## The Form Factor of the Fermi Model Spatial Distribution

## L. C. Maximon and R. A. Schrack

## (October 19, 1965)

A useful analytic expression for the form factor  $F(q) = \int \rho(r)e^{i\mathbf{q}\cdot\mathbf{r}}d^{s}\mathbf{r}$  of the Fermi distribution  $\rho(r) = \rho_0[1 + e^{(r-c)/a}]^{-1}$  is derived. This expression consists of a simple term with elementary functions plus a rapidly convergent infinite series with terms of alternating sign. Tables of the form factor as a function of q for several values of the parameters c and a, as well as the numerical values of the normalization constant  $\rho_0$  and the rms radius corresponding to these values of the parameters, are also given.

Key Words: Analytic, fermi distribution, form factor, momentum transfer, normalization constant, root-mean-square radius.

In the calculation of a cross section in the Born approximation the spatial distribution of the interaction may be represented by the inclusion of a form factor which is its Fourier transform. The reaction amplitude for a distributed interaction is then the form factor F times the reaction amplitude for a point interaction. The form factor squared thus enters expressions for the cross section. The concept of the form factor has been utilized in atomic physics for some time and now is used widely in nuclear and particle physics to characterize the effects of the spatial distribution of the interaction.

The form factor F is generally given as a function of the momentum q transferred by the incident particle (represented by a plane wave) to the interacting particle. If the spherically symmetric spatial distribution of the interacting particle is given by  $\rho(r)$ , then the form factor associated with it is given by the Fourier transform of  $\rho(r)$ :

$$F(q) = \int \rho(r)e^{i\mathbf{q}\cdot\mathbf{r}} d^3\mathbf{r} = \frac{4\pi}{q} \int_0^\infty \rho(r)r \sin qr \, dr.$$
(1)

The density is normalized so that

 $\int \rho(r) d^3 \mathbf{r} = 1., \qquad (2)$ 

from which

$$F(0) = 1.$$
 (3)

There are several collections of form factors for various models of the spatial distribution (for example, density distributions in nuclei) in the literature [1, 2, 3, 4].

One of the most widely used models is not included in most collections of form factors. It is defined by the spatial distribution:

$$\rho(r) = \rho_0 / (1 + \exp((r - c)/a))$$
(4)

where the normalization constant  $\rho_0$  is chosen so that (2) is satisfied. The parameters a and c determine the shape of the spatial distribution.

This model has been named variously the Fermi smoothed uniform model, [1] the Fermi 2-parameter model, [4] the smoothed uniform model, [5] the Saxon-Woods distribution, [6] or simply the Fermi distribution [7].

An analytic expression for the form factor of the Fermi distribution has been presented but it is incomplete [8]. In this paper the complete expressions for this form factor, mean square radius of the density distribution and normalization constant will be presented together with tabulated evaluations. The effect of simplifying assumptions is examined.

The mean square radius of the distribution is given by

$$\langle r^2 \rangle = \int r^2 \rho(r) d^3 \mathbf{r} \tag{5}$$

and may be obtained directly from our analytic expression for F(q): Expanding (1) in a power series, we have, for small q,

$$F(q) = 1 - 1/6 \langle r^2 \rangle q^2 + \dots$$
 (6)

so that

$$\langle r^2 \rangle = -6 \left. \frac{\partial F}{\partial (q^2)} \right|_{q=0}$$
(7)

Proceeding now to the derivation of F(q), we have, substituting (4) in (1),

$$F(q) = \frac{4\pi\rho_0}{q} \int_0^\infty \frac{r \sin qr \, dr}{1 + e^{(r-c)/a}} = -\frac{4\pi\rho_0}{q} \cdot \operatorname{Re} \frac{\partial}{\partial q} \int_0^\infty \frac{e^{iqr} \, dr}{1 + e^{(r-c)/a}}.$$
(8)

Making the change of variables

$$x = e^{-r/a}, \ b = e^{-c/a}, \ \beta = qa \tag{9}$$

we then obtain

$$F(q) = -\frac{4\pi\rho_0 a^3}{b\beta} \operatorname{Re} \frac{\partial}{\partial\beta} \int_0^1 x^{-i\beta} (1+b^{-1}x)^{-1} dx.$$
(10)

The integral appearing here is one form of the hypergeometric function: [9]

$${}_{2}F_{1}(a, b; c; z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-zt)^{-a} dt.$$
(11)

Thus

$$\int_{0}^{1} x^{-i\beta} (1+b^{-1}x)^{-1} dx = (1-i\beta)^{-1} {}_{2}F_{1}(1, 1-i\beta; 2-i\beta; -b^{-1}).$$
(12)

Transforming the hypergeometric function in (12) [9]

$${}_{2}F_{1}(a, b; c; z) = \frac{\Gamma(c)\Gamma(b-a)}{\Gamma(b)\Gamma(c-a)} (-z)^{-a}{}_{2}F_{1}(a, 1-c+a; 1-b+a; z^{-1}) + \frac{\Gamma(c)\Gamma(a-b)}{\Gamma(a)\Gamma(c-b)} (-z)^{-b} {}_{2}F_{1}(b, 1-c+b; 1-a+b; z^{-1})$$
(13)

we then have

$$F(q) = -\frac{4\pi\rho_0 a^3}{\beta} \operatorname{Re} \frac{\partial}{\partial\beta} \left\{ -\frac{1}{i\beta} \,_2 F_1(1, \, i\beta; \, 1+i\beta; -b) + \frac{\pi b^{-i\beta}}{i \, \sinh \, \pi\beta} \right\}$$
(14)

where we have made use of the fact that if either of its first two parameters is zero, the hypergeometric function is unity, and also that [9]

$$\Gamma(1-i\beta)\Gamma(i\beta) = \frac{\pi}{i \sinh \pi\beta} \,. \tag{15}$$

Using the power series expansion for the hypergeometric function

$${}_{2}F_{1}(a, b; c; z) = 1 + \frac{ab}{c} \frac{z}{1!} + \frac{a(a+1)b(b+1)}{c(c+1)} \frac{z^{2}}{2!} + \dots$$
(16)

we have, for the first term in (14)

$$-\frac{1}{i\beta} {}_{2}F_{1}(1, i\beta; 1+i\beta; -b) = -\frac{1}{i\beta} + \frac{b}{1+i\beta} - \frac{b^{2}}{2+i\beta} + \dots$$
(17)

from which

$$\operatorname{Re} \frac{\partial}{\partial \beta} \left\{ -\frac{1}{i\beta} \,_{2}F_{1}(1, i\beta; 1+i\beta; -b) \right\} = -2\beta \left[ \frac{b}{(1+\beta^{2})^{2}} - \frac{2b^{2}}{(2^{2}+\beta^{2})^{2}} + \frac{3b^{3}}{(3^{2}+\beta^{2})^{2}} - \dots \right] \cdot \quad (18)$$

The evaluation of the second term in (14) is straightforward:

$$\operatorname{Re} \frac{\partial}{\partial \beta} \left\{ \frac{\pi b^{-i\beta}}{i \sinh \pi \beta} \right\} = \frac{-\pi}{\beta \sinh^2 \pi \beta} \left[ \pi \beta \cosh \left( \pi \beta \right) \sin qc - qc \sinh \left( \pi \beta \right) \cos qc \right].$$
(19)

Thus, finally, substituting (18) and (19) in (14) we have, in terms of the original parameters,

$$F(q) = \frac{4\pi^2 \rho_0 a^3}{(qa)^2 \sinh^2(\pi qa)} \left[\pi qa \cosh(\pi qa) \sin(qc) - qc \cos(qc) \sinh(\pi qa)\right] + 2 e^{-\frac{1}{2}} e^{-\frac{1}{2}} \sum_{n=1}^{\infty} (-1)^{n-1} e^{-\frac{nc}{a}}$$
(20)

$$+ 8\pi\rho_0 a^3 \sum_{n=1}^{\infty} (-1)^{n-1} \frac{ne^{-\frac{m}{a}}}{[n^2 + (qa)^2]^2} \cdot$$
(20)

This expression, without the infinite series, has been given previously by Blankenbecler [8]. To determine  $\rho_0$ , we take the limit of (20) as  $q \rightarrow 0$ . From (3), the left-hand side of (20) is unity, so that

$$\rho_0 = \left\{ \frac{4\pi c}{3} \left[ (\pi a)^2 + c^2 \right] + 8\pi a^3 \sum_{n=1}^{\infty} (-1)^{n-1} \frac{e^{-\frac{nc}{a}}}{n^3} \right\}^{-1} \cdot$$
(21)

For  $\langle r^2 \rangle$ , we have, substituting (20) in (7), and carrying out the differentiation,

$$\langle \mathbf{r}^2 \rangle = \rho_0 \left\{ \frac{4\pi c}{3} \left[ (\pi a)^2 + c^2 \right] \left[ \frac{7}{5} (\pi a)^2 + \frac{3}{5} c^2 \right] + 96\pi a^5 \sum_{n=1}^{\infty} (-1)^{n-1} \frac{e^{-\frac{nc}{a}}}{n^5} \right\}.$$
 (22)

