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(1) EPr matrices A (that is, matrices A4 for which 4 and 4* have the same null space) are investi-
gated. It is shown that if 4 is a complex EPr; matrix and B a complex EPr, matrix, and AB=BA,
then AB is EPr. Other theorems about products of EPr matrices are established.

(2) Let 4 be a normal EPr matrix over an arbitrary field. A necessary and sufficient condition,
involving the solvability (for X) of a matrix equation XBX*+A4X + X*A4*+ C =0, is found for the exist-
ence of a matrix N such that (i) NN*=1 and (ii) A*=NA=AN. Explicit solutions are given for two
important classes of normal EPr matrices, namely (1) those satisfying the condition rank 4 =rank
AA*, and (2) those of rank n/2, satisfying A4*=0, over a field of characteristic # 2. An example is
given to show that no such N need exist for characteristic =2.

(3) EP linear transformations on a finite-dimensional vector space are introduced, and the relation
between them and EPr matrices is studied. It is shown that a linear transformation 7" of a complex
vector space is EP if and only if rank 7=rank 72
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1. Introduction

The concept of a normal matrix with entries from the complex field was introduced in 1918
by O. Toeplitz [19]> who gave a necessary and sufficient condition that a complex matrix be nor-
mal. Since that time normal matrices and the generalization to linear transformations on a finite
dimensional or infinite dimensional vector space [3, 7,9, 18, 22, 23], to functional analysis, especially
Hilbert space [5, 12, 13, 14], and to combinatorial analysis and the study of finite projective planes
[1, 2, 4] have received a great deal of attention. Also, special types of normal matrices and linear
transformations have been studied. But, until the appearance of [10] in 1959, no study had been
made of normal matrices without restrictions on the underlying field.

First, results about EPr complex matrices, a concept introduced by H. Schwerdtfeger in
[15] as a generalization of normality, were obtained and then in [10, 11] the notion of EPr was
extended to matrices over arbitrary fields and applied to obtain results about normal matrices.
One interesting feature of the study was the discovery that over an arbitrary field the concepts
of normal and EPr are independent and that many of the well-known properties of complex normal
matrices which do not carry over to an arbitrary field appear to generalize most naturally to mat-
rices that are both EPr and normal. A matrix 4 of rank r is called EPr if A and A* have the
same null space.

The first section of this paper is concerned solely with developing the properties of EPr
matrices. Real and complex EPr matrices are studied for their own inherent interest and a num-
ber of new results have been obtained. It is also shown how these results depend on the under-
lying field. Finally the structure of EPr matrices over an arbitrary field is developed, primarily
for its use as a tool in section 3, which is devoted to normal matrices.

In section 3, a resumé of the known results concerning normal matrices over an arbitrary field
is given. Then some questions raised in [10, 11] are considered and the concept of zero-type EPr
matrix is introduced. For this new class of matrices a satisfactory solution is obtained to a prob-
lem dealt with in [10, 11]. Most of the results are partial results and interesting questions still
remain to be answered.

! This research was supported by the National Science Foundation, under research grant NSF-GP 157.
2 Mathematics Department, University of Maryland, College Park, Md.
3 Figures in brackets indicate the literature references at the end of this paper.
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The material in section 4 is an outgrowth of an attempt to bring to bear on the study at hand the
tools and methods of linear transformation theory. The concept of an EP linear transformation
is introduced and related to the notion of EPr matrix. Various results are given, indicating how
the study of these special linear transformations will yield results about EPr matrices. The
concept of a #-normal linear transformation, generalizing the concept of a normal linear trans-
formation, is introduced and exploited to obtain anew the results of [10, 11].

We have tried to make this paper complete, readable and self-contained. It is hoped that
because of our exposition here, some of the questions which we have left open (see sec. 5) will
be resolved in the near future.

2. Structure Theory of EPr Matrices

1. In this section we develop the structure theory of EPr matrices over an arbitrary field F,
essentially as given in [10]. However, in order to indicate clearly the difficulties encountered in
extending results from the complex field to an arbitrary field because of the lack of a spectral
theorem, to place in a proper setting those results which have not been extended, and to provide
new results about EPr matrices with complex entries which give rise to additional questions over
an arbitrary field, we begin with a comprehensive treatment of the complex case, basing the dis-
cussion on [10].

2. We begin by defining the notion of EPr matrix over the complex field.

Except for denoting the kX k identity matrix by I, subscripts on matrices will be used only
to designate a row of a matrix; that is, 4; is the ith row of the matrix 4. A¢ will denote the ith
column of A; when a superscript denotes a power of a matrix, the meaning will always be clear from
the context.

DEFINITION: An n X n matrix A with entries from the complex field € is called EPrif it satisfies the
following conditions.

(1) A has rank r.
T n

2) 3 aidi=0if and only if ¥ aid'=0 (e€¥,i=1,. . ., n).
=il =

As indicated in the introduction, this paper is concerned with matrices that are both EPr and
normal and whose elements are taken from an arbitrary field. Hence we note immediately that
these concepts are not independent over €. After proving theorem 1.1 which gives eight necessary
and sufficient conditions that a matrix be EPr, we shall be able to give a simple proof that any
normal complex matrix of rank r is EPr. The converse statement is false, though, since all non-
singular n X n matrices are necessarily EPn. For, assuming the n X n matrix 4 is nonsingular,

n

Z a;A;ZO

i=1

if and only if

if and only if

En: ZIAIZO
i=1

A portion of this next result is known [15], but is included for completeness. The proof pre-
sented is a slight modification and expansion of that found in [10].
THEOREM 1.1: The following statements are equivalent.
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(1) A is an nXn EPr matrix,
(2) A is unitarily similar to the direct sum of a nonsingular r X r matrix D and a zero matrix.

That is,
D| 0
UAU*=
0| 0O

where U satisfies UU*=1 and D is r X r and nonsingular.

(3) A is conjunctive to the direct sum of a nonsingular r X r matrix D and a zero matrix. That is

oo fif

where Q is nonsingular, D is r Xr and nonsingular.
(4) A is the matrix of a linear transformation T acting on € ,, complex n-dimensional Euclidean
space, and there are mutually orthogonal subspaces Vi and V, of €, such that V, has dimension r,

T(Vl) == Vla T(V‘.’) =0
and
€=V D V..

(5) A has rank r and there is an n X n matrix N such that A* = NA.
(6) A has rank r and there is a nonsingular n X n matrix N such that A* = NA.
(7) A can be represented as

D | DX* |0 D|0 I, | X*
A=P pr—p p
[XD XDX*:| {X{I}{O{O}{O]I }

where P is a permutation matrix and D is an r X r nonsingular matrix.
8) Aé=0 if and only if A*¢=0 where £€% ..
9) R(A)= R(A®); that is, A and A* have the same range spaces.

PRrooOF: The implications are proved in the following order:

@= 1= 1= 6= 6= 6= @B
D= 2= @@= 0y
G = 9= 6).

(8) = (1). Suppose ﬁ: aidi=0 (a;€€,i=1,2,. . ., n).
=

Let
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Then

gA=[oce . . . = aidi=0.

i=1

Hence, taking the conjugate transpose of this equation, it follows that

A*E=0.
Applying (8) we have
AE=0
Thus
i aiAi=0

=1

The implication in the other direction is proved similarly.

