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Inclusion of the Third Zonal Harmonic in an
Accurate Reference Orbit of an Artificial Satellite*

John P. Vinti!

(November 17, 1965)

The previous paper gave the general theory and physical principles involved in so modifying the
author’s spheroidal potential for an oblate planet as to permit exact inclusion of the effects of the third
zonal harmonic of the planet’s gravitational field. The present paper carries out the computational
details necessary to derive the resulting orbit, which now corresponds to a potential fitted exactly
through the third zonal harmonic and to about two-thirds of the fourth.

The accuracy of the orbit itself, as a solution for the given potential, depends on the accuracy of
solution of a certain cubic equation. The paper works out this solution through terms of the third
order in /,, the coefficient of the second zonal harmonic, but its accuracy, and thus that of the secular
terms, may be increased at will. Periodic terms are carried through the second order, but their ac-
curacy may also be increased.

An obvious advantage of accounting for J3 in this way is the absence of small denominators in
e or sin / that occur in a perturbation theory. Another is the resulting increase in accuracy, through
terms in /3, of the long-periodic third harmonic terms.

Key Words: Third zonal harmonic, increased accuracy, spheroidal reference orbit, artificial
satellite.

1. Introduction

The previous paper? [V1966] developed the theory and physical principles for inclusion of
the third zonal harmonic of a planet’s gravitational potential in an accurate reference orbit of an
artificial satellite. The aim of the present paper is to work out the resulting generalized reference
orbit in such detail as to permit practical calculation.

To begin, let p, m, ¢ be oblate spheroidal coordinates, satisfying the equations

x+iy=r cos 0 exp ip=[(p>+ (1 —n)|"? exp ip (1.1)

z=rsin 6=—38+ pn. (1.2)

Here x, y, z are rectangular coordinates of a satellite in a Cartesian frame, with origin O at the
center of mass of an oblate planet, Oz pointing along the polar axis, and Ox pointing toward its

vernal equinox. Also r, 6, ¢ are the planetocentric distance, latitude, and right ascension.
If r. is the equatorial radius and if

4
d=—2re);'Js, (3)
then the gravitational potential
V=—up*+cn?)~Yp+mnd) (4)

leads to separability of the problem of satellite motion [V1966]. Here 8 = 7 km for the earth and
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the potential (4) leads to a fit of

3 (o o]

2
exactly through the third zonal harmonic. It also gives about two-thirds of the fourth harmonic
and negligible values, of order J3 or smaller, for the higher harmonics.
By V1959, if a; is the energy, as the z-component of angular momentum, and a» the separation

constant, the generalized momenta p,, pn, and pe are given by

pe=ay  (6.1), pp== (p*+ &) 'F(p)'2 6.2), pr==(1—n*)"'Gn)>. (6.3)

Here F(p) and G(n) are the quartics
F(p)= e+ (p* + &) (— a3+ 2up + 2a1p?) (7.1)
Gn)=—o3+ (11— (a3 + 2und + 2a:n). (7.2)

The Hamilton-Jacobi function W(p, m, ¢) is then

W=fpwd<p+f[)‘,dp-kf;)ndn:a;;(p-%fp =+ (p*+ cz)"‘F(p)'/zdp+fn (1 —9?)"'Gm)"dn. (8)
P m

The quartic F(p) has two physical zeros, p; and p., and the quartic G(n) has two physical zeros,
mn: and mo. The possible motions are thus confined to the toroidal region

0<pi=p=p: 9.1)
—1l=nm=n=n=1 (9.2)
If B1, By, and B; are constants, the orbit is then given by

_iw oW AW
t+'8‘_6a1 ) Bz_aaz- Bs= (10)

With p; and 1, as lower limits of the integrals in (8), these become

t+B1=R,+ N, (11.1)
Bs=—azRo+ oz N> (11.2)
¢=Bi— azR3+ ayNy- (11.3)
Here the p-integrals are given by

R.=fpip‘-’F*‘/2dp, RZZLpiF“/zdp, R;;Zf:i(pz-kc*’)"F’”zdp (12)

and the 'r)-integralpsl by 1 1
lef""th(den (12.1)
NFL’E G-12dm (12.2)
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N;;:fni(l_7)2)7'(;7”2(17)' (12.3)

K

With 1, as lower limit in the m-integrals, rather than 0 as before, we shall find that in the
Keplerian limit (Joa— 0, J3— 0) the constant — B; will again reduce to the time of passage through
perigee. The constant B3, however, will not reduce to w, the argument of perigee, but to o + /2.
Similarly B3 will not reduce to €, the right ascension of the ascending node, but to Q — % 7 sgn as.

The p-integrals have already been worked out [V1961b|. The new m-integrals, however,
will contain &, involving J3, and will thus have to be reevaluated. The task of the present paper
is thus to reevaluate these m-integrals Ny, N, and N, insert them into (11), invert (11.1) and (11.2)
to find p and 7 as functions of time, and then insert the results into (11.3) to find ¢ as a function of
time. We shall then have the new reference orbit, corresponding to the generalized potential
(4) that allows for exact inclusion of the third harmonic.

2. Factoring the Quartics

In order to evaluate the integrals, we first have to factor the quartics F(p) and G(n). The
factoring of F(p) was essentially done in V1961b and the only new task that we have in connection
with it is to relate associated quantities to the new orbital elements, which will depend on the
new factoring of G(n). To factor G(n) note that by (7.2)

GCm)= a3 — a3+ 2und+ 2aic* — aB3)n* — 2un?s — 2a,c*n. (13)

By (6.3) and (13). if the orbit ever reaches =0, we should have a3 —«a3 = 0. If indeed the odd
harmonics are all put equal to zero, we should have §=3 r./;' | /5 | =0 and by (1.2) a motion z=0
in the equatorial plane would be possible, with n remaining zero and o3 — o3 = 0.

As soon as we insert the third harmonic, however, there arises a doubt that n=0 will always
be reached. Accordingly, we must leave the sign of a3 — a3 open.  For bounded orbits we now
have a; < 0 and the table

n Gm)
—o | 4+
= | —az=0
0 a3 — aj. sign either =
+1 | —e3=0
4o | +o

There are thus two non-physical zeros, between —« and —1 and between + 1 and + %, and two
physical zeros, between —1 and + 1. Call these latter n; and o, with ni=n,. If §=0, G(n)

becomes a quadratic in n* and n;=— 7o, where 1o = 0, the equality sign holding when a3 — a3= 0.
To see what happens when & # 0, make a plot of G(n) versus 1, noting that G'(0)=2ud > 0.
In order to avoid more than two zeros between n=—1 and n=+1, we must then have
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if that and

a3—a3>0 m<0<m —non: >0
a3 —a3=0 0=m1<mo —nomi =0
az—az <0 0<ni=no —nom1 < 0

The paper V1961b indicated the following form for factoring G(n):

Gm)= (a3 — a3) <1 —1> <1 ﬁ"?) 1+ Cim—Cam?.
1

No.
Here, since n1 =1 = no, we have
M—m1) (Mmo—m) = 0.

