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Invariant Properties of the Spheroidal Potential
of an Oblate Planet*

John P. Vinti!

(November 17, 1965)

The author’s gravitational potential for an oblate planet, expressible in terms of oblate spheroidal
coordinates, can be generalized by means of a metric-preserving transformation of the associated
Cartesian system. This preserves separability of the problem of orbital motion when the potential
coefficients J». 1 and J3 are taken into account. The inclusion of /.. is not of practical importance,
but has a clear physical interpretation. The inclusion of J;. however, is of considerable practical
importance, permitting a more accurate treatment than that given by perturbation theory. On the
other hand, its physical significance is less clear, since including /5 depends on translating the origin
of spheroidal coordinates by a distance 8= % J;'[/s| equatorial radii. This distance, amounting to
7 km in the case of the earth, is much greater than any change in the geoid produced by Js;. It is
clearly related to the long-periodic terms of perturbation theory and turns out to be equal to the dis-
placement by J; of the plane of symmetry of those exactly elliptical polar orbits which are possible
solutions with the spheroidal model.

Key Words: Invariant properties, spheroidal potential, oblate planet, metric-preserving trans-
formation.

1. Introduction

If one neglects the axial asymmetry of an oblate planet, the gravitational potential V' outside
it is given by

V:_,&[l_ 2 <,,_(>" ./nl)n(Sin 9)] (1)

n=1

Here w is the product of the gravitational constant and the planet’s mass, r. is its equatorial radius,
and r and 6 are the planetocentric distance and latitude of a field point. The P,’s are the Legendre
polynomials and the J/,’s are the coeflicients of potential, with /, =103 and all higher J’s = 10-¢
or smaller for the earth. The first harmonic, n=1, can be eliminated from (1) by taking the origin
at the center of mass.

If r is the position vector of a satellite of such a planet, its motion around the planet is described
by r=—VV. In earlier papers2 [V1959a, b] I discovered a choice of J,’s that reduces the solution
of this differential equation to a separable problem. This choice is

Jok= (= 1y*1J§ Jokr1 =1 )JE, (2)

*Research supported by the National Aeronautics and Space Administration, Washington, D.C.
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2 For convenience I shall use the Harvard system for references. Since there will be so many references to my own papers, however, I shall abbreviate my name
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corresponding to the spheroidal potential

V:_,U-(p—f-nﬁ)

p:Z + CZ'T]Z ? (3)

p, m, and ¢ being spheroidal coordinates. The relations among rectangular, spherical, and
spheroidal coordinates are

x+iy=rcos 6 exp io=[(p*+ (1 — 7' exp ig (4.1)
z=r sin 6=pn. (4.2)

Here
E=rjy  8=—rd; (5)

and 8 is the distance, taken positive northward, from the origin to the center of mass. Since
6 =0 when they coincide, this potential is symmetric with respect to the equatorial plane. Inver-
sion of the separated equations led to an accurate reference orbit that takes into account the
zeroth and second harmonic exactly and about two-thirds of the fourth harmonic [V1961a, b, 1962].

Shortly after the publication of V1959a, Brouwer and Pines [Brouwer and Clemence 1961,
pp- 573, 592] found that the potential (3), with §=0, could be discovered in another way. If one
imagines half the mass of the planet placed on the polar axis at z=c¢’ and half the mass at z=—~¢,
the corresponding two-center potential is

where

2
Cg=ﬂ+ﬁ+u:&? (6.1)

This corresponds to the separable problem of two fixed centers. If one now replaces ¢’ by ¢ V=1,
the expression (6) remains real and leads to the separating potential (3) of the oblate planet. The
significance of this procedure is traceable to the imaginary transformation that connects prolate
and oblate spheroidal coordinates.

