On Abstract Numerical Integrations

John J. Sopka*

National Bureau of Standards, Boulder, Colo.

(March 10, 1966)

Let X be a space of functions, say $X \subset C(K)$, K locally compact Hausdorff, let $l\epsilon X^*$ be an integral on X and let $M^* \subset X^*$ be a given subspace of "simple" functionals, then it is desired to obtain an $\overline{l\epsilon}M^*$ for given $n, \overline{l\epsilon}M_n^* \subset M^*$; M_n^* being a suitable n dimensional subspace determined so that $l - \overline{l}$ annihilates a given finite dimensional subspace $X_1 \subset X$. In this general context, the abstract analysis of numerical integration is developed and certain specific applications are made.

Key Words: Numerical integrations, abstract Gaussian quadrature methods.

1. Introduction

In the development of numerical integration formulas, one is given a function space X, say $X \subset C(K)$, where K is some locally compact Hausdorff space, and an integral $l \in X^*$. It is then desired to find an $\overline{l} \in M^* \subset X^*$, where M^* is a subspace generated by a family of "simple" integrals $\{x_{\alpha}^*\}$ such that \overline{l} can be said to approximate l in some given sense.

In ordinary quadrature, the family $\{x_{\alpha}^*\}$ are given by $x_{\alpha}^*f = f(x_{\alpha}) \bigvee_{\perp} f \epsilon C(K)$ where $x_{\alpha} \epsilon K$. An element $\overline{l} \epsilon M^*$ is said to approximate the given integral l if $1 - \overline{l} \epsilon X_{\omega}^{\pm}$ where X_{ω}^{\pm} is the subspace in X^* of all annihillators of a given subspace $X_{\omega} \subset X$.

The following paper summarizes the essential mathematical structure of numerical integration methods with the purpose of extending systematically the class of such methods.

2. General Analysis

Let $X \subset C(K)$ and let $X_0 \subset X$ be a subspace \ni dim $X_0 = n$ and X_0 is generated by a given set of n "basis" functions $\{f_k\}$. In X^* take M^* a subspace generated by a given family $\{x_{\alpha}^*\}$ of linearly independent functionals with the properties: M^* is total over X_0 and $\{x_{\alpha}^*\} \cap X_0^+$ is void where $X_0^+ = \{l; l \in X^*, lf = 0, f \in X_0\}$. If $M_n^* \subset M^*$ designates a subspace generated by n of the x_{α}^* , say $\{x_{\alpha i}\}_{i=1}^{i=1} \ldots n$ so that dim $M_n^* = n$, then one has $X^* = X_0^+ + M_n^*$ since the deficiency of $X_0^+ = \dim X_0 = n$. Also M_n^* is total over X_0 as is readily seen.

If $l \in X^*$ is a given integral, then $\exists \ \overline{l} \in M_n^* \ni l = l + l_0^+$ where $l_0^+ \in X_0^+$ and \exists such an \overline{l} for each subspace M_n^* as defined above. For any such given subspace M_n^* $\exists \ l_i \in M_n^*$ $i=1...n \ni l_i f_k = \delta_{ik}$ i, k=1...n $\delta_{ik} = 1$ $i=k, \ \delta_{ik} = 0$ $i \neq k$. This follows from M_n^* being total over X_0 . Thus one can write: $l = \sum_{i} l(f_i) l_i + l_0^{\perp}, l_0^{\perp} \epsilon X_0^{\perp}$ and $l_i = \sum_{j} \gamma_{ij} x_j^*$ where $x_j^* = x_{\alpha,j}^*$.

 $l = \sum_{i} \sum_{i} (lf_i) \gamma_{ij} x_j^* + l_0^\perp$

Then

or

$$\overline{l} = l - l_0^{\perp} = \sum_j \left(\sum_i l f_i \gamma_{ij} \right) x_j^* \cdot \tag{1}$$

The functional l therefore depends on the selected set $\{x_{\alpha i}^*\}$, that is on M_n^* , on the lf_i and on the coefficients γ_{ij} $i, j = 1 \dots n$.