For a3 —a3 > 0, we have —n¢n; > 0 and division gives

=i ==0

For o3 — a3 < 0, we have n¢n; > 0 and division gives

===

(14)

(15)

(17

In either case, since G(n) = 0, we find that the factor 1 + Cim — C2m*> > 0, where C, and C» will

both be small compared to unity.
On comparing coeflicients in (13) and (14), with

qo=p "(B3—a})
P = % (mo—+m1)
S =—"NoN1,

and with the relations from V1961b, viz,

20103\/2 )
lloz—%i, €(>E(l+—l., ') ., DPo=ag(l—e})
A \ oo
a%: HPo,
we have
2
P +CS=225
qo

Po il Cz/(lo S
qo

Ci+20.P=25
qo

20

(18)
(19)

(20)

(21.1)

(21.2)

(22.1)

(22.2)

(22.3)



(22.4)

Along with three constants, to be derived later from B;, B;, and B;, we shall choose as orbital
elements

a=1(pi+p2) (23.1)
— P27 p1 y
e el (23.2)
p=a(l—e?) (23.3)
as in V1961b, and

If =0, n: becomes —my, and S reduces to the old n2=sin* [ of V1961b. Note that now, however,
the new orbital element S can sometimes become negative, viz, for orbits sufficiently close to
equatorial. Note that for a polar orbit no=-+1 and n1=—1, so that S then equals unity. In any
case, since — 1 =7n; =mny =1, we have

SFE . (24)

Our next task is to express the factorization of the quartics F(p) and G(n) completely in terms
of the elements a, e, and the new S. To do so, we must first express C;, Cz, and P in terms of
¢, 8, ao, po, and S; that is, we must eliminate q.

On inserting (22.4) into (22.3) and solving the resulting equation simultaneously with (22.1),

we find

A2 -1 2 A
m:(r—‘ y) ﬁs<r—i~s) (25.1)
oo qo aodo
N2 -1
P=<L—( y) dg1-39). (25.2)
aoqo qo

If we now insert (25.1), (25.2), and (22.4) into (22.2) and call

?Ssu, (26)
0

we find

B s (1--2)
Po u wopo,

=1+-5—(1—8)+ oq : (27)
aopo (l_ e S‘)-
u 1101)(,A'

For §=0, S becomes sin? I, u becomes sin® I/sin® iy, where

1
u

lp = cos™! %, (28)

(9]
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from-V1961b, and (27) reduces to

C2

aopo

sin® [ cos? [, (29)

sin? {p=sin% [ +

in agreement with (4.8) of V1961b. Equation (27) is a cubic in u~', but we may solve it by succes-
sive approximations. To do so, note first that
1 2
=14+
u

(1—S)+ 0(&). (30)

Aopo
If we insert (30) into the right side of (27), the error will be of order &, i.e., of order J;. Thus

1 2
S=1+-=5
u aopPo

(1—S)+e, (31.1)

where

2 2
<@> (1—S)<1— = S)
e=-L0 QB L+ 0(JY).

[1+—92—(1—28)]2

AopPo

(31.2)

(Insertion of (31) in the right side of (27) would reduce the error to O(/$), but such accuracy is not
needed.) Equation (31) frees u from go and thus also C,, C», and P, since by (22.4), (25), and (26)

C,= u (32.1)
aopPo
2 =il 2
C1=(1— = Su) éu <1— ‘ u) (32.2)
\ aopo Po aopPo
Ga o)
P= (1 — Su) —u(1-2S). (32.3)
aopo Po

These quantities Cy, C», and P are then correct through order /3.
Since |S| =1, we find from (31) that e =0 and ' = 1. Thus
0<u=l (33.1)
and then, by (32)
C,>0. C,>0. P=o0. (33.2)

In order to obtain all the required quantities as functions of a, e, and S, we must now summarize
the factoring of F (p), given in V1961b. We have

F(p)=—2a:(p— p1)(p2—p)(p* + Ap + B) (34.1)
«=tpitp)  e=PBL o p=aa-e, (34.2)
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Then, with go defined by (18) and a, and pe by (21), comparison of coefficients in (34.1) and (7.1)
gives

2a—A=2ao (35.1)

B+ ap—2Aa= c*+ aopo (35.2)
2aB — Aap = 2aoc* (35.3)
Bap = aopoc*qol po- (35.4)

We now regard a, p, S, ¢, and & as known and have to solve the eight equations in (35), (32), and
(26) for the eight unknowns o, po. qo. A, B, Ci. Cs, and P.  Here u is an auxiliary parameter given
by (31).

From (35.4), (35.2), (26), and (31), we find

4ﬂ52(1—s><1— - s)
Bap=c*S | B+ ap—24a— *S + Po & “()Ih; SO | (36)
[1+ : (l—ZS)]
Aopo

Now since A and B are both of order />, we have from (35.1) and (35.2)

92

9
6 Cy

+0(J3) (37.1)

aAopPo ap

@=ﬁ<1+£+ﬁ~i—ﬁ)+()(13) (37.2)
Po P a

Because of the factor 8%, of order /3, insertion of (37) into (36) will not change the order of the error.

Thus

Bap=c*S [B+ (lp~2,4u—('zs+%(] =S¥ {] +—3S—1)+4 g——l)—ﬁ}]JrO(_]:;) (38)

2
ap ) a

This is an equation involving only 4, B, and ‘“‘known” quantities. Another follows by combination
of (35.1) and (35.3). Itis

2aB —Aap=(2a— A)c>. (39)

The solution of (38) and (39) for 4 and B is

2.2 2
=A==l =) 8(1)0 5 {] +% 3S — 2)} S1—-S)
A= - ! (40.1)
(ap — c*)(ap — 2S) + 4a*c*S + —5 8*Bap — 4a* — *)S(1 —S)
I
B=Q2a) Yap—c*HA+ . (40.2)
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For a polar orbit, for which S=1, we have from (40) and (35)
A=0 B=¢? w=a Do=Dp. (41)
For such a polar orbit, if e=0, we then have
p=a=ay=p=po. eo=20. (42)
Equations (40) give us 4 and B in terms of known quantities. To find the others, note that
aop then follows from (35.1), po from (35.2), ¢o from (26) and (31), and C», Cy, and P from (32). With

use of these equations, the errors arising from the approximate solution of the cubic (27) are of
order J3 for all the unknowns except gqo. For go the error is of order J§. The “known’ quantities

y 1., \2 . .
are ¢, 8, a, p, and S. Here c=r./J}? (1—ZLJ§J;" , 8= %rp,/2'1|,]3|, a is a constant ‘“‘semi-major

axis,” p a constant “semi-latus rectum,” and S a constant quantity analogous to the squared sine
of the inclination for inclinations not too close to zero. For inclinations close to zero, however,
S may be negative for & # 0.