Some time later Aksenov, Grebenikov, and Demin [1963] discovered that if w;, w.. ri, and r»
are all complex, with pir;! and por;! conjugate, the potential

p=_ K1 K
I re

(7)

also leads to separability and enables one to fit not only w and J, in (1) but also /3, with the origin
still located at the center of mass. An endeavor to understand this possibility in more physical
terms led to the present paper.

2. A Further Summary of Previous Results

Let

£ =pjc, (8)
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where ¢ is the adjustable distance in (4.1). The potential (3) was the most general function of
oblate-spheroidal coordinates that satisfied certain conditions:

a. It must be a solution of Laplace’s equation.

b. It must not be infinite everywhere on the polar axis.

c. It must lead to separability of the Hamilton-Jacobi equation.
Conditions (b) and (c) imply axial symmetry, so that no explicit assumption was really necessary
for that. It happened, however, that a further condition was used, but not explicitly stated:

d. The spheroidal coordinates are centered around the center of mass and around the polar
axis.

3. Transformations of the Rectangular Coordinate System

Giving up this fourth, unstated, condition permits an extension of the results. To see how,
note that the Hamiltonian can be expressed as

_ lde+dy* + dz?

H*zT“f'V(fs")) 9)
and Laplace’s equation as
P N R
= ((’)x2+('i)2+()zz) F=0. (10)

Postulating that V(¢, ) be a potential that satisfies (10) and leads to separability, we then ask what
changes one can make in the rectangular coordinate system on which &, n, ¢ are based, without
losing these properties. Since invariance of ds*= dx*+ dy*+ dz* leads to invariance of V*, the
answer comes easily: any metric-preserving transformation. Actually the properties are preserved
even if ds® and V2 change by constant factors (conformal transformation). If, however, we write
eqs (4) in the form

x+iy=c[(E+ 1)1 —1?)]"2 exp ip (11.1)
z=cén, (11.2)

it is clear that we already have a disposable scale factor, viz, ¢, so that we cannot gain any added
advantage by such a generalization. Also we do not gain anything by considering reflections,
since these do not introduce any extra parameters that might be used to fit more J’s. Hence our
practical result: to obtain the greatest generalization of the results, we need consider only trans-
lations and rotations of the rectangular coordinate system.

Now from V1959a we have the result that

V=bo Re (¢+in)'+b Im (£+im)! (12)

is the most general potential, based on the polar axis as z-axis and on the center of mass as origin
for the spheroidal coordinates, that satisfies conditions a, b, and ¢. We may now translate and
rotate the associated rectangular system and (12) will still have the desired properties a, b, and c.
Since a translation is described by three parameters and a rotation by three parameters, it would
appear at first that we could fit six more potential coefficients. Actually the number is only five,
since of the three rotation parameters, it takes only two to fix the new z-axis. Since the third is
used to fix the rotation of the new x and y axes around the latter, it is immaterial with a potential
like (12), which is symmetric around the new z-axis.
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4. Rotation

We assume that the polar axis is not an axis of symmetry, but that there exists such an axis
OZ in the planet, with angular coordinates ¥ and 8. A plane through O, perpendicular to OZ,
intersects the plane Oxy in the line of nodes N, which we take as the new X-axis. Then if i, j,
and k are unit vectors along Ox, Oy, and Oz, unit vectors k' and i’ along OZ and OX are given by

k'=isiny cos B+ sin i sin B+ k cos ¢ (13.1)
i’ sin y=k’ X k=i sin { sin 8—j sin  cos 3, (13.2)
so that
i’=isinB—jcosfB (13.3)
and
j'=Kk’Xi=i cos { cos B+ j cos  sin B—k sin . (13.4)
Then since
ixt+jyt+tkz=i'X+j'Y+k'Z, (14)

we obtain the equation
X
y|=AY (15.1)
% Z/,

( sin 3 cos Y cos B sin ¥ cos B)

where A is the square rotation matrix

A=|—cosf cos P sin B sin ¥ sin 8

0 —sin Y cos s

(15.2)

Here OZ is along the axis of symmetry of V= bRe(é+in)~ !+ b, Im(£+in)!, having angular. co-
ordinates ¥ and B, the axis OX is along the line of nodes, and the sense of OY is given by the right-
hand screw rule.