(1) = (7). Let 4 be EPr and let the rows A4;,, 4i,, . . ., Ai, be linearly independent. If

i .
> Biydk=0,
k=1
then
| Ap—
E Bi}\Al,\ =0
k=1
and hence B, =Ei2 - .=,l_3,-r=0. Thus Bi,=Bi,=. . .=pi=0 and so the columns 4%, A2, . . .,
A'r are linearly independent. Since the rank of 4 is r, the submatrix D) formed by the elements in
the intersection of rows 4i,, 4i,, . . ., 4i, and the columns A1, 4’2, . . ., A'ris an r X r nonsingular

matrix [15, p. 52]. This “crossing theorem’ can be quickly proved as follows. There is a permu-
tation matrix P such that 4 is brought into the form

- D|E
B=PAP*=
FlG

by premultiplying 4 by P and postmultiplying by P*. Since the first block row of B is of the same
rank r as is A and thus B, there is an (n— r) X r matrix H such that

[FG]=HI[D, EJ,

HIHE

If D had rank < r, then Dé=0 would hold for some &€ %, and so

and hence, by (1), such that
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oL )

contradicting the assumption that the first block column of B has rank r.

With H as above, let
5 It 0
Q: 5
_H Ill—r

plo] ..
[*F} = QBQ* = QPAP*(*
0o

It is readily verified that

so 4

Set P=P-1, X=—X, Q=0
(7) = (3). Set

3) = 6). If

040" =|-5+¢|

where Q is nonsingular, D is r X r nonsingular, then

o oo [ZE e [ 5o

where

and N is nonsingular.

4+ We use the notation P~*=(P~1* = (P*)"'.
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(6) = (5). Clear.

(5)= (8). Let A*=NA. Let n(A4) denote the null space of 4 and let £en(4), i.e., Aé=0. Then
A*¢=0. Thus n(4) C n(4*). But, since rank 4=rank 4*, it follows that dim n(4)= n—rank 4
=n-rank A*=dim 1(4*) and so nA)=n(A%*). Thus if A*¢=0, then A£=0.

(1) = (2. By the well-known result of Schur [17], there is a unitary matrix ¥ such that

*
== *:
B=VAV N,

i.e., B is lower triangular. Moreover, the diagonal elements may be arranged in any order. We
assume that the nonzero terms precede the zero terms on the diagonal of B. If r=n, there is
nothing more to prove. Hence we assume r <n. Then 0 is a characteristic root of 4 and appears
on the diagonal of B. Thus the last row of VAV* is a row of zeros. Hence

0=0-Bi+...+0-Br1t+1-B,

Since B is EPr we have 0=0-B'+. . .4+0-B" '+ 1-B". Repeating this argument shows that
Bi=0 if and only if Bi=0 and so

D |0
* —
VAV [O 0]

where D is r Xr and nonsingular.

2)=) (4) Let

UAU*=[ R ]

010

where UU*=1 and D is r X r and nonsingular. Suppose

and
D=[dj](1 =i,j=r)
Let e, €2, . . . , e, denote the “natural basis™ of € ,, that is
di1
Oi2
(= (l: l, ) n)
| 8in

where &;; is the Kronecker delta. Define the following linear transformations:
7
Rei=2due>‘ (=N P ;)
=1

Rei=0 (t=r+1,...,n)
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n
Sei= Euum (t=1,...,n).
A=t

T'=SRS!

Then S is unitary, that is, preserves the Euclidean inner product and the matrix of 7 is

U-I[D O]U:A

010
relative to ey, . . ., e,. Set
71=<el,.. .0 €r >,
_-_>=<€,‘+1, 6 oo a@ps g

the spaces spanned by ey, . .. ,e,and e,11, . . ., e, respectively. Thenset V', =SV, and Vo= SV,.

Hence
TV,=T(SV)=SRV,=SV,=V,
and
TVy=T(SV2)=SRV,=S(0)=0
Finally, 0= (1, 02)= (Sv1, Sv2), vieVi(i=1, 2) so that ¥, and ¥, are orthogonal subspaces.

(4)= (1).  We prove this by showing that (4) implies (8). Suppose

a
AgIO, fe(gll’ §: :
ay
Let x1, x2, . . ., x, be the basis for @, relative to which the matrix of T"is A. Let V; have basi

S

n
v1, - . ., vr and Vs have basis vy41, . .., vn. AE=0 if and only if 2 aixi€Vs. Then, forl =j=r,
i=1

4

(vj, T”( a,-xi)>=<ij,2 OliXi>:0
i=1 i=1

n
since Tvel; and 2 aixi€Vs, and for r+1=j=n
=1

(U_,‘, T*( j a,~x,’>) o (ij, 5: aix;) = <0, i a,-x,) =0.
\i=1 i=1

n
Thus T*(z aix,-) is in the orthogonal complement of %,, which is (0).
i=1
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Hence T*( ﬁ: a,'Xi> =0 so that A*¢=0.
=i

(5)=> (9). A*x=NAx so R(A) C R(A¥); since rank A=rank A*, the equality follows.
(9)= (5). This follows from [16], p. 92.

COROLLARY 1: If the complex matrix A is EPr, then A" is EPr(n=1, 2, .. .).
ProoFr: Apply (2). If

then

Dr | 0
nfjk — .
UuA"U [ 0 1o ]

COROLLARY 2: Every matrix is a product of EP matrices.’
PRrOOF: It is well known that an n X n matrix of rank r may be written as

I. | 0
P4t
where P and Q are nonsingular.

COROLLARY 3: A complex normal matrix A is EP.
PROOF: Since 4 is normal there is a unitary matrix U such that UAU* is diagonal [15], and hence
(2) of the theorem may be applied.

We shall return to such questions in section 3 and see that the situation is quite different over
arbitrary fields.

An example is given in subsection 4 following, to show that corollary 3 need not be valid over
an arbitrary field.

3. If A is an EPr; matrix and B is an EPr, matrix, then AB may not be an EP matrix. For

example, over €,
11 [0 0
=]y )50 1)
are normal, hence EP;. But the product

0 1
C—AB—[0 1]

) . 1\ (1 — 0).
is not EP, since C<0>_0’ but € (0) <1>

We shall prove that commutativity of 4 and B alters the above result.

For V' C %,, let V+ denote the orthogonal complement of V' under the usual inner product.
Also, let n(4), n(B), and n(4B) be the null spaces of A, B, and AB respectively.

3 A matrix will be called EP if it is EPr for some r.
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LEMMA 1: Let A and B be complex n X n matrices satisfying AB=BA. Then
A*B*€, C [n(4) +n(B)]+
PRroOOF: Let ve?,, xen(4), yen(B).
(A*B*v, x+y)= (v, BAx+ ABy)=(v, 0)=0
so that A*B*ve[n(4)+n(B)]*

LEMMA 2: With A and B as in lemma 1, A*B* %, C n(AB)*
PRrROOF: Let ve%,, zen(AB).

(A*B*v, z)= (v, BAz)=(v, 0)=0

so A*B*ve n(AB)*.

LLEMMA 3: Again, take A and B as in lemma 1. Then
B¥(m(A)*) C n(A)*
PROOF: Let xen(4)*+, yen(A).
ABy=B(Ay)=0
so Byen(4). Hence
(B*x, y)=(x, By)=0
and B*xen(4)*

THEOREM 1.2: Let A be a complex EPry matrix and B a complex EPry matrix satisfying AB = BA.
Then

N(A) + n(B)=n(4B).
Proor: Clearly n(4)+n(B) C n(AB). The reverse inclusion is obtained by showing that
[n(A4)+n(B)|+ C n(AB)*.
First note that
n(4) C n(A)+n(B)
S0
[n(A) +nB)[- C ni4)*.
Similarly, [n(A4)+n(B)|* C n(B)* and thus
[n(4) +n(B)+ C n(A)* N nB)*.

