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1. Introduction 

Let P denote a polynomial with real coefficients. 
In this paper we devise an algorithm for determining 
upper and lower bounds for the set {P(x) : 0 ,,;;; x ,,;;; l}. 

2. Some Preliminary Observations 

For a polynomial P with real coefficients, it is pos
sible, given E> 0, to compute, by means of arithmeti
cal operations whose number can be readily deter
mined, upper and lower bounds for {P(x): ° ,,;;; x ,,;;; 1} 
which differ from th e corresponding sharp bounds 
by less than E. This is an immediate consequence 
of the si mple observation that, if P(x) == ao + alx 
+ . .. + anxn(n ~ 1) is a polynomial with real co
efficients, then, for each positive integer m, 

1 I/. 

min {P(k/m) : k = l , 2, . ' . . , m}- m ~ kiaki 
k = 1 

,,;;; P(x) ";;; max {P(k/m): k= 1,2, ... , m} 

1 n 
+ m~ ki aki(O";;;x,,;;;l), . 

'k=1 

which follows from the law of the mean and the in· 
I/. 

equality iP'(x)i ,,;;; 2: kiaki(O,,;;; x ,,;;; 1). 
k = 1 

This procedure has the disadvantage that an ex· 
tre mely large number of arithmetical operations may 
be required to obtain moderately good bounds. In 
this paper we consider an algorithm which sacrifices 
accuracy in order to gain tractability. 
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3. The Bernstein Form of a Polynomial 

THEOREM. Let P(x) == ao + alx + . .. + anxn be a 
polynomial of exact degree n (~O) with real coeffi
cients. Then 

min {bk : k = O, 1, ... , n} ,,;;; P(x) 

,,;;; max{bk :k=O,l, ... ,n} (0,,;;; x ,,;;; 1) (1) 

where 

(k=O,l, ... ,n). (2) 

The upper (lower) bound is sharp if and only if it is 
equal to bo or to bn-

Preliminary remark. It is obvious from (2) that 
the bounds given by (1) are always at least as good as 

n 

the crude bounds± ~ iaki. 
k =O 

PROOF: The following representation (to be es tab
lished below, but essentially due to S. N. Bernstein I) 
holds: 

P(x) == Xo bk (;) xk(l- X)" - k (3) 

where bk (k = 0, 1, ... , n) is given by (2).2 Since 

i (n) xk(1- x)n- k == 1 and (n) xk(1- X),,-k ~ ° (0 ";;;x 
k=O k k 
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I Bernstein. S. N., On the best approximation of continuous functions by polynomials 
of a given degree (Russian), Communications of the Khar'kov Mathematical Socie ty, Series 
2. la, 49- 194 (1912). 

11.2 One eas il y sees that (xk(l_x)n- k)r. .. o forms a basis for the space of all polynomials 

L CkXk , CI.; rea l. Consequently, a representation (3) with rt:al b".' s uniquely determined 
,-, 
must hold. 



:s;:l; k=O,I, ... , n), (3) implies (1). Werefer to P(x) +alx+ .. . + a"x" , (4) yields 

written in the form ~o bk (~) xk(l- x)n- k as the "Bern

stein form of P(x)." The last sum is the Bernstein 
polynomial of order n of every real function f defined 
on [0,1] for whichf(k/n)=b". (k=O, 1, .. ., n).3 

If max {b", :k = O, 1, ... , n} is equal to bo or to 
bn then the upper bound given by (1) is sharp since 
P(O)=bo and P(I) = bn . Conversely, if the upper 
bound given by (1) is sharp, then it is equal to bo or to 
bn since, if 0 < x < 1, either bo= bl = ... = bn or 

i bk (n) x/'(l-X)"- k < max {bk:k=O , 1, ... , n}. 
k=O k 

The sharpness of the lower bound can be treated in 
an analogous fashion. 

In order to establish (3), we observe that 

1/ 1/ 

" I' " r{ + (1 )}"- r L., arx == L., arx x - X 
1'=0 ,'=0 

II 11 - 1' (n - r) == 2: 2: a,. s x" - S(I- x)S 
,.= 0 8= 0 

== i If a,. (n - r) x"- 8(l- x)S 
s=o 1'=0 S 

_ i { ± a r (n=r)/(n)} (n) x/'(l-X)"- k 
k=O 1'=0 n k !. !. 