The expressions (21) and (22) have been given previously by Elton [10].

| 1 | ARLE  | 1 |
|---|-------|---|
|   | TIDLL | - |

| с  | a   | $ ho_0$            | $ ho_0'$           | $\langle r^2  angle^{1/2}$ | $\langle r^2 \rangle^{\prime1/2}$ |
|----|-----|--------------------|--------------------|----------------------------|-----------------------------------|
| 2. | 0.  | $2.984^{*}10^{-2}$ | $2.984^{*}10^{-2}$ | 1.5492                     | 1.5492                            |
| 2. | 0.2 | $2.716^{*}10^{-2}$ | $2.716^{*}10^{-2}$ | 1.7183                     | 1.7183                            |
| 2. | .4  | $2.139^{*}10^{-2}$ | $2.140^{*}10^{-2}$ | 2.1471                     | 2.1473                            |
| 2. | .6  | $1.576^{*}10^{-2}$ | $1.580*10^{-2}$    | 2.7139                     | 2.7156                            |
| 2. | .8  | $1.143*10^{-2}$    | $1.157*10^{-2}$    | 3.3468                     | 3.3531                            |
| 2. | 1.0 | 8.365*10-3         | 8.606*10-3         | 4.0129                     | 4.0271                            |
| 2. | 1.2 | $6.227*10^{-3}$    | $6.554*10^{-3}$    | 4.6969                     | 4.7220                            |
| 2. | 1.4 | $4.725*10^{-3}$    | $5.113*10^{-3}$    | 5.3914                     | 5.4297                            |
| 2. | 1.6 | $3.654*10^{-3}$    | $4.079^{*}10^{-3}$ | 6.0925                     | 6.1459                            |
| 2. | 1.8 | 2.875*10-3         | $3.318*10^{-3}$    | 6.7979                     | 6.8679                            |
| 2. | 2.  | $2.298*10^{-3}$    | $2.745*10^{-3}$    | 7.5063                     | 7.5941                            |

Calculations of F(q), the normalization constant  $\rho_0$ , radius  $\langle r^2 \rangle$  are given respectively in expressions (20), (21), and (22). It is interesting to see under what conditions the summation terms appearing in these expressions can be dropped without serious effect on the accuracy of the calculation. In table 1 the primed values are obtained by dropping the sum terms, resulting in the following expressions:

$$\langle r^2 \rangle' = \frac{1}{5} \left[ 7 (\pi a)^2 + 3c^2 \right]$$
 (23)

$$\rho_0' = \left\{ \frac{4\pi c}{3} \left[ (\pi a)^2 + c^2 \right] \right\}^{-1} .$$
(24)





FIGURE 1. The ordinate is the fraction  $T_1$  that the sum terms contribute in the calculation of the normalization constant  $\rho_0$  and the rms radius as a function of the ratio a/c of the Fermi model parameters.