Denote n(A)- N n(B)* by W.
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We wish to show that B is one-one on n(B)*, that is, if x;, x2en(B)* and Bx; = Bx, then x; = x..
If B(x;i—x2)=0 then x;—x:em(B) N n(B):. However n(B) N n(B)t=(0) because, with the usual
inner product, €, has no isotropic vectors & 0. Similarly, it follows that 4 is one-one oun n(4)".

Now we may prove that A*B* is one-one on W. If x;, x.e# and A*B*(x;—x2)=0, then 4*
(B*(x1 —x2)) =0 and since A is EPr it follows that A(B*(x;—x2))=0. Thus B*(x; —x2)en(4). But
by lemma 3, B¥(x; — x2)en(A)* since x; —x2en(4)t. Therefore B*(x; —x2)=0 so that B(x; —x2)=0
and since x; —x» en(B)*, it follows that x; —x,=0.

Also A*B*[m(A)+n(B)]* C A*B*¢, C [n(4)+n(B)]* by lemma 1, and because 4A*B* is one-one
on W we have

A*B*[m(A) +n(B) ]+ = [n(A4) + n(B)]*-.
Finally,

[(A) +nB)] =A*B*[n(A) +nB)|- C A*B*¢, C n(4B)*

by lemma 2, completing the proof.
It is not needed in the above proof, but we can also show that [n(4)+n(B)|*=W. For
A*B*W

C [nA)+n(B)* (by lemma 1)
cw

and since A*B* is one-one on W it follows that A*B*W =W .

THEOREM 1.3: If A is a complex EPry matrix and B is a complex EPry matrix such that AB=BA,
then AB is an EPr matrix.

Proor: Suppose ABz=0. Then zen(AB)=n(4)+n(B). Hence there exist xen(A4), yen(B) such
that z=x+y. Furthermore since n(A4)=n(4%*) and n(B)=n(B*) we have

B*A*z=B*A*x+ A*B*y=0+0=0

which completes the proof.
A theorem of N. Wiegmann [20, 9] asserts that the normality of the complex matrices 4, B,
and AB implies the normality of BA. The corresponding result about £Pr matrices is false. For

example,
1 0 0 0 0 0
A= 0 0 0 |andB=| 0 1 0
1 0 1 0 0 1

are EPs and

=)= &
(=) =) (=)

i fom ()
[

is EP;. However,

= ==

[ (=) =)
(e



has rank 1 and is not £P;.
The following is an example of what can be said in the absence of commutativity.

THEOREM 1.4: Let rank AB=rank B=r, and rank BA=rank A=r.. If AB and B are EPr, and
A is EPr; then BA is EPr,.

ProoF: If 4&=0, then BA¢=0 and therefore m(4) C n(BA). However, since rank A=rank
BA, we have n(4)=n(BA). Similarly, n(B)=n(4B).

Then BA&=0
S Ae=1
& A*¢=0 since A is EPr,
& B*A*E=0
& ABE=0 since AB is EPr,

& BE=0
& B*¢=0
& A*B*¢=0.

Hence n(BA) C n(A*B*)=n(BA)*). But rank BA=rank (BA)* and therefore m(BA)=n(A4*B*).
Thus BA is EPr,.  We shall return to this theme again.

4. Now we are ready to consider £Pr matrices over an arbitrary field F.
DEFINITION: Let /' be a field and A an involutory automorphism of /' that is X is an automorphism of
F such that A* is the identity map. For ael’, let Na)=@eF and for A =[ay] set A*=[b;;] where
by=a;. We say an nXn matrix 4 with entries from F is EPr if the following conditions are
satisfied

(1) A has rank r,
(2) ¥ ai4;i=0if and only if > aidi=0 (eF,i=1,. . ., n).
=1

i=1

We first prove an analogue of theorem 1.1.
THEOREM 1.1": Let A be an n X n matrix with entries in a field ¥. Then statements (1), (3), (5),
(6), (7), (8) and (9) of theorem 1.1 are equivalent.
PRrRoOF: Examination of the proof of theorem 1.1 indicates that no properties peculiar to € were
used and all properties of the complex conjugation that were essential carry over to \; that is@a=0
if and only if =0 and ab=a b, a + b=a+ b whether @ denotes the complex conjugate of ae¥% or
denotes A(a) for aelF'.

It should be noted that statements (2) and (4) of theorem 1.1 may fail to be equivalent to state-

ment (1). For example, consider
& 1
A= 0 3 1
01 2

over GF(5). The only automorphism of GF(5) is the identity (since the image of 1 is 1) and so
0

A*=A'. A simple calculation shows that n(4) =n(4% and a basis vector is (1), therefore, A is EPs.
2
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But there is no U satisfying UU* =1 and such that
D |oO

* —
pave-[210]

where D is 2 X 2 and nonsingular. For the existence of such a matrix U would imply rank 42=rank
D?=rank D=rank A. However, from A* as calculated below, it is clear that rank 4% < rank A.

We have seen that if a complex matrix 4 is EPr, then A" is EPr. This situation does not hold
for an arbitrary field. In fact, for the example above, we have

()

Thus rank A2=1. But 42 is not EP; since

1 1 1
1 1 1

Since A3= A2, no higher power of 4 is EP.
We point out that these conditions fail here because the proof of Schur’s theorem, previously
used, requires that the characteristic vectors of 4 not be isotropic vectors under the Euclidean

0
inner product. Over €, no nonzero vector is isotropic. Over GF(5), the vector | 1 | is isotropic.

2
One should note that 4 has minimal polynomial x%(x —1). In fact, if 2 does not divide the
minimal polynomial of 4, then rank A2=rank 4. Hence A2¢£=0 implies 4¢=0 so A*¢=0 and

thus (42)*¢=0. Then 42 is EP.
On the other hand the EP, matrix
1 3 1
A=|3 0 0
1 0 0
over GF(5) has minimal polynomial x2(x — 1), but 42 is not EP.
We have
THEOREM 1.3": Let A be an EPr; matrix and B an EPry matrix over a field F. If AB=BA and
neither m(A) nor n(B) contains isotropic vectors, then AB is EPr.

ProOF: The essential part of theorem 1.2 (from which theorem 1.3 follows immediately) which
requires the complex field is the equality

SO w
SO~

) N (A)*+=(0)=n(B) N n(B)*

But, under the hypothesis of theorem 1.3’, this holds.

It is of interest to have a theorem along the lines of theorem 1.3 which places no restrictions
on F. We now give such a theorem, which will also show that any example of the type given at
the beginning of this section must involve a matrix of size at least 3 X 3.

THEOREM 1.5: Let A be an EPr, matrix and B an EPry matrix over a field F such that AB=BA.
If r=rank AB = min(ry, 1), then AB is EPr.
PROOF: Suppose that r=r;. If 4¢=0 where &eF,, then 0=BA¢E=ABE so that n(4) C n(AB).
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Since r=ry, it follows that n(4)=mn(4B). Thus, if AB€=0 then

AE=0,
A*E=0
B*A*¢=0

and so
nAB) C n(B*A%).

But rank AB=rank (4B)*, so n(AB)=n(B*A*) and therefore, AB is EPr.