5. Translation Plus Rotation

If we also translate the origin from O to O’ by a vector

00’ Es=isl‘-f-jsz‘+ ks, (16)

(64

we find



and
— 5 sinB —cosfB 0 X — 1
(Z ( P cos Yy cos 3 cos Psin 3 —sin y—s2|* (17.1)
zZ—S3 sin Y cos B sin Y sin 3 cos z2—S3

Z= (x—si1) sin ¥ cos B+ (y—s2) sin i sin B+ (z—s3) cos Y= (r—s) - k’ (18)

Then

Also, if R is the position vector i'X+j'Y+k'Z, then R=r —s and

I=r2+s2—2s-r. (19)
Our separating potential is then
V==boRe (é+im) '+ b Im&+in)"', (20)
where
X+iY=c[(2+1) A—n?]" exp i¢’, (21.1)
Z=cén (21.2)

and ¢’ is the ¢-angle relative to O'XYZ.

6. Spherical Harmonic Expansion Relative to the Original System Oxyz

In order to fit the coefhicients of potential, we must now expand the potential V' (£, n) in spheri-
cal harmonics relative to the original system Oxyz. Since we shall now obtain tesseral harmonics
also, we have then to compare the expansion to be obtained with

V:—'l_:‘- l:l— i ( ) JnPy (cos 6) + 2 ( )n i P (cos ) (Cp, m cos me+ S, m sin m<p):| 5 (22)

n=2 m=1

In this section only, we use 6 to mean colatitude, rather than latitude, of a field point relative to
Oxyz. This is to facilitate use of the addition theorem for spherical harmonics and because s is
the colatitude of O'Z.

To obtain the expansion of V' (¢, m) in (20), we need to expand (¢ +im)~'. Now

(+in)?=&—n>+2ién (23)
and from eqs (21)
R2
g-mr="35-1 (24.1)
. VA
2igm=2i - (24.2)

From (23), (24), (18), and (19) it then follows, if s> =s2, that

04 e 9
E+im)2= [1+S rc—2i%s-k’+%r-(ick’—s:|. (24)
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But

(ick' —s)2=52—2ics - k' —¢?, (25)
since k'>=1, so that
o ick’—s)? 2., :
(§+m)—’=§ [1+(‘C—r,_,—°)+;(wk —s)- 1} (26)

where 1, is a unit vector along r. Then
C ! G\2T-1/2
(§+in)~‘=§[1 +%(ick’—s)- 1ot (%—S) ] : 27)

Since ¢ and |s| will both be small compared to r, we have

é(ick’—s)- 1,_+<Lck_—s)2l <1 (28)
7 r
and we then have the valid binomial expansion

el 1 o o 1 fick—s\? )
(§+L”r))1—-r[l r(LCk s)- 1, 2<h>+] (29)

r

Now the term — cr—2(ick’—s)- 1, will give rise to first harmonic terms unless we choose s properly.
From (20) we find that the choice

boS_blck’ZO (30)
will eliminate terms in r—2 from V(&, n) and thus place the origin O at the center of mass. Thus
we must choose s to be either parallel or antiparallel to k” (implying that the new Z-axis must pass
through the old origin, even after the combined translation plus rotation), so that

s =sk’ (31.1), bos —bic=0, (31.2)
where the sign of s is still undetermined. Then

ick’ —s=(ic—s)k’ (32.1), (ick" —s)2=(ic —s)? (32.2)

Insertion of (32) into (27) then gives
i N2T—12
€+ imy =S [1 o L ] : (33)

