y has 
chance 0.95 of being equal to 0 and chance 0.05 of 
being equal in magnitude to three times the standard 
deviation of X (positive or negative with equal 
chances).5 This suggests that, to represent Jeffreys's 
type of long-tailed distribution of errors with the dis­
tribution assumption of this paper, we should regard b 
as taking the values 0 and 3 with something like a 6:1 
frequency ratio. (Our distribution assumption cannot 
exactly represent samples of size 3 from the distribu­
tion of X + Y, because in a few such samples (less 
than 1 %) there would be more than one non-zero 
Y-value, and our calculations do not apply .) For 
these values of b, our tables indicate that the modi­
fication type of rule should be used. 

This finding fits well with the consideration of maxi­
mum likelihood estimation of J.L when the errors have 
a long-tailed distribution (see [2], sec. 8). In particu­
lar, maximum likelihood estimation of the location 
parameter of a logistic distribution is closely approxi­
mated by our modification rule, when K is about 1.1 
times the true s tandard deviation of the logistic dis­
tribution, or about 1.25 times a pseudo standard devia­
tion estimated from the slope of the middle part of 
the cumulative frequency curve plotted on "proba-

5 The middle ord inat e of the d ensity func tion , muhiplied by the standard dev iation , makes 
a good ind ex of s hape. r or 0) the Stud ent di s tributio n. (ii) the logist ic, (iii) the di s tribution 
of X + Y, as specified , this index is approximately (i) 0.4555, (ii) 0.4534, (iii) 0.4566. Fisher's 
shape coeffic ient y :.! (fo urth c umulanl di vided by squared va riance) comes out: (i ) 2, (ii) 1.2. 
(iii) 1.637. 

bility" graph paper (this being the sort of estimate 
of a that we might make from past records if we be­
lieved that the error distribution was normal except 
for some outliers). 

Thus our calculations support the following general 
conclusions which are closely in line with suggestions 
made by Tukey [8]. 

6. Tentative Conclusions 

Whenever we think of applying the method of least 
squares to some readings in order to estimate a param­
eter or parameters of location, we shall do well to 
recognize the two possibilities that (i) occasionally 
a reading may be "bad", grossly in error and useless 
for the estimation purpose at hand (though possibly 
interesting for other reasons), and (ii) the "good" read­
ings may have a somewhat longer-tailed distribution 
than the normal. In view of these possibilities (es­
pecially when the statistical analysis is computerized), 
it will be advisable to use first a rejection rule and then 
a modification rule. The rejection rule should have 
K so large that it will almost never reject "good" 
observations, but will protect against really "bad" 
ones. The modification rule will have a lower value 
for K and will aim to yield good estimates if the error 
distribution does not greatly differ from a normal or a 
logistic distribution. Actually the choice of K for the 
modification rule is likely to depend not only on con­
siderations of efficiency of estimation but also on speed 
in computation. The smaller K is, the more iterations 
may be needed to carry out the modification procedure. 
It may therefore be wise to choose K so that not more 
than a few percent of readings (on the average) will 
be modified. 

How to estimate from the data the precision of 
estimates obtained through the modification rule 
seems not to be well understood at present. But 
one thing at a time! (For a sample of size 3 such 
es timation is ludicrous anyway; hence the assumption 
in our calculations that a was known.) 

Of course when large collections of similar data 
are available for study, it is possible to investigate 
their statistical properties and adjust the estimation 
procedures accordingly. But in the absence of a 
special study it would be good routine practice always 
to temper the method of least squares by the combined 
rejection-modification procedure just outlined. 

7. Notes on the Computation 

We may set 

Yl -Y2 Z, -Z2 x,=---=---
V2 V2 
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Under the distribution assumption, XI and X2 are in ­
dependently normally distributed with means 0 and 
b a- V2i3 and with the same variance a-2. Expressing 
U in terms of X I and X2, we e valuate E(U 2) by integra· 
tion over the (Xl, x2)-plane. The region of integration 
is divided into zones, as sketched in figure 2. The 
inner zone is a hexagon bounded by the three pairs of 

I parallel lines, 

ZI =±Ca-, Z2=±Ca-, Z3= ± Ca-. 

For the rejection rule, the region outside the hexagon 
is divided into six zones, co rres ponding to the six 
possible combinations of three values for M and two 
signs for ZM. For the modification rule the region 
outside the hexagon is divided into twelve zones, 
corresponding to the above s ix possibilities concerning 
ZM when yM i s the only modified observation, plus 
six possi bilities for c hoosing a pair of observations 
to be modified , one of the res iduals be ing positive and 
the other negative. 

Ins ide the hexagon U has the cons tant value b/3. 
In each of the other zones U is a linear fun ction of 
Xl and X2 . For example, the zo ne labe led A in the 
rejec tion-rule part of fi gure 2 is defin ed by the prop­
erties: 

M= 3, Z3 > Ca-, 

and in this zone we ha ve 

b X2 U=----· 
3 a-V6 

The zone labeled B in the modification-rule part of 
figure 2 is defined by the properties: 

M =3, Z3 > Ca- , only Y3 is modified , 

and in thi s zone we have 

b C X2 U= - +----· 
3 2 a-v6 

The zon e labeled C is defined by the properties : 

Y2 and Y3 are modified, Y3 - YI > Ca-, YI - Y2 > Ca-, 

and in thi s zone we have 

In all the above it is conve nie nt and permissible to set 
a- = 1. 
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F I GURE 2. Zones of integration. 
The di a~ ram 011 the left is ror (he rejec tion rule. that on the right for the modification rule. 

In principle it is possible to evaluate the double 
integral over each zone by expressing it as a single 
integral in terms of the normal integral and density 
functions and then using single numerical quadrature. 
But because that would involve much tedious detail 
in rotating axes, it seemed cheaper to use double 
n urrierical quadrature, integrating firs t for X2 and then 
for X I by Simpson's rule. Integrati on was carried out 
over a square area of the plane, so that X I and X2 ranged 
S.Sa- above and below their mea ns. The integrand is 
well be haved within each zone but is singular on e very 
boundary betwee n zones. A not quite uniform grid 
of points was used for e valuating the integrand , so that 
boundaries were always e ncountered as end points of 
individual applica ti ons of Simpson's rule, ne ver as 
interior points. Th e interval width in X l and X2 of 
0.10a- (or less as needed to hit the boundaries cleanly) 
was found sati sfac tory. The program was tes ted by 
findin g the expec tation of s imple random variables 
whose form did not change from zone to zone. The 
work was done at the Yale Computer Center (IBM 
7040-7094 DCS). 
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