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Let X be a space of functions, say X C C(K), K locally compact Hausdorff, let [eX* be an integral
on X and let M* C X* be a given subspace of “simple” functionals, then it is desired to obtain an leM*
for given n., TeM* C M*; M* being a suitable n dimensional subspace determined so that.[—/{

annihilates a given finite dimensional subspace X; C X.

In this general context, the abstract analysis

of numerical integration is developed and certain specific applications are made.
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1. Introduction

In the development of numerical integration formu-
las, one is given a function space X, say X C C(K),
where K is some locally compact Hausdorff space,
and an integral leX*. It is then desired to find an
leM* C X*, where M* is a subspace generated by a
family of “‘simple’ integrals {x}*} such that [ can be
said to approximate / in some given sense.

In ordinary quadrature, the family {x*} are given
by x¥f=flx)V feC(K) where x.,eK. An element
leM* is said to approximate the given integral [ if
1 —leX} where X} is the subspace in X* of all anni-
hillators of a given subspace X, C X.

The following paper summarizes the essential mathe-
matical structure of numerical integration methods
with the purpose of extending systematically the class
of such methods.

2. General Analysis

Let X C C(K) and let Xy C X be a subspace 3 dim
Xo=n and X, is generated by a given set of n “basis”
functions {fr}. In X* take M* a subspace generated
by a given family {x*} of linearly independent func-
tionals with the properties: M* is total over X, and
{x¥} N X} is void where X§={l; [eX*, [f=0, feX,}.
If M} C M* designates a subspace generated by n of
the x*, say {xai}t=1...n so that dim M;=n, then
one has X*=X{§ + M ¥ since the deficiency of X§ = dim
Xo=n. Also M} is total over X, as is readily seen.

If leX* is a given integral, then } leM}sl=1+ 1[4
where [{eX{ and } such an [ for each subspace M*
as defined above. For any such given subspace M*
} l,‘ EMT, i1=1... n;lifk=6,-k i,k: l1...n Sikzl
i=k, 8;x=0 i+ k. This follows from M* being total

over X().
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The functional [ therefore depends on the selected set
{xX}, that is on M%, on the [f; and on the coefficients
Yij l,j:] o o g 1Ak
The relations Ey,—_,x_’}‘_/};z diki, k=1...n can be
J -
put in matrix form: [''y=1 where I is the identity
matrix, I'= (y;j) Fo=(]fr). Now Iy is nonsingular

for any given M} since M} total over X, implies that

E Tiree e UNF =L
Fot
k=1...n. Hence the matrix I'=1";"is determined
once [’y is known.

If the {fi} are such that the /f; are readily evaluated
then the problem of determining [ is that of specifying
M or a corresponding basis {x%}. Under the con-

ditions imposed thus far with dim X,=dim M¥=n

n is possible only when 7,=0

[ will not in general be unique without additional
conditions on X and/or the M*.

3. Specific Cases

In certain quadrature procedures, such as the New-
ton-Cotes formulas, M} is specified a priori by
choosing the «x. The subspace X, in these
cases is such that the [f; are easily calculated and thus /
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is determined. For instance, the Parabolic Rule has

X3
= dx, where X, is the space over the Reals gen-

erdted by the fj,=x*-1 /;-l ,2,3 and x%f= flx;) for given
real numbers x1, x2 =73 (x +x;) X3.

In Gaussian quadrature methods, the following
additional conditions limit the choice of M. Consider
a subspace X, C X, where X; D X, and X, has genera-
tors {fi}, k=1... p,p>n, fi=fifor k=1 . . . n.
Now if T is a linear transformation on X > fi =Tf/_,
=Tk1f1. Then T induces a linear transformation

Q on X* given by Qlf=Ilf=ITf, VieX*, feX.
Consequently x} /i = (Qxf) fr—1 = (Q*~x™*)f] and one can
write:

l‘fk=2(2 lﬁyij> Q*ffifor k=1 . . . p.

)

Since the matrix To=(}fi)=(Q'xff) for j,

k=1...n is nonsingular the n- tuple (Q"x}f)
j=1 . . . n corresponding to

Tn=y (g Uivs) Q53 f

is linearly dependent on the rows of Iy, i.e.

Qi = kz B0 =1 )
=]
This gives the relationship
Ifn= 2 BAll;. @
Now, if for Mf,={f: feXi, x*f=0.j=1. . . n}

one also assumes: TM,;, CM}, that is, xf=0 implies
K Tf=0=Qxff for j=1 . . . n then this condition,
pjlus the statement

(Qn_éﬁkok_l) f=0 j=1...n (5

will imply that

(QnJrq_E Bkok'+q—1> x;kfl/:() j:] ... n,Vq
k=1
(6)
Taking ¢g=0, 1 . . . n—1 one gets the n equations
[fn+1+q E B’\lflwq (7)

In Gaussian quadrature, the stronger condition
[—l€eX+CXy is imposed. Thus, if [—17€X+, if the
fi+q are such that the [f;,  are readily obtained and if
the matrix L=(lf;,,), k=1 .n,q=0...n—1
is nonsingular then the Bx can be obtained uniquely.

Given the By, solution for the xff/ j=1 . . . nfollows
from the relations (5) when they are solvable. Deter-
mination of the functionals xf j=1 . . . n proceeds
from the values of the x}f; when the x* are sufficiently
51mple for example, a one parameter famlly like those
in the examples below.