Since
»=1 sin 6 cos ¢ +j sin 0 sin ¢+ k cos 6, (34)
it follows from (34) and (13.1) that, if U is the angle between k' and 1 .,
k' - 1,=cos U= cos  cos §+ sin { sin 6 cos (¢ — B). (35)
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Then, from (33) and (35),

(S :Er [1 == (g=i) @os U-r <S_rlc>2]ﬁl/z e

_i i <S—LC> (cos D). 37
Insertion of the addition theorem for spherical harmonics

w(cos U)= Py(cos ) Py(cos )+ 2 E ( T ;' Pi(cos ) P(cos ) cos(me —mp) (38)

into (37) then yields

. 8 _E 0 S_iC n
(E+in) l_r 2( ) [P,, (cos ) Pu(cos 6)

n=0 r

P’" (cos ) Pl(cos 0) cos(me —mf3) ] (39)

23

m=1

(n-f—

With application of (20) and (31.2) to (39) we may readily verify that the terms involving J,, C; i,
and Si,1 are missing from (22), so that we have indeed placed the origin at the center of mass.
We began with eight disposable parameters by, by, ¢, s1, s2, 53, ¥, and 8 and after eliminating the
first harmonics we are left with five, viz, by, s, ¢, ¥, and 3, b, being fixed by (31.2).

On comparing (39) and (20) with (22), we next find that to fit the zeroth harmonic, we need

boc=—p. (40)
Then
bo=—"and b, =—53- 1)
Let us now put
S=0Te COS Y c=0Te Siny, (42)
so that
s—ic=are exp (—iy), (s—ic)"=a"r! exp (—invy). (43)

From (39), (20), and (22), we then find for the zonal harmonics,
uriJn=cPy(cos ) [bo Re(s—ic)"+ by Im(s—ic)"]. (44)

Application of (43) to (44) then gives

sin (n— 1)y

Ju=0"P(cos ) T ) (45)

yielding the expected results Jo=—1, J;=0, and
=g? Ps(cos §) (46.1)
J3=2a? Py(cos ) cosy (46.2)
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sin 3y,

Ji=0c* Pycos ) = (46.3)
For the tesseral and sectorial harmonics we find

Com+iSy,m=—2 %%—mn—;; o P%(cos ) w exp(im B), 47)

leading to the expected results C; {=S;,1=0 and to
Cs, 1=—%2 sin 2¢s cos B (48.1)
Ss. 1 :_9,; sin 2¢ sin 8 (48.2)
Cs o=— %2 sin? § cos 23 (48.3)
Sy 9=— ‘2—2 sin? @ sin 28. (48.4)

We now have four parameters remaining, o, ¥, y, and 3, to be fitted to certain of the potential
coefficients above. Clearly we must fit to Jo. The remaining choices are to fit to J3 or J4 and to
Cy 1 and Ss, 1 or to Cz, 2 and Sz, 5. Now it is clear that in any practical application §y would have to
be a very small angle. Let

J2,1:(C§,1+S§,1)”2 Ja, 2= ( %,2"’53‘2)1/2- (49)

From (48), /2, » would be of order /3 ;, making /2, 1 much larger than J, ». This is contrary to all
experience, since for the earth /. » is a measure of equatorial ellipticity and /2, | of the variation
in latitude produced by wobbling of the polar axis. We should therefore fit not to C» > and S, »
but to C» ; and Sz, ;. The resulting much too small values for Cs » and S, » simply mean that we
cannot fit them by this model.

7. The Physical Significance of the Rotation i, 3

As we have defined it, ¢ is the angle between the polar axis and the axis of symmetry of the
separating potential V'=1by Re(¢é +in)~'+ by Im(é+im)~'. Now nonvanishing of  leads to non-
vanishing of /5, 1, which would actually vanish if Oz were a principal axis of the primary body. It
is thus natural to identify the axis of symmetry of V' (£, ) with that principal axis which is closest
to the axis of rotation.