The relations $\sum_{j} \gamma_{ij} x_{j}^{*} f_{k} = \delta_{ik} i$, $k = 1 \dots n$ can be put in matrix form: $\Gamma \Gamma_{0} = I$ where I is the identity matrix, $\Gamma = (\gamma_{ij}) \Gamma_{0} = (x_{j}^{*} f_{k})$. Now Γ_{0} is nonsingular for any given M_{n}^{*} since M_{n}^{*} total over X_{0} implies that $\sum_{k=1}^{n} \tau_{k} x_{j}^{*} f_{k} = 0$ $j = 1 \dots n$ is possible only when $\tau_{k} = 0$ $k = 1 \dots n$. Hence the matrix $\Gamma = \Gamma_{0}^{-1}$ is determined once Γ_{0} is known.

If the $\{f_k\}$ are such that the lf_k are readily evaluated then the problem of determining \overline{l} is that of specifying M_n^* or a corresponding basis $\{x_{\alpha i}^*\}$. Under the conditions imposed thus far with dim $X_0 = \dim M_n^* = n$ \overline{l} will not in general be unique without additional conditions on X and/or the M_n^* .

3. Specific Cases

In certain quadrature procedures, such as the Newton-Cotes formulas, M_n^* is specified a priori by choosing the $x_{\alpha i}^*$. The subspace X_0 in these cases is such that the lf_i are easily calculated and thus \overline{l}

^{*}Consultant-Mathematics, National Bureau of Standards, Boulder, Colo.

is determined. For instance, the Parabolic Rule has $l = \int_{x_1}^{x_3} dx$, where X_0 is the space over the Reals generated by the $f_k = x^{k-1}$, k = 1,2,3 and $x_{\alpha i}^* f = f(x_i)$ for given real numbers $x_1, x_2 = \frac{1}{2} (x_1 + x_3), x_3$.

In Gaussian quadrature methods, the following additional conditions limit the choice of M_n^* . Consider a subspace $X_1 \subset X$, where $X_1 \supset X_0$ and X_1 has generators $\{f'_k\}, k=1 \ldots p, p > n, f'_k = f_k$ for $k=1 \ldots n$. Now if T is a linear transformation on $X \ni f'_k = Tf'_{k-1} = T^{k-1}f'_1$. Then T induces a linear transformation Q on X^* given by $Qlf = lf = lTf, \forall l \in X^*, f \in X$. Consequently $x_j^* f'_k = (Qx_j^*)f'_{k-1} = (Q^{k-1}x^*)f'_1$ and one can write:

$$\overline{l}f_k = \sum_j \left(\sum_i lf_i \gamma_{ij}\right) Q^{k-1} x_j^* f_1 \text{ for } k = 1 \dots p.$$
(2)

Since the matrix $\Gamma_0 = (x_j^* f_k) = (Q^{k-1} x_j^* f_1)$ for j, $k=1 \ldots n$ is nonsingular, the *n*-tuple $(Q^n x_j^* f_1)$ $j=1 \ldots n$ corresponding to

$$\overline{l}f_{n+1} = \sum_{j} \left(\sum_{i} lf_{i} \gamma_{ij} \right) Q^{n} x_{j}^{*} f_{1}$$

is linearly dependent on the rows of Γ_0 , i.e.

$$Q^{n}x_{j}^{*}f_{1} = \sum_{k=1}^{n} \beta_{k}Q^{k-1}x_{j}^{*}f_{1} \qquad j = 1 \dots n.$$
 (3)

This gives the relationship

$$\bar{l}f'_{n+1} = \sum_{k=1}^{n} \beta_k \bar{l}f'_k.$$
(4)

Now, if for $M_{n\perp}^* = \{f; f \in X_1, x_j^* f = 0, j = 1 \dots n\}$ one also assumes: $TM_{n\perp}^* \subset M_{n\perp}^*$ that is, $x_j^* f = 0$ implies $x_j^* T f = 0 = Qx_j^* f$ for $j = 1 \dots n$ then this condition, plus the statement:

$$\left(Q^n - \sum_{1=1}^n \beta_k Q^{k-1}\right) x_j^* f_1' = 0 \qquad j = 1 \quad . \quad . \quad n$$
 (5)

will imply that

$$\left(Q^{n+q} - \sum_{k=1}^{n} \beta_k Q^{k+q-1}\right) x_j^* f_1' = 0 \qquad j = 1 \dots n, \forall q$$
(6)

Taking $q=0, 1 \ldots n-1$ one gets the *n* equations

$$\bar{l}f'_{n+1+q} = \sum_{k=1}^{n} \beta_k \bar{l}f'_{k+q}.$$
(7)

In Gaussian quadrature, the stronger condition $l-\bar{l} \in X_1^{\perp} \subset X_0^{\perp}$ is imposed. Thus, if $l-\bar{l} \in X_1^{\perp}$, if the f'_{k+q} are such that the lf'_{k+q} are readily obtained and if the matrix $L = (lf'_{k+q}), k = 1 \ldots n, q = 0 \ldots n-1$ is nonsingular then the β_k can be obtained uniquely.