3. The 7n-Integrals
From (14), (18), (19), and (20), we find
G =pgoS (S +2Pn—n*)(1 + Cim— Con?). (43)
Now
S+2Pn—m2= P>+ S—(n—PpR. (44)

The physical zeros 11 and 1o of G(n) are the zeros of (44), viz,

Mo= P+ (P*+S)" (45.1)
n=P—(P+S) . (45.2)
For 6 # 0, S may be negative, with smallest possible value S=— P2, corresponding to
mo=m=n’ = (1-25) + 0u, (46)
from V1966.
With

Q=(P+8)2=0,
(47)

we may now introduce a variable ¥, such that
n=P+Q sin ¢. (48)
If ¢ continually increases, so that (i;> 0 always,  will then vary between the limits n; and 1o and

the double sign in eqs (12) for the n-integrals will disappear, with s as integration variable. Thus
Y is a uniformizing variable.
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Insertion of (48) into (43) then gives
Gm)= mqoQ2S1(1+ Cim — Com?) cos? . (49)

and the factor = G~'2dn in the integrals (12) becomes

1/2
ic_llzd”')=<#qioo> (1+Cm—Com?) 2di (50.1)
= oz 'u'?(1+ Cyn— Com?) "2y (50.2)

by (26) and (21.2).

4. The Integral N
By (12.2), (50), and (48) we then find
v
azu"/zN'z:J "(1+C177“C27)2)7”2d‘,’1- (51)

2
Here C; and C, are both positive, of order /.. To evaluate (51), we place
h=iCl>q=0(Js), \=%iC:iC;'2=0(J}2), (52)

so that

1= Cimi=—Con2="1—2Nh:Eh2: (53)
Since A=0(J4?), it follows that |\ = VA2—1|=0(1) and

|h| < smaller of |\ VAZ—1]. (54)
Thus a Legendre expansion is legitimate, so that

(1+Crm—Com?) 2 =(1 — 20k + h2) 12 = S WPy ()= S inCym P(N). (55)

n=0 n=0

Then (51) and (55) lead to

x 1]
azll‘l/ZN;z: EO F,,(C],Cz) J—I”f]"dl’!, (56.1)
n= 2
where
F(Cy, Co) = i"C32Pn(% iC,Co7'?), (56.2)
are real polynomials in Cy and C,. Through Fg they are
1 3 ., 1 5 3
Fozzl, F\::_‘E(L, Fézzg Cf*‘§(&, FB::“IB’C?__E C1(:L
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F4=—F4+ CZ C;—I— @ Fsz——C——(3 (O — C1 (e

128 ' 256
e LD 105 2 (2 __ 429 . 693 . 315 ., z__ 3
Fs 1024(, +256 (61 C2+ €5 € —|— C F; 204SC =12 C3C, 128 C2C; Ca Gk
6435 3003 . 3465 ., ~p 315 3,35 .,
Fs=Tog Cl*5p4g €1 G+ Jpq C1 Ci3g €1 (g €4 | (57
Higher F’s are of order J3 or smaller.
We now have to evaluate
1 . w
f n'dfp= (P—Q sin x)”dx=f) (P+Q cos y)'dy = fn(w), (58.1)
™ _m (
2 2
where
w=m/2+ . (58.2)
As in V1961b, p. 178, we now readily show that
Salw) = 7 "wfu(m) + gn(w), (59)

where gy(w) is an odd function of w, of period 277. From that same paper
foim) = [ (P=Qcos yrdy=mPr1—etp=p,ji— ety 2], (60.1)
0

where P,(x) is a Legendre polynomial in x and where

er = Q[P (60.2)
0<e;<1forS<0 (60.3)
e; >1for S >0. (60.4)

For S <0, the factors (1—e3)"2 and P,[(1—e?) 2] are both real, for all n. For S >0, they are
both real if n is even and both imaginary if n is odd. In any case their product is real.
If we now introduce, as in V1961b, p. 178,
Ry(x) = x"P,(1/x), (61)
a polynomial of degree [n/2] in x*, we find
7 fu(m) = Gu(P, Q) (62.1)
GuP, Q) = P'RJ(V1—e3), (62.2)

polynomials of degree n in P and (). Through n=8 they are given by
G():l,(;IZP,()) Pl+ Q) (“3 P3+ PQ
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Gi= P+ 3P2Q+3 01, Gy = P3+5P2Q: + 2 PO,

16 Go=16P5 + 120 PAQ2 + 90P2Q4 + 5Q°, 16G:=16P7+ 168P°QF + 210P3Q4 + 35PQ°
128 Gy =128P 5+ 1972P6Q? + 3360P' (% + 1120P2(F + 350" (63)

On inserting (58), (59),.and (62) into (56.1), we find

ou 2N, = (g—F ¢>Bg+ i Fu(Cy, C») i Cpj * Sin Jw, (64.1)
n=0 Jj=1
where
B,= ! Fi(C:, C2) Gul(P, Q). (64.2)

n=0

Remembering that C;, C», and P are all of order /. and that Q is of order /3, we have from (64.2),
(57), and (63), through order J3:

Bgzl—%(}ll’+<% (;H%(:g) P2+~ Q)+——( 204 — ( \C.PQ?

__]j 3 PDN2 bt 2 "{ l()% 4

326'10+128(‘ 1.0 0+1(>21(‘a

9 rope 2_& 2D+ 525 C2C206 (i)l ()8 5 =
+35 C3P*Q 128( C3PQ + 1057 CIO30°+ (55 CIO5+0(J3).  (65)

Note that B contains — %C,I’%—R C3Q?, proportional to J3/J3=0(J3), so that inclusion of J; in

the separable problem apparently leads to new second-order secular terms. We shall say more
about this point later.
Let us check B, for 8=0, in which case it should reduce to

1 9 2 35
B et —
B.=7m"' K(q) 1+4q +64([ +2%6(f+(128> GlaF e o o g (66)

given on p. 184 of V1961b. For §=0, we have C;=0, P=0, ni1=—mo. S=n3=sin* I, and Q=
=sin/. For Cs we then find from (22.4)

- ¢z Po 2 o3 ., .
2= — No— ; 5 MNo- (
aopPo qo aopo 05— o3 L )

with use of (18) and (21.2). But in the notation of V1961b, (a3 — a3)/a3 =sin? io. so that we find

Co=—— T8 _ (68.1)

“ @opo sin® iy

2, (68.2)
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from p. 173 of V1961b. On inserting these values into (65) and using g = mo/n2, we find

B=1+y q2+64q4+256q6+<128)q8+ Y

This agrees with (66), so that B> reduces correctly for §=0.
We now have to find the periodic terms in (64.1), i.e., the coefficients cyj. Since Fi(ci, ¢2)
is of order /3, we need take n only through the value 4. By expressing (P+ Q cos y)*, k=0,1,2, 3, 4,

w
as trigonometric polynomials, evaluatingf (P —Q cos y)dy, picking out the periodic terms, and
0

keeping results only through order /3, we find from (56.1) and (57)

azu~ 2N, = <7'27‘- + lll)Bz ar (P— % CIOZ>CZQ sin w

¥ 312 [(4Cs+ 3CHQ + 3C30"] sin 2w+ & Q”‘ e

256 —— C3(* sin 4w+ periodic terms of order J3. (70)

In terms of Yy=w— /2, this becomes
azu“/2N2—< +lli)Bz+[CzQ(p+ C Qz)+ C Q] cos s

20’00534!