TABLE 2

| TABLE | 3 |
|-------|---|
|-------|---|

6.295E - 03

6.283E-03 6.268E - 03

6.249E - 03

6.224E - 03

6.102 F = 036.152E - 036.152E - 03

6.101E - 03

6.037E - 03

5.957E - 03

5.857E - 03

5.734E - 03

5.582E - 035,400E - 03

5.182E - 03

4.926E-03 4.633E - 03

4.305E - 03

3.945E - 03 3.563E - 03

3.169E - 03

2.775E - 032.393E - 03

2.033E - 031.705E - 03

1.411E - 03

1.156E - 039.383E - 04

7.555E - 04

6.043E - 04

4.808E - 04

3.808E - 04

3.006E - 042.366E - 04

1.858E - 04

1.456E - 041.140E - 04

8.913E-05

6.963E - 05

5.436E-05 4.242E - 05

3.308E - 05

2.580E - 05

2.011E - 05

1.567E - 05

1.221E - 05

9.514E - 06

7.412E - 06

5774E - 06

4.498E - 06

3.503E-06

|                                                                                              |                                                                                                                |                                                                                                                  | And the second se | the subscript of the su | and the second s |                                        | the second se | The summer of the summer su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                          |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| ρ                                                                                            | 0 = 8.04766                                                                                                    | c = 3.00<br>7E - 03                                                                                              | a = 0.30<br>rms = 2.5775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 507E 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ ho_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 6.33782                              | c = 3.00<br>3E - 03                                                                                             | a = 0.60<br>rms = 3.2206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87E 00                                                   |
|                                                                                              | r/c                                                                                                            | r                                                                                                                | $ ho /  ho_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r/c                                    | r                                                                                                               | $ ho/ ho_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ρ                                                        |
| $     \begin{array}{c}       1 \\       2 \\       3 \\       4 \\       5     \end{array} $ | 0.<br>.05<br>.10<br>.15<br>.20                                                                                 | 0.<br>.15<br>.30<br>.45<br>.60                                                                                   | $\begin{array}{c} 10.000\mathrm{E}-01\\ 9.999\mathrm{E}-01\\ 9.999\mathrm{E}-01\\ 9.998\mathrm{E}-01\\ 9.997\mathrm{E}-01\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 8.047\mathrm{E}-03\\ 8.047\mathrm{E}-03\\ 8.047\mathrm{E}-03\\ 8.046\mathrm{E}-03\\ 8.045\mathrm{E}-03\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.<br>.05<br>.10<br>.15                | 0.<br>.15<br>.30<br>.45                                                                                         | 9.933E - 01<br>9.914E - 01<br>9.890E - 01<br>9.859E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.295<br>6.283<br>6.268<br>6.249                         |
| 6<br>7<br>8<br>9<br>10                                                                       | .25<br>.30<br>.35<br>.40<br>.45                                                                                | .75<br>.90<br>1.05<br>1.20<br>1.35                                                                               | $\begin{array}{c} 9.994E - 01 \\ 9.991E - 01 \\ 9.985E - 01 \\ 9.975E - 01 \\ 9.959E - 01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 8.043 \text{E} - 03 \\ 8.040 \text{E} - 03 \\ 8.036 \text{E} - 03 \\ 8.028 \text{E} - 03 \\ 8.015 \text{E} - 03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .20<br>.25<br>.30<br>.35<br>.40<br>.45 | .60<br>.75<br>.90<br>1.05<br>1.20<br>1.35                                                                       | 9.820E - 01 $9.770E - 01$ $9.707E - 01$ $9.627E - 01$ $9.526E - 01$ $9.399E - 01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.224)<br>6.192]<br>6.152]<br>6.101]<br>6.037]<br>5.957] |
| $11 \\ 12 \\ 13 \\ 14 \\ 15$                                                                 | .50<br>.55<br>.60<br>.65<br>.70                                                                                | $     \begin{array}{r}       1.50 \\       1.65 \\       1.80 \\       1.95 \\       2.10 \\       \end{array} $ | 9.933E - 01<br>9.890E - 01<br>9.820E - 01<br>9.707E - 01<br>9.526E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.994E - 03<br>7.959E - 03<br>7.903E - 03<br>7.812E - 03<br>7.666E - 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $11 \\ 12 \\ 13 \\ 14 \\ 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .50<br>.55<br>.60<br>.65<br>.70        | 1.50<br>1.65<br>1.80<br>1.95<br>2.10                                                                            | 9.241E - 01 9.047E - 01 8.808E - 01 8.520E - 01 8.176E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.857]<br>5.734]<br>5.582]<br>5.400<br>5.182             |
| 16<br>17<br>18<br>19<br>20                                                                   | .75<br>.80<br>.85<br>.90<br>.95                                                                                | 2.25<br>2.40<br>2.55<br>2.70<br>2.85                                                                             | 9.241E - 01<br>8.808E - 01<br>8.176E - 01<br>7.311E - 01<br>6.225E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.437E = 03<br>7.088E = 03<br>6.580E = 03<br>5.883E = 03<br>5.009E = 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16<br>17<br>18<br>19<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .75<br>.80<br>.85<br>.90<br>.95        | 2.25<br>2.40<br>2.55<br>2.70<br>2.85                                                                            | $\begin{array}{c} 7.773 \text{E} - 01 \\ 7.311 \text{E} - 01 \\ 6.792 \text{E} - 01 \\ 6.225 \text{E} - 01 \\ 5.622 \text{E} - 01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.926<br>4.633<br>4.305<br>3.945<br>3.563                |
| 21<br>22<br>23<br>24<br>25                                                                   | 1.00<br>1.05<br>1.10<br>1.15<br>1.20                                                                           | 3.00<br>3.15<br>3.30<br>3.45<br>3.60                                                                             | 5.000E - 01<br>3.775E - 01<br>2.689E - 01<br>1.824E - 01<br>1.192E - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.024E - 03<br>3.038E - 03<br>2.164E - 03<br>1.468E - 03<br>9.593E - 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21<br>22<br>23<br>24<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.00 \\ 1.05 \\ 1.10 \\ 1.15 \\ 1.20$ | 3.00<br>3.15<br>3.30<br>3.45<br>3.60                                                                            | $5.000E - 01 \\ 4.378E - 01 \\ 3.775E - 01 \\ 3.208E - 01 \\ 2.689E - 01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.169<br>2.775<br>2.393<br>2.033<br>1.705                |
| 26<br>27<br>28<br>29<br>30                                                                   | $     \begin{array}{r}       1.25 \\       1.30 \\       1.35 \\       1.40 \\       1.45 \\     \end{array} $ | 3.75<br>3.90<br>4.05<br>4.20<br>4.35                                                                             | 7.586E - 02 4.743E - 02 2.931E - 02 1.799E - 02 1.099E - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.105E - 04<br>3.817E - 04<br>2.359E - 04<br>1.447E - 04<br>8.842E - 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26<br>27<br>28<br>29<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1.25 \\ 1.30 \\ 1.35 \\ 1.40 \\ 1.45$ | 3.75<br>3.90<br>4.05<br>4.20<br>4.35                                                                            | 2.227E - 01<br>1.824E - 01<br>1.480E - 01<br>1.192E - 01<br>9.535E - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.4111<br>1.156<br>9.3831<br>7.5551<br>6.043             |
| 31<br>32<br>33<br>34<br>35                                                                   | $     \begin{array}{r}       1.50 \\       1.55 \\       1.60 \\       1.65 \\       1.70 \\     \end{array} $ | $\begin{array}{r} 4.50 \\ 4.65 \\ 4.80 \\ 4.95 \\ 5.10 \end{array}$                                              | $\begin{array}{c} 6.693\mathrm{E}-03\\ 4.070\mathrm{E}-03\\ 2.473\mathrm{E}-03\\ 1.501\mathrm{E}-03\\ 9.111\mathrm{E}-04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.386E - 05<br>3.276E - 05<br>1.990E - 05<br>1.208E - 05<br>7.332E - 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $31 \\ 32 \\ 33 \\ 34 \\ 35$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.50<br>1.55<br>1.60<br>1.65<br>1.70   | 4.50<br>4.65<br>4.80<br>4.95<br>5.10                                                                            | 7.586E - 02 6.009E - 02 4.743E - 02 3.733E - 02 2.931E - 02 2.9 | 4.808]<br>3.808]<br>3.006]<br>2.366]<br>1.858]           |
| 36<br>37<br>38<br>39<br>40                                                                   | 1.75<br>1.80<br>1.85<br>1.90<br>1.95                                                                           | 5.25<br>5.40<br>5.55<br>5.70<br>5.85                                                                             | $5.528E - 04 \\ 3.354E - 04 \\ 2.034E - 04 \\ 1.234E - 04 \\ 7.485E - 05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{r} 4.449\mathrm{E} - 06\\ 2.699\mathrm{E} - 06\\ 1.637\mathrm{E} - 06\\ 9.930\mathrm{E} - 07\\ 6.023\mathrm{E} - 07\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36<br>37<br>38<br>39<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.75<br>1.80<br>1.85<br>1.90           | 5.25<br>5.40<br>5.55<br>5.70<br>5.85                                                                            | 2.931E = 02<br>2.298E = 02<br>1.799E = 02<br>1.406E = 02<br>1.099E = 02<br>8.577E = 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.456<br>1.140<br>8.913<br>6.963<br>5.436                |
| 41<br>42<br>43<br>44<br>45                                                                   | $2.00 \\ 2.05 \\ 2.10 \\ 2.15 \\ 2.20$                                                                         | $\begin{array}{c} 6.00 \\ 6.15 \\ 6.30 \\ 6.45 \\ 6.60 \end{array}$                                              | $\begin{array}{c} 4.540\mathrm{E}-05\\ 2.754\mathrm{E}-05\\ 1.670\mathrm{E}-05\\ 1.013\mathrm{E}-05\\ 6.144\mathrm{E}-06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 3.653\mathrm{E}-07\\ 2.216\mathrm{E}-07\\ 1.344\mathrm{E}-07\\ 8.152\mathrm{E}-08\\ 4.945\mathrm{E}-08\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41<br>42<br>43<br>44<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.00<br>2.05<br>2.10<br>2.15<br>2.20   | 6.00<br>6.15<br>6.30<br>6.45<br>6.60                                                                            | $\begin{array}{c} 6.693E - 03 \\ 5.220E - 03 \\ 4.070E - 03 \\ 3.173E - 03 \\ 2.473E - 03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.242]<br>3.308]<br>2.580]<br>2.011]<br>1.567]           |
| 46<br>47<br>48<br>49<br>50                                                                   | $2.25 \\ 2.30 \\ 2.35 \\ 2.40 \\ 2.45$                                                                         | 6.75<br>6.90<br>7.05<br>7.20<br>7.35                                                                             | $\begin{array}{c} 3.727\mathrm{E}-06\\ 2.260\mathrm{E}-06\\ 1.371\mathrm{E}-06\\ 8.315\mathrm{E}-07\\ 5.043\mathrm{E}-07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 2.999\mathrm{E}-08\\ 1.819\mathrm{E}-08\\ 1.103\mathrm{E}-08\\ 6.692\mathrm{E}-09\\ 4.059\mathrm{E}-09\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46<br>47<br>48<br>49<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.25<br>2.30<br>2.35<br>2.40<br>2.45   | 6.75<br>6.90<br>7.05<br>7.20<br>7.35                                                                            | $1.927E - 03 \\ 1.501E - 03 \\ 1.170E - 03 \\ 9.111E - 04 \\ 7.097E - 04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2211<br>9.5141<br>7.4121<br>5.7741<br>4.4981           |
| 51                                                                                           | 2.50                                                                                                           | 7.50                                                                                                             | 3.059E - 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.462E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.50                                   | 7.50                                                                                                            | 5.528E - 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.503                                                    |

Figure 1 shows the fraction of the total that the sum terms contribute. In most cases (where a/c < 0.3) the short expressions, in which the sum terms are dropped, can be used with adequate accuracy. Figure 2 shows the effect of the sum terms on the form factor calculation. For values of  $q \langle r^2 \rangle^{1/2} < 1$  the sum terms can be dropped when a/c < 0.3, but for large values of  $q \langle r^2 \rangle^{1/2}$  the sum terms become important for all a/c. Tables 2 to 6 give values of the density distribution and tables 7 to 11 values of the form factor for various values of c and a. It should be noted that the model can be scaled. The important parameters in the description of a model are c and a/c. For example, if:

(25)

and

then

\_

$$\frac{a_2}{c_2} = \frac{a_1}{c_1}$$
(26)