For the earth ¢ = 0.1”, the mean variation of latitude associated with the wandering of the
pole. For the moon it is likewise expected to be very small.

Furthermore, when we use a potential that has symmetry about some axis other than that of
rotation, the potential, and thus the Hamiltonian, become explicit functions of time, if we use an
inertial reference system. This circumstance would defeat the separability. There is another
possibility, that of letting the system Oxyz be rigidly attached to the primary body, as we have actu-
ally done above. We should then have to treat the effect of rotation on the orbit of a satellite by
means of apparent forces. They are not explicit functions of time, but they also destroy the
separability, unless they are so small that we could neglect them. There might be some point in
such a procedure for the moon, since its rotation is relatively slow, but even for the moon the
apparent forces will undoubtedly be a good deal larger than those arising from J, . If we could
have fitted /2, 2, the story might have been different.



All in all the rotational invariance of V' (£, m) does not appear to lead to any practical results.
I have included a treatment of it partly to verify that we do not miss anything useful by abstaining
from its use, but mostly because its physical significance is so transparently clear. When we make
such a rotational transformation, the new axis that we find is an axis of symmetry of the resulting
potential. This stimulates us to search for a physical meaning of the translation s, which turns
out to be of real practical value, but whose physical significance is much less apparent.

8. Results of the Translational Invariance of V (£, 1)

On putting y=0, we thereby eliminate the rotational transformation and obtain the results
of the pure translational invariance. We then have left only two paramters, o and vy, to be fitted
to the J,’s. By (45) we thus obtain

e (50
leading to
Jo=0a? (51.1)
J3=207 cosy (51.2)
Ja= %4 cos® y—1) (51.3)
Js=40? cos (2 cos®y—1). (51.4)
We must certainly fit to /.. Thus
o= J. (52)
Since (51.3) and (51.5) lead to
4 cos? y:‘“j%ﬁ . (52.1)

we could fit to J4 only if J4+ J? were positive. Although the various investigators still find widely
differing values of /4, they now agree that J4+ /3 is negative. Thus we cannot fit to J,.
On fitting to J3, we then find

cos y=1Ja)7%2, (53)
which leads by (42) and (52) to
. 1 /3%
= %r(,‘/—: (54.1) c=rdJYy? ( “Zj‘é) (54.2)

With /,=(1.083)10-3 and J3 =—(2.4)10-%, we find i‘l‘?, J33=4X1073, so that the new value for ¢

is about 2 parts in a thousand smaller than the value arrived at in V1959a. With ¢=0, we have
s=sk, where s =—7.09 km. The values of J; and J5 corresponding to the above values of o~ and
vy are



J3

‘l4:_']2+j2 (55)
2
Js==21(h=3 %) (56)

The value of /s given by the model is thus little changed from the earlier value of —J3 (V1959b)
and the values of J5 and all higher J’s are negligibly small. The fit to the potential is thus exact
through the third zonal harmonic and accounts for at least two-thirds of the fourth zonal harmonic.

9. The New Form for the Potential

From (20) and (41) and p=c&, we now have

V:—% (57)
If we place
s=—139, (58)
where
d=1re |‘§jl (59)

is the magnitude of the distance from the new origin of spheroidal coordinates to the origin, we
obtain

p+mnd

V:_“pz+cznz

(60)

This of the same form as eq (49) in V1959b and & has the same meaning that it had there, viz,
the distance northward from the origin of spheroidal coordinates to the center of mass. The differ-
ence is that in the earlier paper the origins of spheroidal coordinates and of spherical harmonics
were always the same. Had I kept 6 # 0 but expanded the spheroidal potential in spherical
harmonics about the center of mass, I would have been able to fit /3 at that time. However, the
more general expressions for the quartic G(n) that appear in eq (63) of the earlier paper can now
be used.