- 3—2 [(4C; + 3C)Q? + 3C3Q*] sin 2¢p —

256 —— C3(" sin 4 + periodic terms of O(/3). (71)

For 8= 0, we find that the periodic terms in (71) agree with those on p. 184 of V1961b, as they should.

5. The Integral N,

y (12.1), (50), and (48), we have

Clzufl/le:J‘ (l+ Cl") Cz’)'] ) llznzdlll. (72)
2

Then, from (55), (56.2), and (58.1)

ou 2N, = E Fo(Cy, Co)fnsa(w). (73)

n=0
As before,
fn+2(w) == wcll+2(P3 Q) ar gn+2(w), (74')
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where gyi2(w) is odd in w, with period 277.  Thus

azu‘1/2N1 == <g+ lll)B{ aF i Fn(Ch C-z)gn+2(w).

n=0

where

B = i Fu(Cy, Cs) Guya(P, 0)-
n=0

(75.1)

(75.2)

Since the integral NV; has a factor ¢*=0(/:) in the kinetic equations (11), we need each F,G,»

correct only through order J3, in order to obtain secular terms correct through order Ji.

(75.2), (57), and (63), we then find
Bi=1@+ =2 P43 6P+ 2 4G+ 3CH Q!

45 5 175

— 22 CLCPQ + =2 (6C3+ 15C2C) Q5+ == G305+ O (J3).

32 256 2048

For 6= 0, this reduces to

3 15 175
Bi=imi+ 1 manb+ 1og b+ gogg et -
or
3 15 175
. 72:_1_ ) ded —_— 8
Bimo*=2 410 @t og ' T opg 4 -

in agreement with the value of B, on p. 184 of V1961b.
To find the periodic terms in (75.1), we proceed just as for /N,, obtaining

12N, = (;—T+ u;) B, + (2P()+g c,o*) cos ¥
1

24
1

—% 20% + C20") sin 20—~ C,0P cos 3

+a Cy(?* sin 4+ periodic terms of O(J3).

For §=0, the periodic terms agree with those appearing in (6.38) of V1961b.

6. The Integral V;
By (12.3), (50), and (48), we have

v
azllAl/zN:;zf (] —7]2)"](] +C17)_C2T}2)_]/2({d].

°E}

Then, from (55) and (56.6),

azu—l/2N3= Zf Fn(Cl, C2)LH

n=0
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v
Ln = f (1 - nz)n"dlll-
In particular

U 1]
Lozf A—n2)'dp  (81.1) lef (1—n2)"ndy.

To evaluate the L;s we first prove the lemmas

=it
Lyy=Lo— 2 n)T(ll!J (o=l
=0

Ol

L2(r+l E ZT”dl!/ ((T = 1)

To prove them, note first that

and

,nn :(__l)n_nrl _ i .
1+n I+7q ,;)( Dt s

Addition of (83) and (84) then gives

,nn ,nn _ 1 (_l)n_nfl - -~ .
1—n+l+n 1—n+ Il =F AZ;) L+ (=D

reducing to the two cases n=odd and n=even, viz,

anr =1
T 1= 2 U c=1)
20+1 o—1
17'_7’— —;ﬂn'“ cz1)

The lemmas (82) then follow directly from (80.2) and (86).
With application of (58.1), (59), and (62), we then find from them

Lo, —w 2 G- (P, Q) — E o0 (W), o=1

a—1
L21r+1:Ll_1U 2 Gz,—+1(P, Q) 2 é)—ﬂ( w), o= 1~,

7=0 =0

where w=y+ 7/2. Insertion of (87) into (80.1) then gives

oLl 12 /V;—Ln E [‘ ),r+L1 Z F’(r+1+B;lb

o=0

(o p=l Gop=il

- i Foy E &or(w) — E Fogi 2 Z2rr1(w),
o=1

T=
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(80.2)

(81.2)

(82.1)

(82.2)

(83)

(84)

(85)

(86.1)

(86.2)

(87.1)

(87.2)

(88.1)



G a=1
By =— 72:1 Foy E} Go — 2 Fosiq Z Gari1.

=0
To simplify the first terms in (88.1), note that by (56.2) and (52), if
ho =1C}2,
the value of A for n=1, we obtain

Foo=h57Pos(N)  (90.1)  Fapi1=h3"" ' Paogia(N).

€< €%
To evaluate the sums ZFZ" and 2172,,“. note that
0 0

(1 —2Nho+ h2)"12= 2 RIS Nt E h271Pygia(N)
and, since Pao(—\)= P3x(N) and Pagii(—N)=— Psy41(N), that
(1 +2)\/10+ hz = 2 h.(r[ )(,- 2 Ill(r+ll ),,—+1

Solving eqs (91) for each sum, with use of (90), we find

2 S Fap = (1= 2Nho+ h3) 12 + (1 + 2\ho+ k)12
0

2 E F)(,-+1 1_ 2}\/11)+ IIO) l/l_(l aF 2}\/1()+ h”) “.

Since h=hy when n=1, we have from (53)
1 12}\/1()"‘ /lﬁ: ] =+ (:1 - (1‘2.
Then from (92) and (93)

Lo 02 Faow+ Ly ; Fogi1= ]z L1+ Ci—Cy)12+(1—C,—Cy) 172

+ é‘ L[[(l ‘+’(:| _(:3)7”2_(1 _(:l

(88.2)

(90.2)

91.1)

(91.2)

(92.1)

(92.2)

(93)

(94)

For B;, the coefficient of a secular term, we find from (88.2), (57), and (63), carrying terms

through order J3,

__ 1. 3. g 19 o 1.
By=—5C— 3 G- (128(+ e+ 3 C><1+2()>

3eupr_ (105 oy 5
—Seyr ( C‘,+16C>(l+ o+ Q4>
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. 1.3 O ) _ (2 3
—T2—8C (1+20+804+1606) (16C§+4CICZ)P
15
+1—6€C2<P+ P02)+0(J) (95)

3 .. . .
Here the term — 3 (3 is proportional to J%/J3=0(J3), so that we apparently again find a second-

order secular term produced by inclusion of J; in the separable problem.
To check (95) for §=0, put C;=P =0, C.=mn3%, and Q=mo. It becomes

1 ,.3 Lo\ 5, 12 3 )

35 L oae B 6) .
t g " <1+2"o+8n 16 Mo +0(3),  (95.1)

agreeing with (6.65) of V1961b through terms of order Ji.