The argument is similar if r=r..
COROLLARY: If A is a 2 X2 EPry matrix over ¥ and rank A>=r, then A*is EPrs.

Proor: Case I. r;=2. Then A% is nonsingular, and hence is EPs.
Case 2. ri=1. If n=1, apply theorem 1.5. If r,=0, then 42=0 and the result is trivial.

Case 3. ri=0. Trivial.

We note that theorem 1.4 remains valid for matrices with entries from an arbitrary field, and

then show
THEOREM 1.6: Let A, B, and AB be EPr matrices over a field ¥. Then BA is an EPr matrix.
Proor: It follows from theorem 1.4 that it suffices to prove r=rank BA.

In view of the equality (W*')- =W for subspaces W C F), it follows that the formulas

() rank AB=r—dim (n(4) N n(B*)L),
(B) rank BA=r—dim (n(B) N n(A4*)*)

(see [6], theorem 7.8) are valid. From (a) and the hypothesis that B is EPr we have

r=r—dim (n(4) N n(B)})

SO

n(A) N n(B): =(0)
and thus F,=n(4)® n(B)* (by a dimension argument). Hence

(0)=(Fn)* =nA) S 9Byt D At N nB)Y-+=n(A)*+ N nB)

so that dim (n(B) N n(A4)t)=0. Then r=rank BA.
THEOREM 1.7: Let A be an EPry; matrix and B an EPr, matrix over a field F. Then we may write

A*=AN, B*=BM,

Sfor some nonsingular matrices N and M. [f AB=BA, then AB is EPr if and only if Nm(AB) C n(AB).
PROOF: Since B*=M-*B it follows that

B*A*=M-*BAN=M-*ABN.
Suppose AB is EPr and ABE=0. Then
0=B*A*t=M-*ABNE = AB(N¢§)

which implies that Néen(AB).

6 The following matrix N would be (N*)~! in the notation of (6) of Theorem 1.1.
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Conversely, if Nn(AB) C n(4B), then by repeating the above argument we can show that AB
is EPr.

THEOREM 1.8: Let A be an EPr; matrix and B an EPrs matrix over ¥. Let AB=BA and let A*
= AN, where N is nonsingular. If n(A)+n(B)=n(AB), then Nn(AB) C n(AB).
PROOF: Since A4 is EPry then m(A4*)=n(A4) and therefore

Nn(A4) C n(4) C n(4B).

Hence it is sufficient to show that Nn(B) C n(4B).
First we note that A*n(B) C n(B). For if xen(B)=n(B*), then

BXASG=—VA:BE—0}

Moreover since B is EPrs it follows that B4*x=0 and hence A*xen(B).
Again let xen(B). Then

ABNx=BANx=BA*x=0

as required, completing the proof.

The converse of theorem 1.7 is false, as the following shows. Let p be a prime and let F
=GF(p). Let A=B be a p X p matrix over /' with all entries equal to 1. Then A=8 is EP; and
nA)+nB)=n(d). But 42=0 so nAB)=n(A4?)=(GF (p))» # n(d)+ n(B)=n(4), since dim n(4)
=p—1. However, 4= A" so the matrix N of theorem 1.7 may be chosen to be I.

We close this section by noting that theorems 1.6 and 1.7 have analogs for the matrix M.

3. A* as Unitary Multiple of A4

1. It is known that if 4 1s a complex normal matrix then
A*=NA=AN

where N satisfies VN* =1, that is, N is unitary. By condition 6 of theorem 1.1, 4 is an £Pr matrix.

The matrix
1 2
A-_—
-2 1

with entries from GF(5) satishes A4*=A4%4 (where the automorphism used to define 4* is the

identity). But
1 1 —3
A =0, 4* =
2 2 4
so that 4 is not EPr.

Thus in order to be able to obtain a relationship of the form (1) it is necessary that 4 be both
normal and EPr. The conjecture was made that these conditions are also sufficient. The main
purposes of this section are to show that

(1) with some added hypotheses a relationship of the form (1) exists, but
(2) without any added hypotheses, the conjecture is not universally true.
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The class of normal EPr matrices having such a relationship will be extended to zero-type?
EPr matrices over a field of characteristic # 2 in subsection 2.  Also, an example will be given of
a 4 X 4 zero-type EPs matrix over an arbitrary field of characteristic 2 which does not have a rela-
tionship of type (1).

2. We begin by finding sufficient conditions for a relationship of type (1).

THEOREM 2.1 ([10]): if A is normal and has the same rank as AA*, then A is EPr.

Over the complex field an £Pr matrix is not necessarily normal and over an arbitrary field the

addition of the hypothesis rank 4 =rank 44* does not imply normality. For example

1 00
A=| 0 0 0
1 0 1

considered over % or over GF(3) is EP, and satisfies rank 4 =rank A4*. But A is not normal.
THEOREM 2.2 ([10]): Let A be an n X n matrix such that rank A=rank AA*. Then A is normal if
and only if A*=NA= AN where N satisfies NN* = 1.

THEOREM 2.3 ([11]): Let A be an n X n matrix of rank r. Then A is a normal EPr matrix if and
only if there is a nonsingular matrix M such that A* =AM =MA.

We do not repeat the proofs here. The essence of the argument will be repeated in the
proof of theorem 2.4.

The main object of this section is to improve theorems 2.2 and 2.3, that is, to remove the re-
striction that 4 and A4* have the same rank and, at the same time, obtain a matrix N such that
A*=NA=AN and NN*=].

LEMMA: Let A be an EPr matrix. We may express A as®

(107 [D]0] [1[X*]. ‘
AF[XIIHOIOHOII ]F*' @)

Then A is normal if and only if
D(I + X*X)D* = D*(1 + X*X)D. (3)

PROOF: Suppose A is normal. Then

DU+ X*X)D* | DU + X*X)D*X* ]’I’*
XD+ X*X)D* | XD(I + X*X)D*X*

AA*:'I’[

and

1% AZT[ﬂD*(/+X*X)D | D*(I + X*X)DX* ]T*
) XD*(I+X*X)D| XD*I+X*X)DX*| "

Comparing the (1, 1) positions of A4* = A*A4 shows that (3) holds.
Conversely, if

D(I + X*X)D* = D*(I + X*X)D,

7See above Theorem 2.5 for definition.
*Here 7T"is a permutation matrix corresponding to the P in (7) of Theorem 1.1.
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then
DI+ X*X)D*X* = D*(I + X*X)DX*,
XD+ X*X)D*=XD*(I +X*X)D,
and
XD+ X*X)D*X* = XD*(I + X*X)DX*
Hence, corresponding blocks of 44* and 4*4 are equal so that 4 is normal.

THEOREM 2.4: Let A be a normal EPr matrix with A expressed as in (2); a necessary and sufficient
condition that there exist a unitary N such that A*= AN=NA is that there exist an (n—r1) X (n—r)

matrix Go such that
— 1+ XDD~*D~'D*X* = XDD~*X*Gy— GiXD~!D*X* + G¥(1 + XX*)Go=0. 4)

PROOF: Suppose that A*=NA. Since T is nonsingular we may write /N as follows:

B |C
N:T[Tf'(,-] 7+ (5)

where B is rXr, Cis rX(n—r), F'is (n—r)Xr and G is (n—r)X(n—r). Substituting (5) into
A*=NA and simplifying we obtain

I, |0 ] {D*|O} {I, LX* ] | BC 1 [ 1,]O D107 L [X*
T w® o r y "
[X yest I v I e I T[ F (;]TT[XI"_,] { 0 |o] [0 IH}T’

[ D* |0}:[ B |C]
XD* |0 F|G

[D ig ]:{ BD+ CXD ||(0) ]

XD FD+GXD

Thus,

D*=BD+ CXD
so that

B=D*D~'—CX.
Also,

XD*=FD+ GXD.
Hence

F=XD*D-'—GX.