Given the β_k , solution for the $x_j^* f_1' j = 1 \dots n$ follows from the relations (5) when they are solvable. Determination of the functionals $x_j^* j = 1 \dots n$ proceeds from the values of the $x_j^* f_1$ when the x_j^* are sufficiently simple, for example, a one parameter family like those in the examples below.

Now, $L = (lf'_{k+q})$ is nonsingular if and only if $\not F$ scalars

$$\boldsymbol{\epsilon}_k \neq 0, \ k = 1 \ldots n \ \boldsymbol{\flat} \ l \left(\sum_{k=1}^n \boldsymbol{\epsilon}_k f_{k+q} \right) = 0$$

$$q = 0 \ldots n - 1.$$

Since these last relations can be written as:

$$l\left(\sum_{k=1}^{n} \boldsymbol{\epsilon}_{k} T^{k-1+q} f_{1}\right) = l\left(T^{q}\left(\sum_{k=1}^{n} \boldsymbol{\epsilon}_{k} T^{k-1}\right) f_{1}\right) = 0 \quad (8)$$

one has, in this general context, an orthogonality condition stating that no n-1 degree "polynomial" in Tis orthogonal in this sense to all n-1 degree polynomials in T. The *n*-equations (7) can also be written as:

$$l\left(T^{q}\left(T^{n}-\sum_{k=1}^{n}\beta_{k}T^{k-1}\right)f_{1}\right)=0 \qquad q=0 \ . \ . \ . \ n-1$$
(9)

which states that the *n* degree polynomial $T^n - \sum_{k=1}^{n} \beta_k T^{k-1}$ is orthogonal, in this sense, to all n-1

degree polynomials in T.

Thus if X_0 , X_1 , M_n^* satisfy the conditions imposed, it was seen in the general section above that $\exists l \epsilon M_n^* \ni l - \overline{l} \epsilon X_0^{+}$. The preceding discussion shows that if $l - \overline{l} \epsilon X_0^{+}$. The preceding discussion shows that if $l - \overline{l} \epsilon X_1^+$ then (9) follows. Conversely, if $\exists \beta_k \ni$ (9) holds one shows directly $l - l \epsilon X_1^+$ using (5) and (6). Consequently one has the following statement analogous to the ordinary Gaussian quadrature theorem [1] which is usually stated in terms of classical orthogonal polynomials: If X_0 , X_1 , M_n^* satisfy all the conditions imposed above then $\exists \overline{l} \epsilon M_n^* \ni l - \overline{l} \epsilon X_1^+$ if and only if \exists an *n* degree "polynomial" $T^n - \sum_{k=1}^n \beta_k T^{k-1}$ orthogonal as in (9) to all polynomials in *T* of degree $\leq n$.

4. Applications

In ordinary Gaussian quadrature, the above specializes to the case where $X_0 = \{x^{i-1}; i=1 \ldots n\}$, $X_1 = \{x^{i-1}; i=1 \ldots 2n\}$, and the $\{x^{*}_{\alpha}\}$ are defined by $x^{*}_{\alpha}f = f(x_{\alpha})$. Then the other Gaussian conditions are seen to hold when T is $\ni (Tf)(x) = f(x)x$.