To evaluate the periodic terms in (88.1) through order J2, note that all coefficients F, are of
order J3 or higher for n =5. Thus we need only g, g1, and g, where gy is the periodic part of

= fu (P —Q cos y)"dy.
0
Then

20=0, g1=0Q sin w, g =—2P(Q sin w+ & sin 2w. (96)

4

From (88.1) the relevant periodic terms are then — F3g; and — Fge. With the aid of (96) and (57),
their sum then becomes, through order J3,

Periodic terms = — g C.C>0Q sin w— 33—2 C3Q? sin 2w 97.1)
———C C:Q cos dl+ CZQZ sin 2¢. (97.2)

We come next to the evaluation of L¢ and L;. From (81), we have by expansion in partial
fractions

2Lo=M;+ M,
2Ly =M;—M,, (98.1)
where
] U
M, :J / 1—m)'dy (99.1) Mé'——f (I+mn)"'dy. (99.2)
—[2 —m[2
With the aid of (48) and the definitions
- _Q -_Q
e=1_"p (100.1) €= 1, p (100.2)
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we find

"

M, =1—P)! J' (1 —e2 sin x) 'dx (101.1)
—a[2
w

;1[;2(1 S 2l j (1 +e3 sin x) 'dx. (101.2)
—/2

Here e» = 1 and e3 = 1, as we shall now prove. Since |S| = 1, we have by (31) that « = 1 and then

by (32.3) that

s . el e .
P={1-29) (102.1) C—(l a()p()Su) po U (102.2)

where 0 < (< <1. Now by (47)
(A—Pr—(R=1—2P+PP—P2—S=1—2P—S=(1—S)(1—20),

by (102). But 0 < (< <l1,sothat 1 —=2{>0and1—S=0, sothat(1—PP—(Q*=0and 1 —P =0,
since neither 1 —P nor () is negative. Thus ex=1. Also (1+PP—0Q*=1+2P—S =0, since
P=0and S=1.
Thus 1+P =Q and e3 = 1.

If in (101.1) we place x=y—m/2 and in (101.2) we place x=y+ 7/2, we now find

Y+m/2

M,=(1—P)! J (1+es cos y)'dy (103.1)
0
Y—m/2

M;=(1+P)! f (1+es cos y)~'dy. (103.2)

To evaluate the M"’s we define a function E/(y) by

e+ cos y . (1—e2)2sin y
R — a7 nesde T e J <1). (104)
gosite I+ecosy Sl e 1+e cosy a2

Then when y=nm, we find sin E,=0 and cos E,=(—1)". We may therefore impose the further
requirement that E/(y)=y whenever y=nm. The relation between E, and y is then the same as
that between the eccentric and true anomalies, respectively, of an ellipse with eccentricity e.

We next prove that

f (1+e cos y)"'dy=(1—e*) '"2E/(w).
0

(105)
To prove it, we first derive from (104) the relations
(1—e?12 sin E’
s Y= l1—ecos E’ Ly
Il =F @ ,
l+ecosy_1_eCOSE' (107)
33
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Differentiation of (107) gives
(1—e? sinydy

T e cosy)? =sin E'dE’. (108)
Division of (108) by (107) then shows that
by (106). Thus
#ﬁosy: (1—e?)-12 dE', (110)

from which theorem (105) follows at once, since E'’=0 when y=0. Then, since E,(0) =0 and
E.(—m) =—m, we find on applying (105) to (103),

Mi=Q1—=P)'(1—e3) "2 E;(Y+m/2) (111.1)
My= (1+P)'(1—e3) 2 [Es(p—7/2) +71]. (111.2)

From (111), (100), and Q2= P2+ S, it then follows that

M;=(1—S—2P) "PE}({s+ m/2) (L)
M;=(1—S+2P)" [ Ey(p— m/2) + ). (L2

By (112), (98), and (102), we then find

1-S)12L,= 1F

( )L T+ Xo (113.1)
=i

1—Syep, =—T2 1\ _

( JVEL, T+2g X1 (113.2)

where
Es+7/2) | Eyy—m/2)
2x0= +
T2t Vit

oy, = LW Hm2) Eyb—m/2)
V1—-2¢ V1+2¢

(114.1)

(114.2)

From (88.1), (94), (97), and (113), there follows the complete expression for N

azu"/zN:s:;[(l‘*'Cr—Cg)“l/gﬁ-(l—Cl—Cg)*‘/z](l—S)ﬂ/{ /2 +X0]
2 Il =P
- : SRy n -2
= 2L € = CHFY2 = (Il = € = TPl = SR —=ELE
S+ C— €y —(1—C,— )21 =) [ _1+2g+x']

3
+ W+ m7/2)Bs 1 C.C5Q cos Y+ % C3Q? sin 2y + periodic terms of O(J3). (115)
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Here Bj is given by (95) and xo and x: are given by (114).

To check this expression for §=0, note that then C;=0, (=0, S=n3, u=(a3— a3~ ain3,
so that asu~12? becomes (a3 —a3)?>n5!. We have to compare with eq (6.64) of V1961b. Now we
have already checked B; and the periodic terms in (115). The check will thus consist only in
showing that the terms involving xo and x; in (115) reduce to the expression (1 —m3)~1/2 (1 —m32)~12 X
of V1961b.

Since C;=0 for §=0, the term involving x; disappears, because of the minus sign inside the
brackets. Since C, reduces to 132, the first line becomes

(1=t = m521( T+ xo) -

Now the 7/2 is an additive constant, arising only because we now have the lower limit 1, in the
n-integrals instead of zero. We shall later get rid of it on replacing the constant 85 by another
constant 3. Thus we now have only to verify that xo reduces to x when §=0. When §=0,
es=(1—P)'Q reduces to My, and we find from (114.1) and (104), with {=0, that

PN/ 1l =k sinll;cosd;_

1 —m3 sin*

cos® Y— (1 —m3) sin? s
1—mj sin? s

cos 2x0= sin 2xo=

But the x of V1961b, by p. 516 of V196lc, satisfies

o cos Y . V1l—misiny
Cos X =/ siny=_—/———"
V1I—mj sin® s V1— i sin? s

One verifies easily that cos 2xy=cos 2x and sin 2xo=sin 2x. Thus in the limit §=0, the quantity
Xo and thus the integral N; both reduce correctly.