The connections between rectangular, spherical, and spheroidal coordinates are now of course
a little different. They become

x+iy=r cos 0 exp ip=[(p>+c* (1 —m?)]"? exp ip (61.1)
z=rsinf=—56+pn (61.2)

Actually the only difference is the appearance of & in (61.2).

Previously, with §=0, a plane through the origin of spheroidal coordinates, perpendicular
to the polar axis, had two important properties. It passed through the center of mass and was a
plane of symmetry of the potential. Now, with 8 # 0, by (60) and (61.2), such a plane has neither of
these properties. In contrast with the rotational transformation, which was to an axis of sym-
metry of the potential, the translation s =— k&, although it has the merit of enabling us to fit J;
also, seems difficult to understand physically. We shall find later that a solution for some of the
possible orbits will give us some physical grasp of the translation.
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10. Remarks About Resonance Denominators

Before solving for the orbits, it is desirable to discuss briefly the bearing that the present topic
has on the singularities found in perturbation theories of satellite orbits. If 7 is the inclination,
the resonance denominator 1-5 cos? I has been found, by Brouwer 1959, Garfinkel 1959, Kozai
1962, V1963, and others, to occur with numerators J;+J2 and Js, but not with the numerator Js.
In other words they are absent if J4+ /% and the odd J’s vanish. One could previously understand
their absence in such a case, because it corresponds, by (2), to the author’s earlier spheroidal
potential (3), with §=0. Such a potential, leading to separability, is not expected to lead to such
resonance denominators in a perturbation theory. E.g., the solution of V1961b, V1962, gives exact
secular terms and periodic terms which can be worked out to any degree of accuracy, with every-
thing remaining finite when 1-5 cos? I=0. Thus Kozai 1962 was able to do a partial check of his
results by seeing whether his resonance denominators all vanished for J3=/s=. . .=0 and
JstJ3=0.

We now have a more stringent criterion for checking the accuracy of long-periodic terms in
perturbation theories. The resonance denominators should all disappear when the /’s are given
by (50), with o= /¥? and cos y=%J3./5:%%. I have tried to check Kozai [1962] in this way, but find
the going difficult. Despite the great complexity of that paper, it may be that he has not carried
terms to a sufficiently high order to make the test applicable.

11. Remarks About the Translation Parameter &

Since 8= 3 r..J5'|Js| = 7 km for the earth, it is indeed a large quantity to be produced by the
nonvanishing of /5. The latter produces a maximum change in the geoid of only about 20 m, a
quantity of the order r.|/;|. To seek for some physical significance of &, I shall consider the
effect that /3 has on some particularly simple orbits, viz, orbits which would reduce to circular

equatorial orbits and circular polar orbits for V=—pur1.

12. The Special Orbits

To find these special orbits, we can take over some results from V1959b and V1961a. without
re-solving the whole problem. The generalized momenta p, and pn are given by

DS EnE F(p)'?
= =+ ¢
I't‘ p2+(_g p —p-_r_+_(~_) (62-1)
.’+ 242 , (’ 1/2
=B g = 2
— 1 —n2 (62.2)

where F(p) is a quartic with physical zeros p: = p; > 0 and G(n) is the quartic
Gm)=—a3+(1—n*) (a3 +2und+ 2a:¢*n?) (63.1)
=a3— a3+ 2und + 2aic* — a3)n* — 2un3s — 2a,¢3n* (63.2)

In eqs (63) ay is the energy, as the z-component of angular momentum, and as the separation
parameter, reducing to the total angular momentum in the Keplerian case. The physical zeros
of G(m) are no and n,, with

l1Zno=zm1=2—1, (64)

since n? = 1.
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We introduce the definitions