Thus the general solution of 4¥=NA is given by

*)—1__
N:T[DD cX |C]T*.

XD*D'—GX |G
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We further require that the matrix N obtained above satisfy 4¥=A4N. Using the represen-
tations (2) for A (and A%) it follows that

[ 1,0 D* [0 7 [ I |X* .
Tlx 1,,4,.] [0 |0] [o T ]T

L[]0 10 [1,. X*] o [ D*D'—CX € T o
T_X n r:I [ I } 0 |I.-- TT[XD*Dil—'GX |G:|T’

[ D* |D*X* ] [D |[DX* 1 [ D*D'—=CX |C }
L 0 0 |o XD*D-'-GX |G
_[ DD*D~' — DCX + DX*XD*D-'— DX*GX | DC + DX*G ]
- 0 | 0

Hence,
D*=DD*D-'— DCX + DX*XD*D~'— DX*GX = D(I + X*X)D*D~' — D(C + X*G)X (6)
and
D*X*=DC+ DX*G

C = D-D*X* — X*G. %)

Substituting (7) in (6) we have
D*= D+ X*X)D*D-' — D(D-'D*X* — X*G + X*G)X = D(I + X*X)D*D~' — D*X*X

which is equivalent to (3). By the lemma it follows that

N7 [ 2D = DUDXEX £ XFCX | DX XA )
B XD*D-'—GX | G

(8)

satisfies A*=NA=AN.

Finally, we require that G be chosen so that N*N=1I. By computing N* from (8) and then

wnv_ | PO ],
N * — T AE:
N*N=T [T’T] 1

multiplying out N*N we obtain

where
P=D-*DD*D-1—D-*DD'D*X*X + D-*DX*GX — X*XDD-*D*D!

+ X*XDD-*D'D*X*X — X*XDD-*X*GX + X*G*XD*D~' — X*G*XD-'D*X*X

+ X*G*XX*CX + D= *DX*XD*D-' — D-*DX*GX — X*G* XD*D '+ X*G*GX

=1, — X1, »—XDD*D'D*X* + XDD*X*G + G* XD 'D*X* — G*(I + XX*)G|X. (9
Q= D-*DD-'D*X*— D-*DX*G — X*XDD~*D-'D*X* + X*XDD~*X*G

+ X*G*XD'D*X* — X*G*XX*G + D-*DX*GC — X*G*G
=XHI—=XDD *D'D*X* + XDD~*X*G + G*XD~'D*X* — G*([ + XX*)G]|. (10)
63



R=0Q* (11)
S=XDD-*D-'D*X*— XDD~*X*G — G* XD 'D*X* + G*XX*G + G*G
=XDD-*D-'D*X* — XDD-*X*G — G*XD-'D*X* + G*(I + XX*)G=S*. (12)

Hence

P=1—X*-»r—S)X,

Q=X*(l,-r—09),

R=L——S)*X=(l,—»r— S)X.

If for some G we have N*N=1, then S=1,_, and hence (12) reduces to (4) as required.

Conversely, suppose there is a G, satisfying (4). If this value is substituted for G in (8) then
(12) reduces to I,,.,—S=0. Hence

P=1,—0=1,
0207
R=0

so that N*N=1 as required completing the proof.
In ([10], p. 3) we have the added hypothesis that rank 4 =rank 44*. From this it follows as
in [10] that /+X*X is nonsingular. Theorem 2.2 may be established by verifying that

Go=XUI+X*X)"t(D'D*—=DX*+1

is a solution of (4).

DEFINITION: Let n=2r (r is a positive integer). An n Xn EPr matrix A such that A4%*=0, is
called a zero-type matrix: that is the columns of 4 are pairwise orthogonal and individually isotropic
with respect to the inner product induced on F, by \.)

THEOREM 2.5: A zero-type matrix is normal.

Proor: Since A4 is EPr
IR
AT[ | 1, 00 0|1,T

where X is r X r, so that

OZAA*:[ DU +X*X)D* | 0 ]

0 )

Since D is nonsingular, it follows that /+X*X=0. By the lemma before Theorem 2.4,4 is normal.
The preceding proof did not use the fact that n=2r. Nor does the following alternate proof:
AA*=0 implies that each column of A* lies in n(A4). Since A4 is EPr, it follows that 4¥4%=0
and thus that 44 =0. Hence each column of 4 is in n(A4), and since A is EPr, A¥4=0.
A similar proof shows that EPr matrix A is normal if 4>=0."

9 We are indebted to A. J. Goldman (National Bureau of Standards) for the observations of the preceeding two paragraphs.
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COROLLARY: If A is a zero-type matrix, then the square matrix X of theorem 1.1, part (7) satisfies
[+ X*X=1+XX*=0.
THEOREM 2.6: If A is a zero-type matrix over a field of characteristic # 2, then there is a unitary
matrix N such that A*=NA= AN.
PROOF: According to theorem 2.5 it suffices to find an (n—r) X (n—r) matrix G, satisfying (4).
However, by the above corollary, for a zero-type matrix, / +XX*=0 so that (4) reduces to
0=—1+XDD-*D'D*X* —XDD~*X*Go— GgXD 1 D*X*
=—[+XDD-*D-'D*X* — XDD~*X*Go— (XDD ~*X*Go)*.

Set Y=XDD-*X*G,. Then (4) becomes

0=—I+XDD-*D'D*X*—Y—Y*. (13)

Set H=— % (I—XDD-*D'D*X*). Then H=H* and Y= H is a solution of (13). Thus
Go=XDD-*X*)""H=— % (XDD-*X*"Y(I—XDD-*D-'D*X*)

satisfies (4), completing the proof.
We now give an example to show that the requirement characteristic # 2 is necessary. Let

— =
1 0 1 0
1 1 1 1
A=
1 01 0
1 1 1 1
over a field of characteristic 2. Then
1 0/0 O 1 0/{0 O 1 0|1 O
q= 0O 1/0 O 1 1/]0 0 0 1]0 1
1 1 0 0 0 0 0O 0|1 O
0 110 1 0 0|0 0 0 0|0 1

so that A is EP>. Moreover, A4*=0 so that 4 is a zero-type matrix. Equation (13) of theorem
2.6 reduces to

w | 11
Y+Y*= [ L ]
Thus, the impossibility in some cases of finding a unitary matrix N such that 4*=AN = NA follows
from the following theorem and theorem 2.5.
THEOREM 2.7: Let F be a field of characteristic 2 and \ the identity. If S is a symmetric matrix
over F, then a necessary and sufficient condition that there exist a matrix R such that R+R*=S
is that S have only zeros on the diagonal.
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PRrROOF: Suppose R+R*=S. Because a+a=0 for aeF, it is clear that the diagonal elements
of S are zero.

Conversely, let the diagonal elements of S be zeros. Let R have zeros on and below the diag-
onal and be identical with S elsewhere. Then R+ R*=S, completing the proof.