$$\langle r_2^2 \rangle = m^2 \langle r_1^2 \rangle, \tag{27}$$

$$\rho_{0_2} = m^{-3} \rho_{0_1}, \tag{28}$$

c = 3.00 $\rho_0 = 3.387275 \text{E} - 3$ 

r

r/c

TABLE 5

a = 1.20rms = 5.020226E 00

ρ

 $ho / 
ho_0$ 

TABLE 4

| c = 3.00<br>$\rho_0 = 4.668352E - 03$                                                        |                                        |                                                                       | a = 0.90<br>, rms = 4.0707                                                                                                              | 780E 00                                                                                                                                 |
|----------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                              | r/c                                    | r                                                                     | $ ho /  ho_0$                                                                                                                           | ρ                                                                                                                                       |
| $     \begin{array}{c}       1 \\       2 \\       3 \\       4 \\       5     \end{array} $ | 0.<br>.05<br>.10<br>.15<br>.20         | 0.<br>.15<br>.30<br>.45<br>.60                                        | $\begin{array}{c} 9.656\mathrm{E}-01\\ 9.596\mathrm{E}-01\\ 9.526\mathrm{E}-01\\ 9.445\mathrm{E}-01\\ 9.350\mathrm{E}-01 \end{array}$   | $\begin{array}{c} 4.508\mathrm{E}-03\\ 4.480\mathrm{E}-03\\ 4.447\mathrm{E}-03\\ 4.409\mathrm{E}-03\\ 4.365\mathrm{E}-03 \end{array}$   |
| 6<br>7<br>8<br>9<br>10                                                                       | .25<br>.30<br>.35<br>.40<br>.45        | $\begin{array}{c} .75\\ .90\\ 1.05\\ 1.20\\ 1.35\end{array}$          | $\begin{array}{c} 9.241E-01\\ 9.116E-01\\ 8.972E-01\\ 8.808E-01\\ 8.622E-01\\ \end{array}$                                              | $\begin{array}{c} 4.314\mathrm{E}-03\\ 4.256\mathrm{E}-03\\ 4.189\mathrm{E}-03\\ 4.112\mathrm{E}-03\\ 4.025\mathrm{E}-03 \end{array}$   |
| 11<br>12<br>13<br>14<br>15                                                                   | .50<br>.55<br>.60<br>.65<br>.70        | $ \begin{array}{c} 1.50 \\ 1.65 \\ 1.80 \\ 1.95 \\ 2.10 \end{array} $ | $\begin{array}{c} 8.411E - 01 \\ 8.176E - 01 \\ 7.914E - 01 \\ 7.625E - 01 \\ 7.311E - 01 \end{array}$                                  | $\begin{array}{c} 3.927\mathrm{E}-03\\ 3.817\mathrm{E}-03\\ 3.694\mathrm{E}-03\\ 3.560\mathrm{E}-03\\ 3.413\mathrm{E}-03 \end{array}$   |
| 16<br>17<br>18<br>19<br>20                                                                   | .75<br>.80<br>.85<br>.90<br>.95        | 2.25<br>2.40<br>2.55<br>2.70<br>2.85                                  | $\begin{array}{c} 6.971\mathrm{E}-01\\ 6.608\mathrm{E}-01\\ 6.225\mathrm{E}-01\\ 5.826\mathrm{E}-01\\ 5.416\mathrm{E}-01 \end{array}$   | $\begin{array}{c} 3.254\mathrm{E}-03\\ 3.085\mathrm{E}-03\\ 2.906\mathrm{E}-03\\ 2.720\mathrm{E}-03\\ 2.528\mathrm{E}-03 \end{array}$   |
| 21<br>22<br>23<br>24<br>25                                                                   | $1.00 \\ 1.05 \\ 1.10 \\ 1.15 \\ 1.20$ | 3.00<br>3.15<br>3.30<br>3.45<br>3.60                                  | $\begin{array}{c} 5.000\mathrm{E}-01\\ 4.584\mathrm{E}-01\\ 4.174\mathrm{E}-01\\ 3.775\mathrm{E}-01\\ 3.392\mathrm{E}-01 \end{array}$   | $\begin{array}{c} 2.334\mathrm{E}-03\\ 2.140\mathrm{E}-03\\ 1.949\mathrm{E}-03\\ 1.762\mathrm{E}-03\\ 1.584\mathrm{E}-03\\ \end{array}$ |
| 26<br>27<br>28<br>29<br>30                                                                   | $1.25 \\ 1.30 \\ 1.35 \\ 1.40 \\ 1.45$ | $\begin{array}{c} 3.75 \\ 3.90 \\ 4.05 \\ 4.20 \\ 4.35 \end{array}$   | $\begin{array}{c} 3.029\mathrm{E}-01\\ 2.689\mathrm{E}-01\\ 2.375\mathrm{E}-01\\ 2.086\mathrm{E}-01\\ 1.824\mathrm{E}-01 \end{array}$   | $\begin{array}{c} 1.414\mathrm{E}-03\\ 1.256\mathrm{E}-03\\ 1.109\mathrm{E}-03\\ 9.739\mathrm{E}-04\\ 8.516\mathrm{E}-04 \end{array}$   |
| 31<br>32<br>33<br>34<br>35                                                                   | $1.50 \\ 1.55 \\ 1.60 \\ 1.65 \\ 1.70$ | $\begin{array}{r} 4.50 \\ 4.65 \\ 4.80 \\ 4.95 \\ 5.10 \end{array}$   | $\begin{array}{c} 1.589\mathrm{E}-01\\ 1.378\mathrm{E}-01\\ 1.192\mathrm{E}-01\\ 1.028\mathrm{E}-01\\ 8.840\mathrm{E}-02 \end{array}$   | $\begin{array}{c} 7.417\mathrm{E}-04\\ 6.435\mathrm{E}-04\\ 5.565\mathrm{E}-04\\ 4.798\mathrm{E}-04\\ 4.127\mathrm{E}-04 \end{array}$   |
| 36<br>37<br>38<br>39<br>40                                                                   | 1.75<br>1.80<br>1.85<br>1.90<br>1.95   | 5.25<br>5.40<br>5.55<br>5.70<br>5.85                                  | $\begin{array}{c} 7.586\mathrm{E}-02\\ 6.497\mathrm{E}-02\\ 5.555\mathrm{E}-02\\ 4.743\mathrm{E}-02\\ 4.044\mathrm{E}-02 \end{array}$   | $\begin{array}{c} 3.541\mathrm{E}-04\\ 3.033\mathrm{E}-04\\ 2.593\mathrm{E}-04\\ 2.214\mathrm{E}-04\\ 1.888\mathrm{E}-04 \end{array}$   |
| 41<br>42<br>43<br>44<br>45                                                                   | $2.00 \\ 2.05 \\ 2.10 \\ 2.15 \\ 2.20$ | $\begin{array}{c} 6.00 \\ 6.15 \\ 6.30 \\ 6.45 \\ 6.60 \end{array}$   | $\begin{array}{c} 3.445\mathrm{E}-02\\ 2.931\mathrm{E}-02\\ 2.492\mathrm{E}-02\\ 2.118\mathrm{E}-02\\ 1.799\mathrm{E}-02\\ \end{array}$ | $\begin{array}{c} 1.608\mathrm{E}-04\\ 1.368\mathrm{E}-04\\ 1.164\mathrm{E}-04\\ 9.887\mathrm{E}-05\\ 8.397\mathrm{E}-05\\ \end{array}$ |
| 46<br>47<br>48<br>49<br>50                                                                   | $2.25 \\ 2.30 \\ 2.35 \\ 2.40 \\ 2.45$ | 6.75<br>6.90<br>7.05<br>7.20<br>7.35                                  | $\begin{array}{c} 1.527\mathrm{E}-02\\ 1.295\mathrm{E}-02\\ 1.099\mathrm{E}-02\\ 9.316\mathrm{E}-03\\ 7.897\mathrm{E}-03 \end{array}$   | $\begin{array}{c} 7.127\mathrm{E}-05\\ 6.047\mathrm{E}-05\\ 5.129\mathrm{E}-05\\ 4.349\mathrm{E}-05\\ 3.687\mathrm{E}-05 \end{array}$   |
| 51                                                                                           | 2.50                                   | 7.50                                                                  | 6.693E-03                                                                                                                               | 3.124E - 05                                                                                                                             |