- i { ± (Lr (k)/(n)} (,~) x"'(l- X)" - "'. 
k=O ,.= 0 , r I. 

This completes the proof of the theorem. 
Next, we seek a more efficient method than the 

direc t use of formula (2) for computing bk(k = 0, 
1, ... , n). To this end, we note (footnote 3, p. 12) 

that, if P(x) == to br C) xr(l- x)lI - r(n ~ 1), then, as a 

simple calculation shows , 

,, - I (n-l) 
P'(x) == n ,~{Ilbr} r x r(l- x),H- r. 

Repeating this process, we obtain 
lI - k 

p<k>(X) == n(n -1) . .. (n - k + I} 2: {Ilkb r} 
r = O 

Since ak = P(k)(O) /k! (1. = 1, 2, ... , n) if P(x)==ao , 

3 Lorentz, G. C. , Bern stein Polyno mia ls, Un ive rsit y of Toro nto Press, Toronto, 1953. 

(k= 1,2, ... , n). (5) 

Equation (5) suggests a synthetic method for de
termining the Bernstein form of a polynomial P(x) 
== ao + alx +. . . + anx" (a r real, n ~ 1, an ¥= 0) without 
using (2) explicitly. One simply writes the numbers 

Ilkbo=ak./ (~) (k=O, 1, ... , n) in their usual posi

tions in a difference table (see table 1) and then com
pletes the table to obtain bo, b" . , ., bn• In view of 
(4), the completed difference table also yields bounds 
for {P(k)(X):O:s;:x~ I} (k=l, 2, .. . ,n). 

For example, if P(x) == 1 + lOx - 20x2 + 30x3 + 15x4 

- x 5 , we start with the incomplete difference table 
(table 2) and complete it to obtain table 3, which yields 
bo=l , b,=3, b2 =3, b3 =4, b4 =12, and b5 =35. 
Table 3 also yields the bounds 0 and 115 for P', - 40 
and 300 for P", 180 and 480 for pI! I , and 240 and 360 
for P(4) on [0, 1]. 
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TABLE 1 

TABLE 2 

2 >I< >I< >I< >I< 

- 2 >I< >I< >I< 

3 • • 

3 • 

- I 

TABLE 3 

I 3 3 4 12 35 

201823 

-2 I 7 15 

3 6 8 

3 2 

- I 

4. Conclusion 

We conclude with some miscellaneous remarks. 
Formula (2) follows from (5) and the Newton interpo

lation formula. 
One can obviously consider the "Bernstein form" 

"to bk (~) xk(l- X)"-I.' of a polynomial P with complex 



coeffi cients . It is clear that P maps [0 , 1] into th e 
convex hull of the set {bo, bl, ... , VII}' 

In view of (5), it is easy to state simple sufficient 
conditions for a polynomial P(x) '= ao + IlIX + ... 

I/. (n) . . + a"x" '= L br xl"(l - x)lI - r with real coeffiCie nts 
1'= 0 r 

to have certain properties. For example, if n ~ 1, 
ao > O, and kak+(n-k+1)ak- 1>0(/.:=1, 2, .. . , n), 
then P(x) > ° whenever ° ~ x ~ 1. Indeed, kak 
+(n-k+1)ak- 1>0 is equivalent to I::.."'bo+ I::..,.. - Ibo 

=al,/C) +ak- I/C:1) >0, and , consequently, all 

the e ntries in table 1 are positive except possibly 
I::..I'bo(k = 1,2, ... , n). 

Let n be a positive integer. An analog of 0) obviously 
holds if, for each k(k = 0, ... , n), one takes instead 

796- 485 0 - 66- 6 

of (n) xl'( l - X)" - h' a polynomial qk(X) '= i elld xl" with 
k ~o 

real coeffi c ients such th at (a) q,..(x) ~ ° if ° ~ x ~ 1, 
(b) qo , ql , ... , qn are linearly indepe nden t , and 

/I 

(c) L qh'(X) '= 1. It is easy to verify that th ere are 
,'=0 

many such seq uences (qk(X))k'=o of polynomials. For 
example, for each 0', 0 < a ~ 1, the polynomials 
Pk(x) '= (Z)(ax)k(l- ax)n-k (k = 0, 1, .... n) form 
s uch a seq uence. Moreover, if qo, ql, . . . , qn form 
suc h a sequence , then so do Qo , QI . . .. . QII where 

(/.:= 0, 1, ... , n). 

(Paper 70Bl - 168) 
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