7. Assembly of Equations for the Inversion

From (11), (67), (78), and (115) of the present paper and (5.30), (5.35), and (5.60) of V1961b, we

have
t+,81: ("'2611)71/2 [b|E+a(E—e sin E) +A111+A1| sin U+A|g sin 21}]

+ c2azuli2 [(ll/-k?—;) B{+ By cos i+ By» sin 2+ By cos 3+ By sin 41[;] (116.1)
1
Braz'=—(—2a1)"12 |Aw+ > Aoy sin kv |+ oz 'ull? dH—,Z B>+ By cos s
=1 K

+ By sin 2+ Bag cos 3+ By sin 4([/] (116.2)

where
3 ) 1
B|1=2PQ—§C1()’, Bm:_<%+§0_’01>
Biz=—C,0Q?/24, Bii= C.(Q/64 (116.3)
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Boy=C.PO— % clczour% C0.  Ba=— émcw 3002+ 3C307]
1 ;
BZ:iz_ECIC‘ZQ;a Bsy=— C30* (116.4)

and where By and B, are given by (76) and (65).

Note that by V1962 the restrictions on p. 176 of V1961b, concerning orbital inclinations, have
been removed.

Before proceeding further, it is convenient to eliminate the terms above involving /2. If we
lump the term — 2a; 'w!? B{m/2 into Bi, the physical meaning of 8; will not be essentially changed.
In the limit /,— 0, this change will vanish, since ¢2= 0(/»), and — B8; will still reduce in the elliptic
limit to 7, the time of passage through perigee. Also, for Jo=0 and /3=0, u=1 and B>=1. so
that the term — az'u'/?Bym/2 reduces to — 7 7ag'. Since B5— w+ /2 in the elliptic limit, if we
put

B2=Ps— u'*Bym/2, (117)

the new constant B> will reduce in the elliptic limit to w, the argument of perigee.
With these changes, we then have

t+ B =20 b E+ a(E— e sin E)+ A+ Ay sin v+ Ay, sin 20]
+ 2o ' B+ By cos Y+ By sin 2§+ By cos 3+ Byy sin 44| (118.1)

4
Beaz! =—(—2a) 1?[420+ 2 Ay sin ko)

=1
+ a5 ' Boh + By cos I+ Bay sin 245 + Bog cos 3¢ + By sin 4afs). (118.2)
To carrv out the inversion, we write
E=M;+E,, v=M;+E,, U=+ 5, (119)

where the subscript s means “secular’” and the subscript p “periodic.”

8. The Secular Solution

To obtain the secular terms M, and Y, we put E=v= M, in (118) and discard all the sines
and cosines, thereby obtaining for M, and s the pair of linear algebraic equations:

(—2a)""2(a+ b+ A )M+ cazw'PB =t + B (120.1)
— (= 20)" P Ao M+ oz VPu 2 Boy = Baas . (120.2)
Their solution is
Ms=ly+ 2mv;t (121.1), Us=lo+ gy + 2702t (121.2)
where
27tv1 = (—2a)"a + by + A, +c24>B{ B3 1)1 (122.1)
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2wy = oo 1245 B; (a+ by + A, + c2AB | B 1)1 (122.2)

/1):277V1(BI '“Czﬁgang’lBgl) (]231)
10+g0:27TV2[B| +Bg(1-_;l((l aF [)] Sl A])AEI] (1232)

9. The Fundamental Frequencies

By V1961a and pp. 188 and 189 of V1961b, the above v’s should satisfy

=S G941y =0
o 2

(124.2)

where j; and j» are the action variables corresponding to p and 7, respectively. From V1961b,
they should thus satisfy

vi= (jiger —Jizjer) ez, v2e=— (i —jizi2d) e (125)

where
Jn=2m(—2a) "2 (a+ b +4,), Jr2="—2mae(—201) 2 4, (126)
Jn=2c*N1no),  jez=206Na(n). (127)

Now when n=m,, we have yy=m/2, by (45.1), (47), and (48). Then, by (71), (78), and (127)

J21=2mc2ozul?B], J2o =2mu'?B;. (128)

By means of (125) through (128), we readily verify that the fundamental frequencies day/dj, and
das/ 0)» agree with the expressions given in (122).

10. Periodic Terms
In calculating the periodic terms through the second order, we first set
E,,ZE”+E1+E2, vy =vp T v+ v, U, = Yo + Py s, (129)

where the subscript denotes the order of a term in J.. We shall calculate the zeroth, first, and
second order terms in succession.

Before we can do so, however, we need a table of the order of the various coefhicients and con-
stant quantities. Including the quantities necessary for the right ascension ¢ also, we find

Quantity Order Quantity Order
4, B By J
Bj J3 41y B
B J3 412 /3
B J? (o J3
by J» Ass /3
1, Jo Bs; J3
B J» B;s J3
‘121 ./2 B:J /:;
A J2
By /

B4 /
By /




10.1. Zeroth Order Periodic Terms

To find Ey, vy, and by, place E =M+ Eo, v=M;~+vy, =s+ y in (118), retain secular terms
with full accuracy, and discard all periodic quantities of order higher than /9. However, as
cautioned in V1961b, keep all terms that are retained to as high an accuracy as possible; such a
procedure simplifies the resulting formulas. Then

t+ B1=(—2a1)"?(a+ b)) (Ms+ Eo) — ae sin (Ms+ Eo) + AMg]+ 2o 'u!2B s (129.1)
Booz ' =— (201) 2 As(Ms + vo) + a5 w2 B (s + ). (129.2)

Subtraction of (120.1) from (129.1) then gives

((l+b1)E()_(l€ sin (M;“nLE(I):O (130)

On dividing (120) by a+ b, and adding M; to both sides of the result, we find a Kepler equation for
M+ E,, viz,

Mg‘{'E()_(’, Sin (Mg+E()):1MS (1311)
ae

= <e<lI. .

e at b e<l] (131.2)

Solve this Kepler equation for E= M+ E,. Then find v=M;+ v, by the anomaly connections

_cosE—e <in p— (1—e)'2sin E .
OS] e cos E v l—ecos E 2]

To find Yy, subtract (120.2) from (129.2) and solve for 5. The result is
Yo =z (—2a:) “12u=124, B 1v,. (133)

As in V1961b, this gives Yy=vo+ O (J:), but it is important to retain the coefficient with full
accuracy, for later simplifications.