20103\ ”
= — %g = (1 + (zf2> , lo= cos™! (as/an), po= ao(l —e3)
1

a=3pi+p), e= :)’—;—::, p=a(l—e). (65

Then for an orbit with e=0, F(p) remains zero, and p is constant, by (62.1):
p=a=p. (66)
From (4.14) and (4.15) of V1961a, we find for an equatorial orbit that
aopo=a*+ 3¢+ 0(J3) (67.1)

ap= (L(l + C—;) +0(J3). (67.2)
a

For a polar orbit, it is clear from (61.1) that ? reaches the value unity, so that
Mno=-+1 m=—1. (68)
From the following paper we also have for a polar orbit
e=eyp a=ap D= Po. (69)
If e=0, then eo=0, so that ay= po and

p=a= ao=po=p. (70)

13. An “Equatorial” Orbit

For the case J3=0 and thus §=0, it follows from V1961a that there is a solution corresponding
to mo=m1=0, so that 7 then remains zero and the orbit is confined to the equatorial plane z=0.
For J; # 0 and thus 8 # 0, such an orbit does not exist: a satellite moving in the plane z=0 would

be driven out of that plane by the force

r

Fs=V [/.L i;ji Ps(sin 0)] (71)

arising from the third harmonic.
When & # 0, we see from (61) that the only circular orbit that always lies in a plane perpendicu-
lar to the polar axis is given by
p = constant 7) = constant. (72)
But p can be constant only if p;=p, and then
p=a. (73)
The coordinate 1 can be constant only if
MN=m=n'" (74)
12



To find the z-coordinate of this plane we must therefore find n'. Now when no=m1=7', 7' is a
double zero of G(n) and is therefore a solution of

dG
— | = 75
(dn>n' 0. (75)

Thus, by (63.2) and (75), 0’ is a solution of

2u8 +2(2a1c* — ad)m' — 6un 28 — 8o c*n'*=0. (76)

If 5=0, we know that ' =0, so that we may now assume 7’ to be small. On using the notation
in (65) and solving (76) by successive approximations, we then find

2
: 5 [1_33

o po+ c2lay P}

n ] + 0(J3)- (77)

Then, by (61.2), (73), and (77), the z-coordinate of the plane of this “equatorial” orbit is

, ad

—_—— e 4).
‘ o+ [)o*f‘ Cz/llo + 0(]2) (78)
From (67.1) and (67.2), we now find
@ 3c? .
pot+—=a+— + 03, (79)
[N as
so that
) 80
“ 1 4+ 3¢2/a? i et}
and
r_ 3cHa® .
° 1+ 3¢%/a? 3+ 0U3 (81)
DG 2 ’
——3C 540Uy, 82)

since 8 = 2re/5'|Js| is of order Jo. By (54.2) we now have ¢2 =12/, + O(/J3), so that finally

3 3
z'==-2 J3+0(J3)- (83)
2 GF
For close orbits this gives z' =—22 m, a reasonable figure that is of the same order as the maximum

change in the geoid produced by Js.

As a check on the above expression, one may apply the perturbation theory for J; given in
V1963, as applied to an orbit for which e=0 and sin /=0. Since these quantities appear in de-
nominators of the expressions for the variations of the Delaunay variables, one has to carry out
limiting processes. It turns out that the long-periodic variations give 8z=0, but that the short

periodic ones give 6z= -

2

with perturbation calculations.

r’a2J3, equal to the above z'. Thus the present result is in agreement
e q
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The result can also be verified directly from the equation zZ=—3dV/9z. Here

5
—V—“+ 32/, <%—?:i>+2ur‘/3<§§—%>+. . (84)
Then
. 3 30z .
z=— 'uz—l-z,ur;_lz <—%+E)+zw;’,/ (——,—‘z+3’5j)+ (85)
For an orbit of constant z and constant radius a, we have z=0 and
22
rr=a’+z2=a> (l-l—a-;,)- (86)
On neglecting powers of z higher than the first, we then find
3 3. 3 7 .
ZZT#J?—:*IL./.@—FO(J@). (87)
2 .9, 2 a?
@P=F 5 )

as we found before.