| 1<br>2<br>3<br>4<br>5        | 0.<br>.05<br>.10<br>.15<br>.20         | $0. \\ .15 \\ .30 \\ .45 \\ .60$                                    | $\begin{array}{c} 9.241\mathrm{E}-01\\ 9.149\mathrm{E}-01\\ 9.047\mathrm{E}-01\\ 8.933\mathrm{E}-01\\ 8.808\mathrm{E}-01 \end{array}$                    | 3.130E - 03<br>3.099E - 03<br>3.064E - 03<br>3.026E - 03<br>2.984E - 03                                                                 |
|------------------------------|----------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 6<br>7<br>8<br>9<br>10       | .25<br>.30<br>.35<br>.40<br>.45        | .75<br>.90<br>1.05<br>1.20<br>1.35                                  | $\begin{array}{c} 8.670 \pm -01 \\ 8.520 \pm -01 \\ 8.355 \pm -01 \\ 8.176 \pm -01 \\ 7.982 \pm -01 \end{array}$                                         | $\begin{array}{c} 2.937\mathrm{E}-03\\ 2.886\mathrm{E}-03\\ 2.830\mathrm{E}-03\\ 2.769\mathrm{E}-03\\ 2.704\mathrm{E}-03 \end{array}$   |
| $11 \\ 12 \\ 13 \\ 14 \\ 15$ | .50<br>.55<br>.60<br>.65<br>.70        | 1.50<br>1.65<br>1.80<br>1.95<br>2.10                                | $\begin{array}{c} 7.773E-01\\ 7.549E-01\\ 7.311E-01\\ 7.058E-01\\ 6.792E-01 \end{array}$                                                                 | $\begin{array}{c} 2.633\mathrm{E}-03\\ 2.557\mathrm{E}-03\\ 2.476\mathrm{E}-03\\ 2.391\mathrm{E}-03\\ 2.301\mathrm{E}-03 \end{array}$   |
| 16<br>17<br>18<br>19<br>20   | .75<br>.80<br>.85<br>.90<br>.95        | 2.25<br>2.40<br>2.55<br>2.70<br>2.85                                | $\begin{array}{c} 6.514\mathrm{E}-01\\ 6.225\mathrm{E}-01\\ 5.927\mathrm{E}-01\\ 5.622\mathrm{E}-01\\ 5.312\mathrm{E}-01 \end{array}$                    | $\begin{array}{c} 2.206\mathrm{E}-03\\ 2.108\mathrm{E}-03\\ 2.008\mathrm{E}-03\\ 1.904\mathrm{E}-03\\ 1.799\mathrm{E}-03 \end{array}$   |
| 21<br>22<br>23<br>24<br>25   | $1.00 \\ 1.05 \\ 1.10 \\ 1.15 \\ 1.20$ | 3.00<br>3.15<br>3.30<br>3.45<br>3.60                                | $\begin{array}{c} 5.000 \mathrm{E} - 01 \\ 4.688 \mathrm{E} - 01 \\ 4.378 \mathrm{E} - 01 \\ 4.073 \mathrm{E} - 01 \\ 3.775 \mathrm{E} - 01 \end{array}$ | 1.694E - 03<br>1.588E - 03<br>1.483E - 03<br>1.380E - 03<br>1.279E - 03                                                                 |
| 26<br>27<br>28<br>29<br>30   | $1.25 \\ 1.30 \\ 1.35 \\ 1.40 \\ 1.45$ | 3.75<br>3.90<br>4.05<br>4.20<br>4.35                                | $\begin{array}{c} 3.486E - 01 \\ 3.208E - 01 \\ 2.942E - 01 \\ 2.689E - 01 \\ 2.451E - 01 \end{array}$                                                   | 1.181E - 03<br>1.087E - 03<br>9.966E - 04<br>9.110E - 04<br>8.302E - 04                                                                 |
| 31<br>32<br>33<br>34<br>35   | $1.50 \\ 1.55 \\ 1.60 \\ 1.65 \\ 1.70$ | $\begin{array}{r} 4.50 \\ 4.65 \\ 4.80 \\ 4.95 \\ 5.10 \end{array}$ | $\begin{array}{c} 2.227\mathrm{E}-01\\ 2.018\mathrm{E}-01\\ 1.824\mathrm{E}-01\\ 1.645\mathrm{E}-01\\ 1.480\mathrm{E}-01 \end{array}$                    | $\begin{array}{c} 7.543\mathrm{E}-04\\ 6.836\mathrm{E}-04\\ 6.179\mathrm{E}-04\\ 5.573\mathrm{E}-04\\ 5.015\mathrm{E}-04 \end{array}$   |
| 36<br>37<br>38<br>39<br>40   | 1.75<br>1.80<br>1.85<br>1.90<br>1.95   | 5.25<br>5.40<br>5.55<br>5.70<br>5.85                                | $\begin{array}{c} 1.330\mathrm{E}-01\\ 1.192\mathrm{E}-01\\ 1.067\mathrm{E}-01\\ 9.535\mathrm{E}-02\\ 8.510\mathrm{E}-02 \end{array}$                    | $\begin{array}{r} 4.504\mathrm{E}-04\\ 4.038\mathrm{E}-04\\ 3.614\mathrm{E}-04\\ 3.230\mathrm{E}-04\\ 2.883\mathrm{E}-04 \end{array}$   |
| 41<br>42<br>43<br>44<br>45   | $2.00 \\ 1.05 \\ 2.10 \\ 2.15 \\ 2.20$ | $\begin{array}{c} 6.00 \\ 6.15 \\ 6.30 \\ 6.45 \\ 6.60 \end{array}$ | $\begin{array}{c} 7.586E - 02 \\ 6.755E - 02 \\ 6.009E - 02 \\ 5.340E - 02 \\ 4.743E - 02 \end{array}$                                                   | 2.570E - 04<br>2.288E - 04<br>2.035E - 04<br>1.809E - 04<br>1.606E - 04                                                                 |
| 46<br>47<br>48<br>49<br>50   | 2.25<br>2.30<br>2.35<br>2.40<br>2.45   | 6.75<br>6.90<br>7.05<br>7.20<br>7.35                                | 4.209E - 02<br>3.733E - 02<br>3.309E - 02<br>2.931E - 02<br>2.596E - 02                                                                                  | $\begin{array}{c} 1.426\mathrm{E}-04\\ 1.264\mathrm{E}-04\\ 1.121\mathrm{E}-04\\ 9.929\mathrm{E}-05\\ 8.792\mathrm{E}-05\\ \end{array}$ |

90

51

2.50

7.50

2.298E-02

7.783E-05

and

The ability to scale the model allows one to use the given tables for any value of the parameter c. The data of table 1 have been reduced to a graph shown in figure 3. This graph shows the relationship of the root-mean-square radius to the model shape (a/c) for the case of c=1. To use the graph for other values of c multiply the abscissa scale by the value of c.

| TABLE | 6        |
|-------|----------|
| TIDDD | <u> </u> |

| T   | 1    | ~ |
|-----|------|---|
|     | ARIE | 1 |
| - 1 | ADLL | • |

| c = 3.00<br>$\rho_0 = 2.478644 E - 03$                                                            |                                        |                                                                                               | a = 1.50<br>rms = 6.019361E 00                                                                                                          |                                                                                                                                                 |  |
|---------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -                                                                                                 | r/c r                                  |                                                                                               | $ ho   ho_o$                                                                                                                            | ρ                                                                                                                                               |  |
| $     \begin{array}{c}       1 \\       2 \\       3 \\       4 \\       5     \end{array} $      | 0.<br>.05<br>.10<br>.15<br>.20         | 0.<br>.15<br>.30<br>.45<br>.60                                                                | 8.808E - 01<br>8.699E - 01<br>8.581E - 01<br>8.455E - 01<br>8.320E - 01                                                                 | $\begin{array}{c} 2.183E-03\\ 2.156E-03\\ 2.127E-03\\ 2.096E-03\\ 2.062E-03\\ \end{array}$                                                      |  |
| 6<br>7<br>8<br>9<br>10                                                                            | .25<br>.30<br>.35<br>.40<br>.45        | .75<br>.90<br>1.05<br>1.20<br>1.35                                                            | $\begin{array}{c} 8.176\mathrm{E}-01\\ 8.022\mathrm{E}-01\\ 7.858\mathrm{E}-01\\ 7.685\mathrm{E}-01\\ 7.503\mathrm{E}-01 \end{array}$   | $\begin{array}{c} 2.026\mathrm{E}-03\\ 1.988\mathrm{E}-03\\ 1.948\mathrm{E}-03\\ 1.905\mathrm{E}-03\\ 1.860\mathrm{E}-03 \end{array}$           |  |
| $     \begin{array}{c}       11 \\       12 \\       13 \\       14 \\       15     \end{array} $ | .50<br>.55<br>.60<br>.65<br>.70        | $   \begin{array}{r}     1.50 \\     1.65 \\     1.80 \\     1.95 \\     2.10   \end{array} $ | $\begin{array}{c} 7.311E-01\\ 7.109E-01\\ 6.900E-01\\ 6.682E-01\\ 6.457E-01 \end{array}$                                                | $\begin{array}{c} 1.812E-03\\ 1.762E-03\\ 1.710E-03\\ 1.656E-03\\ 1.600E-03 \end{array}$                                                        |  |
| 16<br>17<br>18<br>19<br>20                                                                        | .75<br>.80<br>.85<br>.90<br>.95        | 2.25<br>2.40<br>2.55<br>2.70<br>2.85                                                          | $\begin{array}{c} 6.225\mathrm{E}-01\\ 5.987\mathrm{E}-01\\ 5.744\mathrm{E}-01\\ 5.498\mathrm{E}-01\\ 5.250\mathrm{E}-01\\ \end{array}$ | $\begin{array}{c} 1.543\mathrm{E}-03\\ 1.484\mathrm{E}-03\\ 1.424\mathrm{E}-03\\ 1.363\mathrm{E}-03\\ 1.301\mathrm{E}-03 \end{array}$           |  |
| 21<br>22<br>23<br>24<br>25                                                                        | $1.00 \\ 1.05 \\ 1.10 \\ 1.15 \\ 1.20$ | $3.00 \\ 3.15 \\ 3.30 \\ 3.45 \\ 3.60$                                                        | $\begin{array}{c} 5.000\mathrm{E}-01\\ 4.750\mathrm{E}-01\\ 4.502\mathrm{E}-01\\ 4.256\mathrm{E}-01\\ 4.013\mathrm{E}-01 \end{array}$   | $\begin{array}{c} 1.239\mathrm{E}-03\\ 1.177\mathrm{E}-03\\ 1.116\mathrm{E}-03\\ 1.055\mathrm{E}-03\\ 9.947\mathrm{E}-04 \end{array}$           |  |
| 26<br>27<br>28<br>29<br>30                                                                        | $1.25 \\ 1.30 \\ 1.35 \\ 1.40 \\ 1.45$ | 3.75<br>3.90<br>4.05<br>4.20<br>4.35                                                          | $\begin{array}{c} 3.775\mathrm{E}-01\\ 3.543\mathrm{E}-01\\ 3.318\mathrm{E}-01\\ 3.100\mathrm{E}-01\\ 2.891\mathrm{E}-01 \end{array}$   | $\begin{array}{c} 9.358E-04\\ 8.783E-04\\ 8.224E-04\\ 7.684E-04\\ 7.165E-04\\ \end{array}$                                                      |  |
| 31<br>32<br>33<br>34<br>35                                                                        | $1.50 \\ 1.55 \\ 1.60 \\ 1.65 \\ 1.70$ | $\begin{array}{r} 4.50 \\ 4.65 \\ 4.80 \\ 4.95 \\ 5.10 \end{array}$                           | $\begin{array}{c} 2.689\mathrm{E}-01\\ 2.497\mathrm{E}-01\\ 2.315\mathrm{E}-01\\ 2.142\mathrm{E}-01\\ 1.978\mathrm{E}-01 \end{array}$   | $\begin{array}{c} 6.666E - 04 \\ 6.190E - 04 \\ 5.737E - 04 \\ 5.308E - 04 \\ 4.903E - 04 \end{array}$                                          |  |
| 36<br>37<br>38<br>39<br>40                                                                        | 1.75<br>1.80<br>1.85<br>1.90<br>1.95   | 5.25<br>5.40<br>5.55<br>5.70<br>5.85                                                          | $\begin{array}{c} 1.824\mathrm{E}-01\\ 1.680\mathrm{E}-01\\ 1.545\mathrm{E}-01\\ 1.419\mathrm{E}-01\\ 1.301\mathrm{E}-01 \end{array}$   | $\begin{array}{c} 4.522\mathrm{E}-04\\ 4.164\mathrm{E}-04\\ 3.829\mathrm{E}-04\\ 3.516\mathrm{E}-04\\ 3.225\mathrm{E}-04 \end{array}$           |  |
| 41<br>42<br>43<br>44<br>45                                                                        | $2.00 \\ 2.05 \\ 2.10 \\ 2.15 \\ 2.20$ | $\begin{array}{c} 6.00 \\ 6.15 \\ 6.30 \\ 6.45 \\ 6.60 \end{array}$                           | $\begin{array}{c} 1.192\mathrm{E}-01\\ 1.091\mathrm{E}-01\\ 9.975\mathrm{E}-02\\ 9.112\mathrm{E}-02\\ 8.317\mathrm{E}-02 \end{array}$   | $\begin{array}{c} 2.955\mathrm{E} - 04\\ 2.704\mathrm{E} - 04\\ 2.472\mathrm{E} - 04\\ 2.259\mathrm{E} - 04\\ 2.062\mathrm{E} - 04\end{array}$  |  |
| 46<br>47<br>48<br>49<br>50                                                                        | 2.25<br>2.30<br>2.35<br>2.40<br>2.45   | 6.75<br>6.90<br>7.05<br>7.20<br>7.35                                                          | $\begin{array}{c} 7.586\mathrm{E}-02\\ 6.914\mathrm{E}-02\\ 6.297\mathrm{E}-02\\ 5.732\mathrm{E}-02\\ 5.215\mathrm{E}-02 \end{array}$   | $\begin{array}{c} 1.880\mathrm{E} - 04\\ 1.714\mathrm{E} - 04\\ 1.561\mathrm{E} - 04\\ 1.421\mathrm{E} - 04\\ 1.293\mathrm{E} - 04 \end{array}$ |  |
| 51                                                                                                | 2.50                                   | 7.50                                                                                          | 4.743E-02                                                                                                                               | 1.176E-04                                                                                                                                       |  |