10.2. First Order Periodic Terms
We now place E=M,+Ey+E;, v=M;+vo+vi, =1+ Y+ in (118), discarding periodic

terms of order J%, and use our knowledge of M, i, Ey, v,, and s to find E;, vy, and ;. From
(118) we obtain

t+B1: (_2(11)71/2 [(a+b|) (M,\»-i-Eo—i-El)—ae sin (M3+E('+El)
A1 (Ms+vo)] + caz ' [Bi (s + o) + Bz sin 2+ 20)]  (134.1)

Beoz' =— (—20u) V2 [A2(M+ vo+ v1) + Az sin M+ vy) + As» sin (2M s+ 2vy)]

tox'u'? [Bo(Ps+ Yo+ ) + Boy sin U +240)].  (134.2)
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On subtracting (120.1) from (134.1), transposing some terms, and dividing through by (—2ay)~'?
(a+ by), we find:

E()+ E] — e’ sin (Mg+ E()‘i‘ El):_ ((I ais b[)il[Aﬂ)() ar Cza._,"(— 26!1)1/2111/23{{!10

+ g (= 200)2ul 2By sin (2455 + 24n)],  (135)

where e’ is given by (131.2). By (133) the terms in vy and {5 consolidate into (4, + 24>B{B;")vo
and (135) becomes

M3+E()+E1_€’Sin(Mg+E()+E1):Ms+M1, (1361)
where

M, =—(a~+b) (4 +c24:B B3 Yoo+ 2oz ' (— 20)2u'2B 5 sin (245 + 2450) ). (136.2)

By p. 194 of V1961b, the solution for £ is then given by

;‘111 (” Alf Sin (/l/ls SIs E())

_ _ € 3).
E: 1—e’ cos (M;+ Ey) 2 [1—e' cos (/Vl,s.+En)]3+()(‘]2) (137)

To find vy, insert the known values of £E= M+ E,+ E, and e into the anomaly connections (132)
and solve for v =M+ vy + v1.
To find ¥, subtract (120.2) from (134.2). The result is
a;‘u‘/‘*[Bz(d/o+ Y1)+ B sin (2 2y0)]=(— 2011)_'/2[A2(U()+ v1)
+A2| sin (MS+U())+A22 sin (2M5+2U())] (138)
By virtue of (133) the terms proportional to Y and vy cancel out.  On solving for {5, we then find

lll] :_Bzngl sin (2!!}\+ 2[’1()) ar (12(_‘ 201)—1/2U7”2B;1[A2111

+A~_)1 sin (MS+U())+A22 sin (2M_\-+2U())]. (139)

10.3. Second Order Periodic Terms

To find E», vs, and Y, insert E=M;+Eo+ E1+ E2,v=M;+ vo+vi+ 02, and Y=Y+ Yo+ Y1 + P2
into (118), retaining all periodic terms of order /3 and discarding all those of higher order. We
obtain

t+ B1=(—201)""2[(a + b)) Ms+ Eo+ E1+ Es) — ae sin (Ms+ Ey+ E1+ E»)
+ A1(Mg~+ vo+ v1)+ A11 sin (Mg+vo)+ A2 sin (2M s+ 2v0)]
+C2a2"u1/2[B{(l,lls+lll0+ i)+ By cos (s +Po) + Bz sin (2yss+ 250+ 2¢)

+ By cos (30— 3W0) + Bua sin (g +4ig)]. (140.1)
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Bgag‘ =—(— 2(11)_1/2[A2(MN+U()+U1 +l}3)+A~_)1 sin (MN+U()+'U|)+A22 sin (2/”,\-‘*‘21}0""2111)
+ Asy sin (3M+ 3vo) + Aoy sin (AMg+ 4vo) |+ oy 'u [ Ba(ss + o + Y + ) + Bay cos (P + )

+B-_g;g sin (2[[1s+2l110+2l1}1)+3_); COS (P)lllg‘i‘glll())_*'Bg.; sin (4!!J\+4l!l())l (140.2)

To solve for E., subtract (134.1) from (140.1). We find
(—20) " "?[(a+ b1)Es— ae sin (Ms+Ey+E;+ E>)+ ae sin (Ms+ Eo+ E;)+ A+ A sin (Mg vo)

+ A1 sin (2M+ 2v0) |+ c2a; ' B + By cos (Ys+ o) + Bis sin (245 + 240+ 21h1)

_B|2 sin (2!’],\-""2{[]())"‘313 CcOS (3(’A+3l’11))+BH sin (4111\4‘4[[}(;” (141)

Now

sin (Ms+Ey+E;+E,)—sin My+Ey+E)=E, cos M+ Ey+E)+O0(J3) (142.1)
and

¢* sin (2 240+ 2451) — €2 sin (2 + 250) = 2¢2Yn cos (s + 20) + O(J3), (142.2)

where E, and §; are in radians.  On inserting (142) into (141) and solving for E., we find

ﬁ‘ i /w'_g ‘
= 1—e' cos (My+E,+E)) (143.1)

Ms=—(a+ b)) "[Aw+A sin Mg+ wvy)+ A2 sin (2M g+ 2v,)
+c2az ! (—2a0)2u'? {B i + By cos (s + o) + 2B cos (24t 2dn)

+B|:{ COS (3(ll\+3dl(|)+1}“ Sil] (4'dj\+4dl(" } ] (143.2)

Comparison with (8.45) of V1961b shows that a term in sin (2 +24) is now missing. The
reason is that, by using the full accuracy for By, in the first order periodic terms, we have already

included it in M,.
To find s, insert E= M+ E,+ E, + E, in the anomaly connections (132) and solve for v

=M+ vy + v1 + vo.
To find ¥, subtract (134.2) from (140.2) to obtain

- (—2(X| )71/2[1431\3 SF Ag] Si]l (/Ms F Uy F U1 ) - A4~_)| sin (‘W\ =F Z'n)

+ Aoy sin QM+ 20y + 201) — A2 sin (2M s+ 2vy)

SIS Ag;; sin (3"1\ A 31'0) aF ;4;14 sin (4‘”\ ar 41'0”

—+ (xgl [[1/’21 B:lljg == Bgl COS (dl\ aF lll(]) =F ng sin (2(11\ aF 2lll|) Sin 2l!j|)

— B:l‘.l sin (Zlb\ AF 2[!1()) 4F Bg;; CcOS (3!”\ Ris 3(!]1)) =F 824 CcOS (4‘(!& F 4‘[1}()) l =0. (14‘4*)
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On inserting
Ay sin (Mg + vy + v1) — Aoy sin (Mg + vo) = Asivr cos (Mg vy) + 0(J3)

Ao sin M+ 2vy + 2v1) — Ass sin QM+ 2v9) = 24501 cos (2Ms + 2v0) +O0(J)3)

B.