An interesting nonclassical application is to $l = \int_0^1 dx$ on the space $X = C_0(K) = \{f; f \in C(K), K = [0, 1], f(0) = f(1) = 0\}$. The natural basis functions here are $\sin \pi kx$ or the equivalent functions $f_k(x) = \sin \pi x \ (\cos \pi x)^{k-1}$. Take X_0 , X_1 ; with this basis and x_{α}^* defined by $x_{\alpha}^* f = f(x_{\alpha})$, $x_{\alpha} \epsilon[0, 1]$. Take $T \Rightarrow T f(x) = f(x) \cos \pi x$ then $TM_{n\perp}^* \subset M_{n\perp}^*$ and one gets:

$$l = 0.39 (x_1^* + x_2^*)$$
 for $n = 2$

 $\bar{l} = 0.205 (x_1^* + x_3^*) + 0.247 (x_2^* + x_4^*)$ for n = 4

 $\bar{l} = 0.18502 (x_1^* + x_2^*) + 0.12306 (x_3^* + x_4^*)$ for n = 6.+ 0.16882 $(x_5^* + x_6^*)$

Another application is to $l = \int_0^\infty k(x)dx$ for some weight function k(x) e.g., $k(x) = e^{-x^2}$. Here $K = [0, \infty]$ $X = \left\{ f; f \in C(K), lf \text{ exists}, \int_0^x f(t)dt \text{ exists} \right\}$

and is easily obtained for arbitrary $x \in K$

Take $f'_k(x) = kx^{k-1}$, let $x_j^* f = k(\xi_j) \int_{x_{j-1}}^{x_j} f(x) dx$. For x_0 = 0 $x_{j-1} < \xi_j < x_j$ and take T given by Tf(x) = xf(x)+ $\int_0^x f(t) dt$ then $TM_{n\perp}^* \subset M_{n\perp}^*$ and one gets: $\bar{l} = 0.922 \int_{x_0}^{x_1} dx + 0.195 \int_{x_1}^{x_2} dx$ for $n = 2\bar{l}$.

where
$$x_0 = 0$$
, $x_1 = 0.754$, $x_2 = 1.734$
 $\bar{l} = 0.9798 \int_{x_0}^{x_1} dx + 0.6188 \int_{x_1}^{x_2} dx + 0.1386 \int_{x_2}^{x_3} dx + 0.0051 \int_{x_3}^{x_4} dx$

for
$$n = 4$$

where
$$x_0 = 0$$
, $x_1 = 0.4239$ $x_2 = 1.014$

$$x_{3} = 1.792 \qquad x_{4} = 2.640$$

$$\bar{l} = 0.99200 \int_{x_{0}}^{x_{1}} dx + 0.81425 \int_{x_{1}}^{x_{2}} dx + 0.41032 \int_{x_{2}}^{x_{3}} dx$$

$$+ 0.09445 \int_{x_{3}}^{x_{4}} dx$$

$$+ 0.00702 \int_{x_{4}}^{x_{5}} dx + 0.00008 \int_{x_{5}}^{x_{6}} dx$$
for $n = 6$

where
$$x_0 = 0$$
 $x_1 = 0.27779$ $x_2 = 0.68991$
 $x_3 = 1.2090$ $x_4 = 1.8138$ $x_5 = 2.5104$
 $x_6 = 3.3556$.

Greater detail on the development of such formulas and their utility will be given in a subsequent paper.

5. References

- Hildebrand, F. B., Introduction to Numerical Analysis, p. 319 (Mc-Graw-Hill Book Co., Inc., New York, N.Y. 1956).
 Ezrohi. I. A., General Forms of the Remainder Terms of Linear
- [2] Ezrohi. I. A., General Forms of the Remainder Terms of Linear Formulas in Multidimensional Approximate Analysis I and II. Math Sbornik **38** (80) p. 389; Math Rev. **18**, 33. Math Sbornik **43** (85) p. 9; Math Rev. **19**, 1199.
 [3] Hammer, P. C., Numerical Evaluation of Multiple Integrals
- [3] Hammer, P. C., Numerical Evaluation of Multiple Integrals on Numerical Approximation, p. 99, ed. R. E. Langer, University of Wisconsin (1959).
- [4] Remez, E. I., On Certain Classes of Linear Functionals in the Spaces C_p, and on the Remainder Term in Formulas of Approximate Analysis I and II. Trudy In-Ta Matem Akad, Nauk, Ukr. S.S.R.3, p. 21. Trudy In-Ta Matem, Akad, Nauk, Ukr. S.S.R.4, p. 47, Math Rev 2, 195.
- [5] Sard, A., Function spaces and approximation, Amer. Math. Soc. Numerical Analysis Proc. Symp. Appl. Math 6, 177.
- [6] Day, M. M., Normed Linear Spaces (Springer, Berlin, 1958).

(Paper 70B–173)