A matrix M satisfying the conditions of theorem 2.3 is

i i

1 1 10

1 0 0 1
M=

00 0 1

0 01 1

It would be desirable to relax the requirement n=2r in the definition of zero-type matrix. Such
a change, however, leads to difficulties in the ensuing matrix equation which we cannot presently

handle. In particular, the condition I +X*X =0 (which continues to hold) need not imply I +XX*
=0, and so (4) retains its formidable character. For example, consider

over a field of characteristic 3. Then rank A=1 and 44*=0. Suppose X=(a, b)' and D=[d]
in (7) of Theorem 1.1. For any permutation matrix 7,

d da db
A=T'AT= | da daa dab
db dba dbb

Hence X=(1, 1), so that

1+XX*:H ;]7&0

although I+ X*X=0. Note that N=1 is a unitary solution of A*=AN=NA.

3. It was proved by Williamson [24] that any complex normal matrix 4 may be written as a
polynomial in A* with complex coefficients. An example is given in [10] to show that this is not
necessarily the case for a normal matrix over an arbitrary field . That example gives a normal
but not EPr matrix. Instead of repeating this example we give a matrix 4 which is normal and
EPr, yet A* is not a polynomial in 4. The matrix A of the example before theorem 2.7 suffices.
A>=0 so we try to find @ and B in GF(2) such that A*= a4 + BI.

[ ] i ] B T B ]
1 1 1 1 1 01 0 1 0 0 0 at+pB 0 167 0
01 01 1 1 1 1 01 0 0 o atfB « o
1 1 1 1 1 01 0 001 0 o' 0 at+B 0
L0 1 0 1 1 1 1 1 0 0 0 lj o' el « a+p




so that comparing the (1, 3) and (2, 1) positions leads to
a=1, a=0.

Hence A* is not a polynomial in 4.

We close this section by stating the only known result concerning the expression of 4™ as a
polynomial in A4 and giving an example.
THEOREM 2.8 ([10]): Let A be an n X n matrix over a field ¥ and let K be a field containing ¥ and
the characteristic roots of A. If rank (A—BINA—BD)*=rank (A—pBl)=1z and A— Bl is EPrg
for each BeK, then A is normal and A* may be written as a polynomial in A.

However, the hypotheses are not also necessary. For example

(1]

over GF(2) satisfies the conclusion of the theorem, but rank 4 # rank A4*. Moreover, this ex-
ample is easily adapted to GF(p), p= prime.

4. EP Linear Transformations

1. In this section we introduce the notion of an EP linear transformation acting on a finite-
dimensional vector space. We develop a theory for £EP linear transformations and then show how
some of the results of the previous sections may be derived by means of this new concept.

Finally, motivated by the well-known notion of normal linear transformation, we introduce
the concept of #-normality and apply it to the study of normal EPr matrices.

2. Notation: Throughout, ¥ denotes an n-dimensional vector space over a field F, V,,(F) ' de-
notes the vector space of m X 1 column vectors with components from F,V denotes the dual space
of V' (that is, the space of linear transformations from V to F), L(V) denotes the space of linear
transformations from V to V, and for Tel(V), n(T) and R(T) denote the null space and range space
of T respectively. [T]; denotes the matrix of T relative to the basis B of V. mn(A4) and R(4) denote
the null space and range space of the n X n matrix 4 respectively.

We r(fcaal] the essential facts concerning T*eL(V), the linear transformation dual to 7. For
xel and yel we set

T*3(x) = 7Tx),

where a— @ is an involution of F. Generally one sets T*y{x)=11Tx), but our special purposes
require theAconjugation and no great change ensues. This gives a well-defined linear transfor-
mation on V. Moreover, if v, . . ., v, and @1, . . ., D, are dual bases, that is, 0i(v;) = 8;;, then the
matrices of 7 relative to vy, . . ., vy and of T* relative to 0y, . . ., D, are conjugate transposes.
These elementary facts will suffice for our purposes. For further details see the lectures by N.
Jacobson [8, pp. 51-60].

DEFINITION: Let TeL(V). T is an EP linear transformation if there is a basis uy, . . ., uy of V
and a dual basis 4y, . . ., it, of ¥V such that

T ( i a;ui>:0 if and only if 7% < i a,~12,-)=0.
i=1 i=1

Dual bases satisfying this requirement will be called special bases and the basis uy, . . ., u, will
be called a special basis. (So if reference is made to a special basis, it is to be understood that
there is a dual basis such that together these dual bases form special bases.)

10 Previously denoted F,,.
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THEOREM 3.1: Let TeL(V). T is EP with special basis B: by, . . ., b, if and only if [T]g is an EP
matrix.

PRrRoOF: Consider the isomorphism fz: V' — f3(V)=V,(F) defined by

fB (i aibi) —(a1, - - -, an)’- (1)

i=1

Note that E :fg(b1), . . ., f(bn) is the natural basis of V,(F). fp induces an isomorphism Fy : L(V)
— Fg(L(V))=L(Vu(F)) defined by

(FgD)(fsx) = fp(Tx) (TeL(V), x€V).

Note that
[FpTe=[T]s. (2)
If B :1;1, . Z,, is the dual basis to B, then there is also an isomorphismfg 217—>f:g(l;)= Vu(F)
defined by

i (3 8b) =@ e
andAj;;(IA)L), c ey ﬁ;(?},,) is again the natural basis of V,(F). j?[g induces an isomorphism ﬁB LD
— Fy(L()= L(P,(F)) defined by
EsDifon) =D (FeliD), 2eP).
Note that
[FuTle=IT15.
As remarked earlier, for any Tel(V),
[T*lz=[T1%.
First assume T is EP with B as special basis. Then

0=[Tg/p(x) =[FsTe/p(x) = (FT) fp(x)) = f5(Tx)

implies that

and thus that

This in turn implies
0=l T*x) = (FuT*)fol8) = [T e fol®) =[T*3/5@®) =[T Hetr. . . .. cw =[T T o,
68



Furthermore, the resoning is reversible. Thus for all £ = fz(x)eV 4(F') we have
[T]s6=0 iff [T]‘;‘;§=0,
and so [T'|p is an EP matrix.

Next assume [T'|5 is an EP matrix. Then

Tx=T ( 3 a,~b,->=()

i=1
implies

0=fp(Tx)=(FpT) (f5(x)) =[FsT efs(x) =T |/5(x),
which in turn implies

0=[Tli /a0 =[T*lilcur. . - ..l =[FuT*Ii s ( 2 a,-i)z)
i=1
:(ﬁnT*)ﬁ: ( b3 (Xii)i) :./7f<7'* ( D Olil:i) )
i=1 i=1

L - - .
T'hus 7* <2 a;b,-)z 0. Furthermore, the reasoning is reversible and so 7" is an EP transformation
=1
with B as special base."
If there exist special bases for T it is not necessarily true that any pair of dual bases provides
special bases. For example, consider the linear transformation 7" whose matrix relative to the
natural basis e;, ex, e3 of V3(F) is

1 0 0
0 0 0
I 0 1

Let €1, €2, é3 be the dual basis. Then Tes=0. Also

T*f’kz(t’l) = é&x(Ter)=és(e; +e3)=0,

so that T%e,=0.