|     | $q 	imes \mathrm{rms}$ | q     | Form factor                |
|-----|------------------------|-------|----------------------------|
| 1   | 0.                     | 0.    | 1.000E 00                  |
| 2   | .30                    | .116  | 9.851E - 01                |
| 3   | .60                    | .233  | 9.414E - 01                |
| 4 5 | .90                    | .349  | 8.721E-01<br>7.818E-01     |
|     | 1.20                   | . 100 |                            |
| 6   | 1.50                   | .582  | 6.765E - 01                |
| 6   | 1.80                   | .098  | 5.030E - 01                |
| 0   | 2.10                   | .015  | 4.470E-01                  |
| 10  | 2.40                   | 1.048 | 2.361E-01                  |
| 11  | 3.00                   | 1 164 | 1 485E - 01                |
| 12  | 3.30                   | 1.280 | 7.681E - 02                |
| 13  | 3.60                   | 1.397 | 2.181E - 02                |
| 14  | 3.90                   | 1.513 | -1.688E - 02               |
| 15  | 4.20                   | 1.629 | -4.077E-02                 |
| 16  | 4.50                   | 1.746 | -5.213E-02                 |
| 17  | 4.80                   | 1.862 | -5.369E-02                 |
| 18  | 5.10                   | 1.979 | -4.828E - 02               |
| 19  | 5.40                   | 2.095 | -3.861E - 02               |
| 20  | 5.70                   | 2.211 | -2.704E-02                 |
| 21  | 6.00                   | 2.328 | -1.545E-02                 |
| 22  | 6.30                   | 2.444 | -5.196E - 03               |
| 23  | 6.00                   | 2.501 | 2.887E - 03<br>9.440E 02   |
| 24  | 7.20                   | 2.793 | 1.149E - 02                |
| 26  | 7.50                   | 2 910 | 1.234E - 02                |
| 27  | 7.80                   | 3.026 | 1.147E - 02                |
| 28  | 8.10                   | 3.143 | 9.429E-03                  |
| 29  | 8.40                   | 3.259 | 6.764E - 03                |
| 30  | 8.70                   | 3.375 | 3.952E-03                  |
| 31  | 9.00                   | 3.492 | 1.366E - 03                |
| 32  | 9.30                   | 3.608 | -7.405E-04                 |
| 33  | 9.60                   | 3.725 | -2.236E-03                 |
| 34  | 9.90                   | 3.841 | -3.093E - 03               |
| 33  | 10.20                  | 3.957 | - 3.303E-03                |
| 36  | 10.50                  | 4.074 | -3.164E - 03               |
| 37  | 10.80                  | 4.190 | -2.628E - 03               |
| 38  | 11.10                  | 4.306 | -1.903E - 03               |
| 40  | 11.40                  | 4.423 | -3.905E - 04               |
| 41  | 12.00                  | 1 656 | 91425 04                   |
| 41  | 12.00                  | 4.050 | 2.145E - 04<br>6 504E - 04 |
| 43  | 12.60                  | 4.888 | 9.053E - 04                |
| 44  | 12.90                  | 5.005 | 9.911E-04                  |
| 45  | 13.20                  | 5.121 | 9.373E-04                  |
| 46  | 13.50                  | 5.238 | 7.829E-04                  |
| 47  | 13.80                  | 5.354 | 5.699E-04                  |
| 48  | 14.10                  | 5.470 | 3.373E-04                  |
| 49  | 14.40                  | 5.587 | 1.177E - 04                |
| 50  | 14.70                  | 5.703 | -6.559E - 05               |
| 51  | 15.00                  | 5.820 | -1.990E-04                 |