14. A Polar Orbit

Since we cannot interpret the translation parameter & as the displacement produced by /3
of the simplest equatorial orbit, let us now try the simplest polar orbit.
We first consider the case §=0. Then by eqs (61)

2= te)l—n)  z=pn. (88)
If e=0, then p=a and

2+ y*=(a®+c?) (l = z_—))
a?

leading to

DI 2

@+ &

This is the equation of the coordinate spheroid p=a and simply means that when e =0, the satel-
lite’s motion is restricted to it. If the orbit is polar, it is then the intersection of a meridian plane
with such a spheroid. It is thus an ellipse with semiminor axis a, semimajor axis (a>+ ®)'/2,
with center (not focus!) at the center of mass of the planet. It is not a Keplerian ellipse, since the
law of areas does not hold; if R is the distance from a focus to the satellite, it could not be produced
by a potential — wR~! acting on the latter. That my original spheroidal potential [V1959a] leads to
the existence of such an orbit was first noticed by Aksenov, Grebenikov, and Demin [1964].
By (88), this elliptic polar orbit lies between the limits

===, (90)
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If we now consider the case & # 0 and still choose e=0, then p=a as before and by eqs (61) the
orbit is the intersection of a meridian plane with the spheroid

x'i-}-yj 4 (z-!-.) )7 _
@ 5F > a5

1. (91)

[t is thus an ellipse unchanged in size or shape, but with z now varying between the limits
Z2=—0+a

z=—06—a, (92)

by (61.2).
For J3=0, the plane of symmetry of all such elliptic polar orbits was the plane z=0. For
Js # 0, their plane of symmetry is now

z=—8=%rdJ;' /s (93)

By (65) and (70), the energy a; =— %,u/uo and ao= a, so that all such orbits of fixed @ have the
same energy. From the conservation of energy one can show that any such orbit can be produced
by first placing the satellite in the plane of symmetry, at a distance ro from the polar axis, and
then projecting it parallel to the polar axis with initial velocity

é():(li/(l)l/z- (94)

where
ad=rs=c. (95)

It appears that we have now arrived at a sort of physical interpretation of the translation param-
eter 8. When we go from the separable model with J; = 0 to the improved one that fits J3, the
necessary translation of the origin of spheroidal coordinates is equal to the displacement of the
plane of symmetry of the elliptic polar orbits.

A certain verification can be obtained from the perturbation theory of V1963, by placing e =0
and mo=1 into the long-periodic terms there given. We find for the variation of z

8z=13 Ja e sin® Yy — Ja re sin [ sin g cos . (96)
J2 J2

Thus at either pole, with sin y==1,

Te % (97)

(NI

0z=

[

corresponding exactly to the above displacement. Moreover short-periodic averaging gives

Sz= 4—]/% S 2]7; re SIin* g (98)
and long-periodic averaging then gives
5z=1% % Te, (99)

the same displacement as above.
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We may sum up the physical results as follows. If we consider the equation r=—V V,
where V includes only even zonal harmonics and where all Ji’s higher than /., are much smaller,
there must exist a class of polar orbits which are close to true ellipses, viz, those polar ellipses
corresponding to Js=—J3%, Je=J3, etc. All these true ellipses of a given energy generate a sphe-

roid, and varying the energy furnishes the whole set of coordinate spheroids used in the sphe-
roidal method. The equatorial plane is the plane of symmetry of these spheroids. It is also a
plane through the center of mass and the plane of symmetry of the potential when only even zonal
harmonics are included.

When we include /3 also, if all higher zonal harmonics are small, there must again exist polar
orbits which are very close to true ellipses, viz, those polar ellipses corresponding to the special
choices made for the higher harmonics in the present paper. Again these new ellipses generate
the new coordinate spheroids. The plane through z=—2§, perpendicular to the polar axis, now
does not pass through the center of mass and is now not a plane of symmetry of the potential,
but it is again the plane of symmetry of the elliptical polar orbits.
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