Suppose T* ( a,-e;) =(0. Then

i=1

3
a.-ei) (€)= aieiler+ex)=0an+ @,

0=T* (
i=1

3

=1

" We are indebted to A. J. Goldman (National Bureau of Standards) for simplifying an earlier version of this result and bringing the proof to its present simpler

form.
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Mm

o1 (

e
i) €)= 3 aei0)=0,

7

1

3
0=T* ( a,-ei> (e3)= Z aieiles) = ag,

1 =1

-

I

3
and hence a;=a3=0 so that E aiei=azes. But T(azes)=0. Thus T is EP with the natural

=1
basis and its dual as special bases.
However, consider the following dual bases. wvi=e;, va=e +e,, v3=e3 and v1=e, — e,
ve=es, v3=e3. T(vy—v2)=0. But

T*(U] - 1}2)(’1}1) = (U1 = Uz)(T’Ul) == (61 - 262)(61 =F 63) =1#0

so that T*(v; —v,) # 0. Hence these dual bases do not satisfy the requirements of the definition
of special bases.

It is possible that every pair of dual bases be special bases. For example, this is the case
whenever T is nonsingular.

Now we give an example of an EP linear transformation 7 with exactly one pair of special

bases. Let T have the matrix
1 0
A=
0 0

over GF(2) relative to the natural basis e, es of Vo(GF(2)). By the same type of calculation per-
formed earlier one verifies that the dual bases e;, e: and ¢}, €; are special bases. By theorem 3.1,
determining all special bases B is equivalent to finding all 2.X 2 nonsingular matrices P such that

[Tlg=P'4AP is EP,. If

and C=P-'4P is EPr, then (x, y)'en(C) implies
ax=by, (3)
dx=cy (4)

since the identity is the only automorphism of GF(2), and

(el

By testing the three nonzero possibilities (1, 0),(0, 1), and (1, 1) for (x, y), and eliminating the third
since P is nonsingular, we find that

are the only solutions. Hence T has exactly one pair B, B of special bases.
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The proof of the next theorem requires the following well-known result.
LEMMA 1: Let Tel(V). Then the following are equivalent.

(i) rank T=rank T>.
i) m(T) N R(T)=(0).

THEOREM 3.2: Let TeL(V) and rank T=rank T2 Then T is EP.

ProOF. Let rank T=n—r. Let V have a basis ui, . . ., Ur, Ur+1, . . ., un where the first r
vectors form a basis of (7)) and the remaining (n — r) vectors form a basis of R(T).

Suppose Tu; =" axiur(i=1, . . ., n). Then

i=
r n
2 akiuk=Tu,~— E Qeilly. (5)
k=1 k=r+1
The left-hand side of (5) is in n(7T") and the right-hand side is in R(T'). Thus
E (1/;,‘111;:()
=1
and
Tui= E ariugeR(T) (i=1, . . ., n).
k=r+1
If the dual basis is @1, . . ., g, then fori=1, . . ., r,
(P*iu) = G Tog) =) “OV=DIOLI =L - oo
i < E a;.,-u,,) =0forj=r+1,. . ., n,
[
so that T*4;=0. From rank T'=rank 7% [8, p. 59| it follows that &y, . . ., 4, form a basis for

n(T*). Hence T is EP, completing the proof.
COROLLARY 1: Let Tel.(V). There is a positive integer k such that T* is EP.
ProOF. The sequence of subspaces

nhHCnl»C. ..

terminates. That is, there is a positive integer £ such that rank 7%=rank 7%*!. Thus rank
T*=rank T2,

COROLLARY 2: If A is an n Xn matrix such that rank A= rank A%, then there is a nonsingular
matrix P such that P-'AP is EPr.

Proor. If T is the linear transformation whose matrix relative to the natural basis is 4, then T
is EP and so has a special basis B. By theorem 3.1,

[Tls=P-14P

is EPr where P is the matrix changing coordinates from the natural basis to the special basis.
COROLLARY 3: Let A be as in corollary 2. Then any linear transformation T whose matrix relative
to some basis is A is EP.
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REMARK. The condition of theorem 3.2 is not necessary that T be EP. For example, consider
the matrix

A is EPr, since it is symmetric, so the linear transformation T of theorem 3.1 is EP. However,
rank T=1 and rank 7%>=0.

Furthermore, this type of example can be constructed for any nonzero characteristic.

The situation is better over the complex field.
THEOREM 3.3: The linear transformation T on a vector space V over the complex field is EP if and
only if rank T=rank T2
ProOF: We may assume that T is singular. Suppose that 7" is EP and has a special basis B.
[T]s is EPr so applying theorem 1.1,

D|O
*
P[ T 1sP [ o To ]
where PP*=1 and D is nonsingular. Since D? is nonsingular, rank 7>=rank P[T?|3P* =rank T.
The converse is included in theorem 3.2, . R
3. DEFINITION. Let TeL(V) and ¥ and V have dual bases B:ay, . . ., anand B: 41, . . ., G
Let 05 denote the linear transformation of " onto ¥ given by

n n
- A
03 ( 2 aiui> = 21 Aili.
i=

i=1

Then 05'T*0zeL(V). We say that T is 0 — normal if T and 63'T*0s commute.

n
Suppose Tu;= 2 triue(i=1, . . .., n). Then
k=1
no_ W
(GEIT*()H)uiZOEIT*&,‘ZQEI 2 Likll = 2 tiwur(t=1, . . ., n)
k=1 k=1
and so the matrices of T and 05'T*8y relative to the basis u, . . ., u, are conjugate transposes.
n
Let T have matrix A relative to the basis ey, . . ., e, and let u;i= 2 priek(i=1, . . ., n),
=1
P=[pij]. Then

[T1s =P AP, [05'T*0|s =Tl = P*A*P~*,

Hence, in matrix terms, T is g — normal if and only if PAP~! and P=*A*P* commute.
LEMMA 2: Let Tel.(V) and let 6g be the mapping of the preceding definition. Suppose the under-
lying automorphism is the identity. Then (05'T*0g)* = 65T05".
PROOF. We use the bases B:ui, . . ., un and B:ity, . . ., i employed in defining 6. The
proof is arranged to indicate why assuming A to be the identity is required.
n no__ n
Suppose Tu;= 2 Briwn(i=1, . . ., n) so that T#u;= Zﬂikﬁk @i=1,.. .,n). If xzzaiuieV,
=

k=1 k=1
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then

(05" T*05)* uil(x) = @i 05" T*Ox)

212,' <0§1T* i Og?q)

=

:l:i (951 E ajEjkﬁk)

and

Since A is the identity, o= @;; thus (65'T*0p)* and 05T65' agree on a basis and so they are
equal.
LEMMA 3: Let A be an EPr matrix over a field ¥. Then rank A*>=rank AA* .
Proor: We have shown that A*=/NA where N is nonsingular, so A4*=A*N*,
REMARK: A=[{}] shows the converse is false.

Before stating the next theorem we indicate the notation to be used. Let TeL(V) and n—r
=rank T'=rank T?. Then n(T)NR(T)=(0) and hence we may choose a basis B: wuy, ..., uy of

V' such that uy, ..., u, form a basis of n(T) and w1, . . ., u, form a basis of R(T). Moreover,
T is nonsingular on R(T) and thus Tu,11, . . ., Tu, also form a basis of R(T). As in theorem 3.3,
A o A . = —
B:u,...,u, Tupsq, ..., Tuy and B: @y, . . ., 0y, (Turir) . . ., (Tuy)

form a pair of special bases for 7. Let

v,~=ui,{?,-=f1,~ (i=],...,r),
- oy =
vi= Tu;, vi= (Tu;) C=r+1,...,n),

and

=1

n n n
03 2 AV :2 AiVj .
i=1

Finally, suppose the underlying automorphism on F is the identity. Then we have the following
analog of theorem 2.2.
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THEOREM 3.4: With the notation of the preceding pargraph suppose that T is 0z-normal.

there is a linear transformation R=Rye L(V) such that

(i) 63'T*65=RT=TR,
(i) R is unitary relative to the inner product

(xa y)zaBY(x)’ X, era

(that is, (Rx, Ry)=(x, y) for all x,y),
(iii) N, the matrix of R relative to the basis B, satisfies NN*=1.

