JOURNAL OF RESEARCH of the National Bureau of Standards – B. Mathematics and Mathematical Physics Vol. 70B, No. 1, January–March 1966

Remarks on Measurable Sets and Functions

Roy O. Davies¹

(October 19, 1965)

A. J. Goldman (On measurable sets and functions, J. Res. NBS **69B** (Math. and Math. Phys.) Nos. 1 and 2, 99–100 (1965)) conjectured that the Borel sets are characterized by their property of having measurable inverse images under all Lebesgue measurable functions: here it is pointed out that the existence of analytic non-Borel sets refutes this and a related conjecture. Also an error in Goldman's Theorem 2 is corrected.

Key Words: Measure, integration, real function.

We deal exclusively with subsets of the real line R, and with real-valued functions having R as domain. Let (BS) and (BF) denote the respective families of Borel sets and Borel-measurable functions, while (LS) and (LF) denote the respective families of Lebesgue-measurable sets and functions. Then $f\epsilon(LF)$ if and only if

$$f^{-1}(B)\epsilon(LS)$$
 for all $B\epsilon(BS)$. (1)

Recently Goldman² asked whether (1) characterized (BS), in the sense of the following

CONJECTURE: If S is not in (BS), then there is an $f\epsilon(LF)$ such that $f^{-1}(S)$ is not in (LS).

We can *disprove* this conjecture as follows. Let

$$n = \{n(1), n(2), \ldots\}$$

be generic notation for an infinite sequence of positive integers. If $\tilde{\alpha}$ is a family of sets, then any set

$$\bigcup_{n} \bigcap_{r=1}^{\infty} F(n(1), \ldots, n(r)),$$

where each $F(n(1), \ldots, n(r)) \epsilon \widetilde{\mathfrak{S}}$, is said to be "obtained from $\widetilde{\mathfrak{S}}$ by operation (\mathscr{A})". If $\mathscr{A}(\widetilde{\mathfrak{S}})$ consists of all sets obtainable from $\widetilde{\mathfrak{S}}$ by operation (\mathscr{A}), then for any function f,

$$f^{-1}(\mathscr{A}(\mathfrak{F})) = \mathscr{A}(f^{-1}(\mathfrak{F})). \tag{2}$$

When $\widetilde{\mathfrak{F}} = (BS)$, $\mathscr{A}(\widetilde{\mathfrak{F}})$ is called the class of *analytic* sets, and it is known³ that

$$(BS) \subset \mathscr{A}(BS)$$
 but $(BS) \neq \mathscr{A}(BS)$. (3)

For any $f \epsilon(LF)$, it follows from (1) and (2) that

$$f^{-1}(\mathscr{A}(BS)) \subset \mathscr{A}(LS).$$
(4)

It is also known ⁴ that (LS) is closed under operation (\mathscr{A}) , so that (4) implies

$$f^{-1}(\mathscr{A}(BS)) \subset (LS)$$
 for all $f \in (LF)$. (5)

Considering $S \in \mathcal{A}(BS) - (BS)$, as permitted by (3), we are led *via* (5) to a contradiction of the conjecture.

Denote functional composition by an asterisk ((f*g)(x) = f(g(x))), and let (LCF) be the class of functions f such that

$$g\epsilon(LF)$$
 implies $f * g\epsilon(LF)$.

Goldman (Theorem 4, *op cit*) also showed that we should have

$$(BF) = (LCF) \tag{6}$$

if the Conjecture were true. That (6) fails together with the Conjecture can be proved by choosing as fthe characteristic function of some $S \epsilon \mathscr{A}(BS) - (BS)$; clearly f is not in (BF), but for any $B \epsilon (BS)$ we have $f^{-1}(B)$ a member of $\mathscr{A}(BS)$, namely R or ϕ or S or R - S,

¹Department of Mathematics, The University, Leicester, United Kingdom. ² A. J. Goldman, On measurable sets and functions, J. Res. NBS **69B** (Math. and Math. Phys.) Nos. 1 and 2, 99–100 (1965).

³ K. Kuratowski, Topologie I, 2d ed. (Warsaw, 1948), p. 391. ⁴ K. Kuratowski, *op. cit.*, p. 64.

so that for any $g\epsilon(LF)$ it follows from (5) that

$$(f*g)^{-1}(B) = g^{-1}(f^{-1}(B))\epsilon(LS),$$

proving $f * g \epsilon (LF)$ and hence $f \epsilon (LCF)$.

Thus the problem of finding a satisfactory characterization of (LCF) remains open. If (QS) is the class of sets Q such that

$$g^{-1}(Q)\epsilon(LS)$$
 for all $g\epsilon(LF)$,

then $f \epsilon (LCF)$ if and only if

$$f^{-1}(B)\epsilon(QS)$$
 for all $B\epsilon(BS)$.

Hence characterizing (LCF) is closely related to characterizing (QS).

Finally, Goldman's Theorem 2 (op cit) should be amended to read as follows:

THEOREM: For any $B\epsilon(BS)$ and $L\epsilon(LS)$, with sole exceptions $(B = \phi, L \neq \phi)$ and $(B = R, L \neq R)$, there is an $f\epsilon(LF)$ such that $L = f^{-1}(B)$.

PROOF: If $B = \phi$ and $L = \phi$, or B = R and L = R, then any $f \epsilon(LF)$ will do. If $B = \phi$ and $L \neq \phi$, or B = Rand $L \neq R$, then no f will do. Finally, if $B \neq \phi$ and $B \neq R$, then we can define f on L so that $f(L) \subset B$, and on R - L so that $f(R - L) \subset R - B$.

(Paper 70B1-169)