Now, L=(lfy,,) is nonsingular if and only if }
scalars

€. +0,k=1. ..

nsl (i ekfk+q) =0

k=1

q=0 . ..

Since these last relations can be written as:
l <i (3 ka71+(I_){‘1>:l <T(1 <k"2 € ka*]) ﬁ):
k=1 =1

one has, in this general context, an orthogonality con-
dition stating that no n—1 degree “polynomial’” in T
is orthogonal in this sense to all n—1 degree poly-
nomials in 7. The n-equations (7) can also be written
as:

I (Tq (Tn—é1 ,eka—l> fl) -

n—1

9)

q=0 . ..

which states that the n degree polynomial T"—
E[SJ'A ! is orthogonal, in this sense, to all n—1

degree polynomials in T.

Thus if X, X;, M} satisfy the conditions imposed,
it was seen in the general section above that}leM ;3
l—1leX§. The preceding discussion shows that if
l—leX{ then (9) follows. Conversely, if + Bx 3(9)
holds one shows directly /—/eX{+ using (5) and (6).
Consequently one has the following statement ana-
logous to the ordinary Gaussian quadrature theorem
[1] which is usually stated in terms of classical orthog-
onal polynomials: If X,, X;, M} satisfy all the condi-
tions imposed above then}leM¥ 5[—IleX+ if and

only if } an n degree ‘“polynomial” T"—E BirTk-1

orthogonal as in (9) to all polynomials in T of degree
<n.

4. Applications

In ordinary Gaussian quadrature, the above spe-
01ahzes to the case where Xo={xi"1; i=1. . . n},
—{t—=1. 2n}, and the {x}} are defined by
x;'ifzf(xa). Then the other Gaussian conditions are
seen to hold when T is 3 (Tf)(x)=f(x)x.

1
An interesting nonclassical application is to /= | dx

on the space X=Co(K)={: feC(K), K=[0, 11/0)=f(1)

=0}. The natural basis functions here are sin mkx
or the equivalent functions fx(x)=sin mx (cos mx)k1.
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Take Xy, X;; with this basis and x* defined by
2 f=f(xa), x.€[0, 1]. Take T3Tf(x) = f(x) cos mx
then TM;;, C M}, and one gets:

1=0.39 (x¥+ x) for n=2
1=0.205 (x + x) + 0.247 (x + x¥) for n=4
1=0.18502 (x + xF)+ 0.12306 (x + x7) for n=6.

+0.16882 (x¥ + x3f)

fx k(x)dx for some
0
Here K= [0, «]

Another application is to /=

weight function k(x) e.g., k(x)= e **
X= {f, feC(K), If exists, frf(t)dt exists
0

and is easily obtained for arbitrary xeK}-

Take fii (x) =kxk=1, let xff= k(&) jf(x)dx. For x,

'I.j*l
=0 xj-1<¢ <x and take T given by Tfix)=xf(x)
F ’ S)dt then TM3 C M and one gets:

0

7:0.922f ldx+0.l‘)5f

Iy

2
dx

X g

for n=2.

where xo=0, x;,=0.754, x,=1.734

[=0.9798 fxl (lx+0.()]88f ;[.x+().138()f dx
Io Iy X2

T4
+0.0051 f dx

Xy

for n=14

where 0= O, S = 04239 Xoi— 1014
e=1.792 . —2.640
7:0.99200f " dx+0.81425 f” dx +0.41032 jm dx
xIg &Iy L2
+0.09445 f e

£0.00702 f “ dx +0.00008 f s

&Iy

for n=6

where xo=0 x;,=0.27779 x2=0.68991
x3=1.2090 xs=1.8138 x5 =2.5104
x6=3.3556.

Greater detail on the development of such formulas
and their utility will be given in a subsequent paper.

5. References

[1] Hildebrand, F. B., Introduction to Numerical Analysis, p. 319
(Mec-Graw-Hill Book Co., Inc., New York, N.Y. 1956).

[2] Ezrohi. I. A., General Forms of the Remainder Terms of Linear
Formulas in Multidimensional Approximate Analysis I and I1.
Math Sbornik 38 (80) p. 389; Math Rev. 18, 33. Math Shornik
43 (85) p. 9; Math Rev. 19, 1199.

[3] Hammer, P. C., Numerical Evaluation of Multiple Integrals
on Numerical Approximation, p. 99, ed. R. E. Langer, Univer-
sity of Wisconsin (1959).

[4] Remez, E. I., On Certain Classes of Linear Functionals in the
Spaces C,, and on the Remainder Term in Formulas of Approxi-
mate Analysis | and II. Trudy In-Ta Matem Akad, Nauk,
Ukr. S.S.R.3, p. 21. Trudy In-Ta Matem, Akad, Nauk, Ukr.
S.S.R.4, p. 47, Math Rev 2, 195.

[5] Sard, A., Function spaces and approximation, Amer. Math. Soc.
Numerical Analysis Proc. Symp. Appl. Math 6, 177.

[6] Day, M. M., Normed Linear Spaces (Springer, Berlin, 1958).

(Paper 70B—-173)

139



	jresv70Bn2p_137
	jresv70Bn2p_138
	jresv70Bn2p_139
	jresv70Bn2p_140