PRroor: (i) Define R as follows.
Rui=u,~ (i=1,...,r)

R(Tu))=05'T*6pu; (i=r+1,...,n)

so that R is defined on all of V' since V'=n(T)@® R(T). Since T is EP with special bases u,, . . .

and iy, . . . , Uy it follows that
RTu;=R0=0 @=1,...,n,
05'T*0piki = 05 T*2;=65;0=0 (i=1,...,r).
Hence 63'T*05=RT. Moreover,
TRui=Tu;=0 @e=1,...,n),
TR(Tu)=T(RTu;)
=T(05'T*0pu:)
=05'T*0pTu; (by 6-normality)
=RT(Tu;)

and so TR =RT.
(Note that n(7) N R(T)=(0) is used only to insure that R can be defined on all of V)

(ii) For i,j= 1, o o og n (R’Ui, R'l]j)=(RUi, Ruj)=(ui, Uj)=(1)i, Uj).
Fori,j=r+1,...,n,

(Rvi, Rvj)= (RTui, RTu;)=(05'T*0pu:, 05'T*0pu,)
= 0505 T*0pu;(05' T*Opu;)
= 0pui(TO5' T*0su;)
= Opuj(05 T*605Tw;)
= (05'T*05)* Opuuy(Tus)

= 05T605'0pu;(Tu;) (by lemma 2)
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=0pTuj(Tu)

= (Tui, Tu;)

= (vi, vj).
Fori=1,...,rand j=r+1,...,n,

(vi, vj) =(wi, Tuj)= (vi, vj) = Opvj(vi) = vj(v)) =0

and
(Rvi, Rvj)=(Rui, RTuj)= (ui, 05'T*0pu;) = 0505'T*0pui(w;) = Opu;(Tu:) = 0pu;(0) = 0.
Finally,
<E Qivi, 2 le{,‘) o= 2 le‘;j (2 01,‘1),-)
=1 j=1 Jj=1 i=1
= i Biai
=1
= E aif3i
=1
=2, aibi (E Bﬂb‘>
i=1 Jj=1
= (2 Bivis Y. aivi)
Jj=1 =1
sofori=r+1,...,nandj=1, ..., rit follows that

(i, vj) = (Tui, uj) = (uj, Tuw)
= (Ruj, RTu;) (from the preceding case)
= (RTui, Ruj)

= (Rvi, Rvj).
Hence (x, )= (Rx, Ry) for all x, yeV.
(ii1) Set Rvi=i riwj(i=1,...,n). Then
i=1

8ij = 0j(vi) = (vi, vj)
=3 (Rvi, Rvj)
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n n
=(3 nns 3 rma)
A=1 n=1
n
= 2 Ihil\j
A=1

so that N*N=1, completing the proof.

COROLLARY 1: Let A be a normal n Xn matrix (relative to the identity automorphism) satisfying

rank A=rank AA*. Then.there is a matrix N such that N*N=1 and A*= NA=AN.

ProOOF: By [10] 4 is EPr and so it follows from lemma 3 and 'Theorem: 3.2 that 7', the linear trans-
formation whose matrix relative to the natural basis of V(F), E: ey, ... ,enisA,is EP withes,. . .,

enand [y, . . ., ln as special bases.

Set 0z (2 aiei) =i a;8;. Since A is normal, and

i=1 i=1

[Tle=A,[05'T*0cle =A%,
it follows that T is g —normal. By (i) of Theorem 3.4,
A*=[05'T*0p|e =[RT|r=[TR)g=NA=AN.

5. Some Open Problems

(1) If A4 is EP and normal is A2 necessarily EP? (See corollary 1 of theorem 1.1.)

Remarks: (i) If the conclusion of theorem 2.6 is valid for all normal, EP matrices, then the
answer is yes.

(i1) One should note that 4% is EP, for the example given in connection with theorem 2.6.

(2) When can a matrix of rank r be expressed as a product of EPr matrices? (See corollary
2 of theorem 1.1).

(3) If A, B, and AB are EP, it does not follow that B4 is EP. What additional condition will
guarantee that B4 is EP? In particular, 4 of the example preceding theorem 1.4 is not normal.
Will normality suffice? (Wiegmann’s theorem 20, 9 answers this in the affirmative over the com-
plex field).

(4) If A is an EP matrix, can x3 divide the minimal polynomial of A7

Remarks: (i) If 4 is a complex EPr matrix, then

«_ [ D]O
UAU* = [ 0o ]

where D is an r Xr nonsingular matrix and UU*=1. This implies that x> does not divide the
minimal polynomial of 4.

(ii)) The matrix A= [1 l]
1 1

over GF(2) shows that x2 can divide the minimal polynomial if 4 has entries from an arbitrary field.

(5) When is the sum of EP matrices EP?

Remark: A trivial sufficient condition is the following. A*=NA, B*=MB, N and M non-
singular and N= M.

(6) Characterize the matrices A with the property that A* is a polynomial in 4.

(7) Find what additional condition a normal matrix 4 must satisfy so that A=SU=US, S=S*
and UU*=1.
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(8) Find necessary and sufficient conditions that a linear transformation 7 on a finite-dimen-
sional vector space be EP.

(9) Let T be a linear transformation on a finite-dimensional vector space V, By a basis of V
and [T]B;=C. If Tis EP, then there is a special basis € such that [T]B>= 4 is an EP matrix and so
C is similar to an EP matrix. Thus determining the EP linear transformations amounts to finding
all matrices similar to an EP matrix. Find them.

(10) Let A be an EP matrix, B; and B, bases of a vector space, and [T]g1,= A4, [T:]g2=A4.
Then T, and T> are EP and T, =R'T>R for some R. Does R have any special properties?

(11) Prove theorems about EP linear transformations which are analogues of those about
EP matrices.

Remark: Here are two easily established results about products.

‘(i) If S and T are linear transformations on a finite-dimensional vector space whose minimal
polynomials have 0 as a simple root, and ST=TS, then ST is EP.

(i1) If S and T are linear transformations on a finite-dimensional vector space that are EP and
commute, S and 7" have a common special basis, and the null spaces of S and 7 contain no isotropic
vectors, then ST is EP.

(12) Let T, and T, be EP linear transformations on a vector space V with special bases Bj,
B, respectively. If T\T, is EP, determine a relation between a special basis of 7,7, and B, B..

Remark: In this connection, consider the following. Let A be an EP matrix and rank A2
=rank A so that A% is also EP. If T is a linear transformation such that [Tz =A4, then T is EP
with special basis B and [7?]3= A% so T? is EP with special basis B.

(13) Can some basis of the null space of an EP linear transformation 7" always be extended
to a special basis of 77

Remark: This has played a distinguished role in section 4.

(14) The examples of special bases given are extreme. Find examples which are not.

(15) Characterize those EP linear transformations T(over an arbitrary field) that satisfy rank
T=rank T2.
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