TABLE 8

TABLE 9

|                                                                                              | c = 3.00 $a = 0.60rms radius = 3.221$                                    |                                                                                                       |                                                                                                                                                 |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                              | q 	imes  m rms                                                           | q                                                                                                     | Form factor                                                                                                                                     |  |
| $     \begin{array}{c}       1 \\       2 \\       3 \\       4 \\       5     \end{array} $ | 0.<br>.30<br>.60<br>.90<br>1.20                                          | 0.<br>.093<br>.186<br>.279<br>.373                                                                    | 1.000E 00<br>9.851E - 01<br>9.417E - 01<br>8.734E - 01<br>7.856E - 01                                                                           |  |
| 6<br>7<br>8<br>9<br>10                                                                       | $1.50 \\ 1.80 \\ 2.10 \\ 2.40 \\ 2.70$                                   | .466<br>.559<br>.652<br>.745<br>.838                                                                  | 6.850E - 01<br>5.783E - 01<br>4.718E - 01<br>3.711E - 01<br>2.800E - 01                                                                         |  |
| 11<br>12<br>13<br>14<br>15                                                                   | 3.00<br>3.30<br>3.60<br>3.90<br>4.20                                     | .931<br>1.025<br>1.118<br>1.211<br>1.304                                                              | $\begin{array}{c} 2.011\mathrm{E}-01\\ 1.358\mathrm{E}-01\\ 8.383\mathrm{E}-02\\ 4.452\mathrm{E}-02\\ 1.637\mathrm{E}-02 \end{array}$           |  |
| 16<br>17<br>18<br>19<br>20                                                                   | $\begin{array}{c} 4.50 \\ 4.80 \\ 5.10 \\ 5.40 \\ 5.70 \end{array}$      | $\begin{array}{c} 1.397 \\ 1.490 \\ 1.584 \\ 1.677 \\ 1.770 \end{array}$                              | $\begin{array}{r} -2.394\mathrm{E}-03\\ -1.366\mathrm{E}-02\\ -1.923\mathrm{E}-02\\ -2.074\mathrm{E}-02\\ -1.959\mathrm{E}-02\end{array}$       |  |
| 21<br>22<br>23<br>24<br>25                                                                   | $6.00 \\ 6.30 \\ 6.60 \\ 6.90 \\ 7.20$                                   | $   \begin{array}{r}     1.863 \\     1.956 \\     2.049 \\     2.142 \\     2.236 \\   \end{array} $ | $\begin{array}{c} -1.687\mathrm{E}-02\\ -1.345\mathrm{E}-02\\ -9.902\mathrm{E}-03\\ -6.635\mathrm{E}-03\\ -3.865\mathrm{E}-03\end{array}$       |  |
| 26<br>27<br>28<br>29<br>30                                                                   | 7.50<br>7.80<br>8.10<br>8.40<br>8.70                                     | 2.329<br>2.422<br>2.515<br>2.608<br>2.701                                                             | $\begin{array}{c} -1.685\mathrm{E}-03\\ -1.013\mathrm{E}-04\\ 9.428\mathrm{E}-04\\ 1.534\mathrm{E}-03\\ 1.772\mathrm{E}-03\end{array}$          |  |
| 31<br>32<br>33<br>34<br>35                                                                   | 9.00<br>9.30<br>9.60<br>9.90<br>10.20                                    | 2.794<br>2.888<br>2.981<br>3.074<br>3.167                                                             | $\begin{array}{c} 1.757\mathrm{E} - 03\\ 1.576\mathrm{E} - 03\\ 1.305\mathrm{E} - 03\\ 9.991\mathrm{E} - 04\\ 7.006\mathrm{E} - 04 \end{array}$ |  |
| 36<br>37<br>38<br>39<br>40                                                                   | $10.50 \\ 10.80 \\ 11.10 \\ 11.40 \\ 11.70$                              | 3.260<br>3.353<br>3.446<br>3.540<br>3.633                                                             | $\begin{array}{r} 4.355\mathrm{E}-04\\ 2.178\mathrm{E}-04\\ 5.254\mathrm{E}-05\\ -6.211\mathrm{E}-05\\ -1.321\mathrm{E}-04 \end{array}$         |  |
| 41<br>42<br>43<br>44<br>45                                                                   | $\begin{array}{c} 12.00 \\ 12.30 \\ 12.60 \\ 12.90 \\ 13.20 \end{array}$ | 3.726<br>3.819<br>3.912<br>4.005<br>4.099                                                             | $\begin{array}{r} -1.657\mathrm{E}-04\\ -1.718\mathrm{E}-04\\ -1.590\mathrm{E}-04\\ -1.347\mathrm{E}-04\\ -1.052\mathrm{E}-04\end{array}$       |  |
| 46<br>47<br>48<br>49<br>50                                                                   | $13.50 \\ 13.80 \\ 14.10 \\ 14.40 \\ 14.70$                              | $\begin{array}{r} 4.192 \\ 4.285 \\ 4.378 \\ 4.471 \\ 4.564 \end{array}$                              | $\begin{array}{r} -7.486\mathrm{E}-05\\ -4.699\mathrm{E}-05\\ -2.343\mathrm{E}-05\\ -5.013\mathrm{E}-06\\ 8.158\mathrm{E}-06\end{array}$        |  |
| 51                                                                                           | 15.00                                                                    | 4.657                                                                                                 | 1.653E - 05                                                                                                                                     |  |

| c = 3.00 $a = 0.90rms radius = 4.071$                                                        |                                                                            |                                                                          |                                                                                                                                        |  |  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                              | $q \times \mathrm{rms}$                                                    | q                                                                        | Form factor                                                                                                                            |  |  |
| $     \begin{array}{c}       1 \\       2 \\       3 \\       4 \\       5     \end{array} $ | 0.<br>.30<br>.60<br>.90<br>1.20                                            | 0.<br>.074<br>.147<br>.221<br>.295                                       | $\begin{array}{c} 1.000E & 00\\ 9.851E - 01\\ 9.419E - 01\\ 8.744E - 01\\ 7.886E - 01 \end{array}$                                     |  |  |
| 6<br>7<br>8<br>9<br>10                                                                       | 1.50<br>1.80<br>2.10<br>2.40<br>2.70                                       | .368<br>.442<br>.516<br>.590<br>.663                                     | 6.914E - 01<br>5.895E - 01<br>4.891E - 01<br>3.948E - 01<br>3.101E - 01                                                                |  |  |
| $11 \\ 12 \\ 13 \\ 14 \\ 15$                                                                 | 3.00<br>3.30<br>3.60<br>3.90<br>4.20                                       | .737<br>.811<br>.884<br>.958<br>1.032                                    | $\begin{array}{c} 2.366\mathrm{E}-01\\ 1.749\mathrm{E}-01\\ 1.249\mathrm{E}-01\\ 8.550\mathrm{E}-02\\ 5.544\mathrm{E}-02 \end{array}$  |  |  |
| 16<br>17<br>18<br>19<br>20                                                                   | $\begin{array}{c} 4.50 \\ 4.80 \\ 5.10 \\ 5.40 \\ 5.70 \end{array}$        | $1.105 \\ 1.179 \\ 1.253 \\ 1.327 \\ 1.400$                              | $\begin{array}{r} 3.325\mathrm{E}-02\\ 1.749\mathrm{E}-02\\ 6.787\mathrm{E}-03\\ -5.941\mathrm{E}-05\\ -4.065\mathrm{E}-03\end{array}$ |  |  |
| 21<br>22<br>23<br>24<br>25                                                                   | 6.00<br>6.30<br>6.60<br>6.90<br>7.20                                       | $1.474 \\ 1.548 \\ 1.621 \\ 1.695 \\ 1.769$                              | - 6.060E - 03<br>- 6.700E - 03<br>- 6.483E - 03<br>- 5.777E - 03<br>- 4.839E - 03                                                      |  |  |
| 26<br>27<br>28<br>29<br>30                                                                   | 7.50<br>7.80<br>8.10<br>8.40<br>8.70                                       | 1.842<br>1.916<br>1.990<br>2.063<br>2.137                                | - 3.845E - 03<br>- 2.902E - 03<br>- 2.070E - 03<br>- 1.378E - 03<br>- 8.289E - 04                                                      |  |  |
| 31<br>32<br>33<br>34<br>35                                                                   | 9.00<br>9.30<br>9.60<br>9.90<br>10.20                                      | $2.211 \\ 2.285 \\ 2.358 \\ 2.432 \\ 2.506$                              | - 4.148E - 04<br>- 1.183E - 04<br>8.052E - 05<br>2.022E - 04<br>2.658E - 04                                                            |  |  |
| 36<br>37<br>38<br>39<br>40                                                                   | $10.50 \\ 10.80 \\ 11.10 \\ 11.40 \\ 11.70$                                | 2.579<br>2.653<br>2.727<br>2.800<br>2.874                                | 2.877E - 04<br>2.816E - 04<br>2.583E - 04<br>2.259E - 04<br>1.902E - 04                                                                |  |  |
| 41<br>42<br>43<br>44<br>45                                                                   | $ \begin{array}{r} 12.00 \\ 12.30 \\ 12.60 \\ 12.90 \\ 13.20 \end{array} $ | $\begin{array}{c} 2.948 \\ 3.022 \\ 3.095 \\ 3.169 \\ 3.243 \end{array}$ | 1.551E - 04<br>1.230E - 04<br>9.525E - 05<br>7.223E - 05<br>5.388E - 05                                                                |  |  |
| 46<br>47<br>48<br>49<br>50                                                                   | $13.50 \\ 13.80 \\ 14.10 \\ 14.40 \\ 14.70$                                | 3.316<br>3.390<br>3.464<br>3.537<br>3.611                                | 3.982E - 05<br>2.945E - 05<br>2.212E - 05<br>1.717E - 05<br>1.403E - 05                                                                |  |  |
| 51                                                                                           | 15.00                                                                      | 3.685                                                                    | 1.219E-05                                                                                                                              |  |  |

The Model Parameters. The model parameters c and a which appear in the analytic expression (4) for the density distribution are usually identified with geometric concepts. The parameter c is usually thought of as the radius for which the density is one-half the density at zero radius. The parameter a is usually related to the edge thickness t, defined as the measured distance in which the density falls from 0.9 to 0.1 of the density at zero radius. When  $a \ll c$  it can be shown that:

$$t = 4a \ln 3 \simeq 4.4a. \tag{30}$$

TABLE 10

TABLE 11

| c = 3.00 $a = 1.20rms radius = 5.020$ |                                                                     |                                             |                                                                                                                                         |                                  | c = 3.00 $a = 1.50rms radius = 6.019$        |                                                                                                                  |   |
|---------------------------------------|---------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------|---|
|                                       | q 	imes rms                                                         | q                                           | Form factor                                                                                                                             |                                  | q 	imes  m rms                               | q                                                                                                                | F |
| 1<br>2<br>3<br>4                      | 0.<br>.30<br>.60<br>.90                                             | 0.<br>.060<br>.120<br>.179                  | $\begin{array}{cccc} 1.000E & 00 \\ 9.851E - 01 \\ 9.421E - 01 \\ 8.751E - 01 \\ 7.005E & 01 \end{array}$                               | 1<br>2<br>3<br>4                 | 0.<br>.30<br>.60<br>.90                      | 0.<br>.050<br>.100<br>.150                                                                                       |   |
| 5<br>6<br>7<br>8<br>9                 | 1.20<br>1.50<br>1.80<br>2.10<br>2.40                                | .239<br>.299<br>.359<br>.418<br>.478        | $\begin{array}{c} 7.905E = 01 \\ 6.953E = 01 \\ 5.964E = 01 \\ 4.995E = 01 \\ 4.091E = 01 \end{array}$                                  | 6<br>7<br>8<br>9                 | 1.20<br>1.50<br>1.80<br>2.10<br>2.40         | .199<br>.249<br>.299<br>.349<br>.399                                                                             |   |
| 10<br>11<br>12<br>13<br>14<br>15      | 2.70<br>3.00<br>3.30<br>3.60<br>3.90<br>4.20                        | .538<br>.657<br>.717<br>.777<br>.837        | 3.279E - 01<br>2.574E - 01<br>1.980E - 01<br>1.492E - 01<br>1.100E - 01<br>7.928E - 02                                                  | 10<br>11<br>12<br>13<br>14<br>15 | 2.70<br>3.00<br>3.30<br>3.60<br>3.90<br>4.20 | .449<br>.498<br>.548<br>.598<br>.648<br>.698                                                                     |   |
| 16<br>17<br>18<br>19<br>20            | $\begin{array}{r} 4.50 \\ 4.80 \\ 5.10 \\ 5.40 \\ 5.70 \end{array}$ | .896<br>.956<br>1.016<br>1.076<br>1.135     | 5.565E - 02<br>3.788E - 02<br>2.482E - 02<br>1.544E - 02<br>8.893E - 03                                                                 | 16<br>17<br>18<br>19<br>20       | 4.50<br>4.80<br>5.10<br>5.40<br>5.70         | .748<br>.797<br>.847<br>.897<br>.947                                                                             |   |
| 21<br>22<br>23<br>24<br>25            | 6.00<br>6.30<br>6.60<br>6.90<br>7.20                                | $1.195 \\ 1.255 \\ 1.315 \\ 1.374 \\ 1.434$ | $\begin{array}{r} 4.473\mathrm{E}-03\\ 1.613\mathrm{E}-03\\ -1.295\mathrm{E}-04\\ -1.096\mathrm{E}-03\\ -1.541\mathrm{E}-03\end{array}$ | 21<br>22<br>23<br>24<br>25       | 6.00<br>6.30<br>6.60<br>6.90<br>7.20         | .997<br>1.047<br>1.096<br>1.146<br>1.196                                                                         |   |
| 26<br>27<br>28<br>29<br>30            | 7.50<br>7.80<br>8.10<br>8.40<br>8.70                                | 1.494<br>1.554<br>1.613<br>1.673<br>1.733   | $\begin{array}{c} -1.653E-03\\ -1.564E-03\\ -1.367E-03\\ -1.125E-03\\ -8.767E-04 \end{array}$                                           | 26<br>27<br>28<br>29<br>30       | 7.50<br>7.80<br>8.10<br>8.40<br>8.70         | 1.246<br>1.296<br>1.346<br>1.395<br>1.445                                                                        |   |
| 31<br>32<br>33<br>34<br>35            | 9.00<br>9.30<br>9.60<br>9.90<br>10.20                               | 1.793<br>1.853<br>1.912<br>1.972<br>2.032   | $\begin{array}{c} - \ 6.455E - \ 04 \\ - \ 4.436E - \ 04 \\ - \ 2.759E - \ 04 \\ - \ 1.424E - \ 04 \\ - \ 4.054E - \ 05 \end{array}$    | 31<br>32<br>33<br>34<br>35       | 9.00<br>9.30<br>9.60<br>9.90<br>10.20        | $     \begin{array}{r}       1.495 \\       1.545 \\       1.595 \\       1.645 \\       1.695     \end{array} $ |   |
| 36<br>37<br>38<br>39<br>40            | $10.50 \\ 10.80 \\ 11.10 \\ 11.40 \\ 11.70$                         | 2.092<br>2.151<br>2.211<br>2.271<br>2.331   | $\begin{array}{c} 3.382\mathrm{E}-05\\ 8.526\mathrm{E}-05\\ 1.183\mathrm{E}-04\\ 1.372\mathrm{E}-04\\ 1.455\mathrm{E}-04 \end{array}$   | 36<br>37<br>38<br>39<br>40       | 10.50<br>10.80<br>11.10<br>11.40<br>11.70    | 1.744<br>1.794<br>1.844<br>1.894<br>1.944                                                                        |   |
| 41<br>42<br>43<br>44<br>45            | 12.00<br>12.30<br>12.60<br>12.90<br>13.20                           | 2.390<br>2.450<br>2.510<br>2.570<br>2.629   | $\begin{array}{c} 1.462E-04\\ 1.418E-04\\ 1.342E-04\\ 1.247E-04\\ 1.145E-04\\ \end{array}$                                              | 41<br>42<br>43<br>44<br>45       | 12.00<br>12.30<br>12.60<br>12.90<br>13.20    | 1.994<br>2.043<br>2.093<br>2.143<br>2.193                                                                        |   |
| 46<br>47<br>48<br>49<br>50            | $13.50 \\ 13.80 \\ 14.10 \\ 14.40 \\ 14.70$                         | 2.689<br>2.749<br>2.809<br>2.868<br>2.928   | $\begin{array}{c} 1.042\mathrm{E}-04\\ 9.425\mathrm{E}-05\\ 8.501\mathrm{E}-05\\ 7.660\mathrm{E}-05\\ 6.908\mathrm{E}-05\end{array}$    | 46<br>47<br>48<br>49<br>50       | $13.50 \\ 13.80 \\ 14.10 \\ 14.40 \\ 14.70$  | 2.243<br>2.293<br>2.342<br>2.392<br>2.442                                                                        |   |
| 51                                    | 15.00                                                               | 2.988                                       | 6.241E-05                                                                                                                               | . 51                             | 15.00                                        | 2.492                                                                                                            |   |

When  $a \approx c$  the geometrical interpretations of the analytic parameters no longer hold true because the density at zero radius is not  $\rho_0$ . For the sake of clarity let  $c^*$  and  $t^*$  be the actual geometrically measured distances and let

$$R_t = (t - t^*)/t \tag{31}$$

be the fractional change in t and

$$\boldsymbol{R}_c = (c^* - c)/c \tag{32}$$

be the fractional change in c. Figure 4 shows the variation of  $R_t$  and  $R_c$  as a function of a/c. Note that for a/c < 0.2 the fractional change in the parameters is less than 1 percent and thus the usually accepted geometrical interpretations of a and c are valid.



FIGURE 3. Root-mean-square radius of the spatial distribution for the Fermi distribution with c = 1. as a function of a/c.

To obtain the root-mean-square radius for other values of c simply multiply the result for c = 1, by the value of c.



FIGURE 4. The model parameters t and c in the analytic representation of the Fermi distribution are normally interpreted in geometrical terms respectively as a measure of the edge thickness and radius at one-half the density at zero radius.

The curves  $R_t$  and  $R_c$  indicate respectively the errors in making this correlation between the analytic and geometrical interpretations of t and c.

## **References and Note**

- [1] Robert Hofstadter, Rev. Mod. Phys. 28, 214 (1956).
- [2] Robert Hofstadter, Ann. Rev. of Nuclear Science 7, 231 (1957).
- [3] Hofstadter and Herman, High Energy Electron Scattering Tables, (Stanford University Press, Stanford, California).
- [4] G. R. Burleson and R. Hofstadter, Phys. Rev. 112, 1282 (1958).
- [5] D. R. Yennie, D. G. Ravenhall, and R. N. Wilson, Phys. Rev. 95, 500 (1954).
- [6] D. S. Saxon and R. D. Woods, Phys. Rev. 95, 577 (1954).
- [7] L. R. B. Elton, Nuclear Sizes (Oxford Univ. Press, London, 1961).
- [8] R. Blankenbecler, Am. J. Phys. 25, 279 (1957).
- [9] Magnus and Oberhettinger, Functions of Mathematical Physics, p. 8 (Chelsea Pub. Co., New York, N.Y., 1954).
- [10] It should be noted that if we neglect the infinite sums appearing in both (21) and (22) then we find the result given in ref. 7, on p. 28 eq (2.76) for  $\rho_0$ , and on p. 12 eq (2.30) and p. 28 eq (2.77) for  $\langle r^2 \rangle$ . Note, from p. 107 eq (C.4) that the term  $10\pi^2 a^2/c$  in eq (2.77) should read  $10\pi^2 a^2/3c^2$ , and that after this correction has been made, the expression

written there may be written more simply  $R^2 = c^2 \left(1 + \frac{7}{3} \frac{\pi^2 a^2}{c^2}\right)$ . The complete expressions for the moments of the

distribution including the infinite sums, is given on p. 107 eq (C.2). Note, however, that the last terms in this equation should read  $e^{-mk}$  rather than  $e^{m-k}$ .

(Paper 70B1-170)