2 sin (2 + 24 + 241) — Bas sin (24 + 24) = 2 Bosy cos (24 + 240) + O(JF)
into (144) and solving for >, we find
Yo =— B5"[Bar cos (W + ) + 2Baaifiy cos (2 + 24f1y) + Boy cos (3 + 3) + Bay sin (4l + 440s) |
+ asu12(=200)712 By [ Ao vs + Ay vy cos (M ~+ vo) + 242001 cos (2M + 2vy)
+ A3 sin (3M; + 3vy) + Azq sin (M + 4uy) . (145)

This completes the solution for the £, v, and i and thus for the spheroidal coordinates p and 7.
1. The Right Ascension
To find ¢ we have to insert (115) for Ny and (5.60) of V1961b for R; into (11.3).  Then
o= B3— oz(—2a;) 12 |:,4;;1* +§: As; sinjz']
J=1
+azaztu! { =g [(/1, + h») {?—;(l +2¢) ‘/3+X“}
+(hl—hg){—,—j11+2g) I/HX.H ( +¢;>B; 2CGQ cos 55 ( 202 sin np} (146)

Here A3 is given by (5.61) through (5.65) in V1961b. Because of typographical errors there, |
include here the correct expressions for A3 and A33:

et 30, . L (et 3, ( b3 .
o= (] — e2)1/21)=3 € .,201 5 o€ 0 5[0 2
Az = (1 —e>)?p {44—4,)( ) <4+21> 2—!-()]
S e by
Ay = (1 — e2)1/2 3 [17:—?(’2 +v~>] (146.1)

Here b3 is simply the B in (34.1) of this paper.
The symbols h; and h. are abbreviations:

hi =1 (I=BGI=Co)pl2 (147.1) hs = =Ga=Coly e (147.2)

Lo
2! 2!

(- 1"
c2S ) Po aopo

By (18), (21.2), (26), and (31), we find for azs

ay=[upe(1 =) " sgnaz | 1 — (148)
oo [H— 11~ZS)]
aoppo
The error here is of order J}.  With the same error, we can simplify this to
2 25)\? 2 &S
az=[upo(1—9)|"? sgn a;;[l—S{ £ +<—> <1—£ c )H (149)
aopo Po ap ap
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Alternatively, when as is known, we may write

S 1/2
a3=az<1—5> sgn o (149.1)

In (146) the constant B85 would reduce to . — Z7 sgn «; in the Keplerian case, as one may see
by solving the two body problem with lower limit 1;(=—m) in the m-integrals. Also in (146),
consider the constant term:

3 oo ' w!2(1 — S)12(1 + 20~ 12[hy + hs — (h1— h2)|+ 5 7B;.

For J>=0 and J3=0, we have u=1, (=0, hiy+hs=1, hy—h,=0, B3=0, S=sin2 I, and azos'
=cos I. Thus it then becomes 3 7 cos I|sec I| =% 7 sgn as. If we lump it into the constant
Bs and call the sum B3, we then find that B; reduces, in the Keplerian case, to (), the right ascension
of the node.

Our amended equation thus takes the form

4
©= B — caz(—204)7 12 [A3U + 2 Asj sin jv] + azo 'ull? {(1 —S)~12[(h,+ hg)Xb

=i
3 3 .
+(h1—h2)xl]+33df—1 CICZQ COSs lll‘?‘ 5 Cgoz sin 2!!1 5 (150)

where x, and x, are given by (114) and E, and E; in (114) by (104), with ex=Q(1—P)"!
and e3=Q(1+P)~".

It is not difficult to verify that (150) reduces to (8.50) of V1961b in the limit §=0. A much
more delicate check is to show that (150) makes ¢ a constant in a polar orbit, with jumps of 7 as the

satellite goes over a pole.
As an orbit approaches being a polar orbit, s — 0 and S — 1, so that

@ = B+ azay 'w!?[(hy + hz)XO SF(lon= h‘z))(l [[(l=S)=12, (151)

Now by (148), since (upo)!>= s, we have for S— 1

aza w1 —8)"12=sgn ay {1—(—12:70— %S/pzz;]l/z’ (152)
aoPo

since by 31) u > 1 as S— 1. Also, for S=1, we have by (32) that (152) becomes

aza; w1 —S)12= sgn ay[(1 —Cs)2— C2]M2(1 — Cy)~12. (153)
To simplify the term in (151) involving the x’s, note that by (102.2), (32.1), and (32.2)
20=(1—Cy)"'Cu. (154)
Then, by (147) and (154)

(1—28)~12=2hy(1 — C>)"2 (155.1), (1+28)V2=2hy(1 —C>)"2. (155.2)
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In (114) let us now abbreviate E)(y+7/2) to E} and Ejy—7/2) to E}. Equations (114) and (155)
then yield

XO-:(I _Cz)'/z(th._;+th;;) (156.1)
X, =1 = C)"*(hEy — By, (156.2)
from which it follows that
(hy+ hz)X(, + (h1 — hz)Xl =2(1— Cz)l/zhlhz(Eé + E;’;) (157)

= 11— C)"[(1 — Cop— C2VXEL+E),  (158)

after insertion into (157) of the expressions (147) for hA; and h,. On inserting (153) and (158) into
(151), we then find that for a polar orbit

¢ B+ 3 (E,+E) sgn as. (159)

To discuss this expression, note that ex=Q(1 —P) ' and e;=Q(1+ P)~! are both unity for a
polar orbit, since by (32.3) P=0 when S=1 and since by (47) Q then equals S=1.

To see how E;+ Ej; behaves as S — 1, we have to discuss the function E'(f), where the argu-
ment f plays the role of true anomaly and the function E’ the role of eccentric anomaly.

Now by their definitions E' and f agree in value at all multiples of 7. Also

dE'_ V1—¢

df 1+e (:osf io®)
Thus
dE' _ (1—e\'2 ‘
E;Gi>ﬁM”aL f=2rm (161.1)
1+e\!2 :
=(1_2) —Swase—>1, f=@+ (161.2)

The plot of E" versus f for e=1 is thus as follows
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/
/
ST |- )
» ~/
Z
4 |- ~
FIGURE 1. Plot of eccentric anomaly versus true anomaly ,/
fore=I. Sy
e=1 7
J 7/
2T
/
/
T
/
/
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For e=1, one sees that E'(f) remains constant from f= (27 + 1)7 to (27 + 3)ar, but then jumps
by 2.

. . T T
Let us assume sgn as=1 and consider what happens as s increases from ——-+¢€' to = —¢€’.

2 2

In this range Y+ 7/2 increases from €' to m—€' and Y—7/2 from —7+ €’ to —€’. In this range,
therefore, both E'(+ 7/2) and E'({y —/2) remain constant, so that ¢ remains constant, by (159).
As ¢ increases beyond /2, however, Y+ /2 passes through an odd multiple of 7 and ¢ — /2
through an even multiple of 7. Thus E'(+ 7/2) jumps by 27 and E'(y — 77/2) remains constant,
so that, by (159), ¢ jumps by 7. This is at the north pole. A similar jump takes place at the south
pole. These results are of course trivial for a polar orbit, but they constitute an important test
that the equation (150) for the right ascension had to pass.

12. The Final Algorithm

To summarize results, assume that w, re, J2, /3, and the orbital elements «, e, S, lo, 2, and B3
are given. (Here S is an element that would reduce to sin> I=mn3 of V1961b, but with /5 incorpo-
rated into the reference orbit it may go negative for orbits close to equatorial.)

To calculate the reference orbit, compute

o b I
c*=ri)> (1~1./§J;"). 8=—% reJ3'Js>0for J5< 0 p=a(l—e?),
A by (40.1), and B by (40.2). Then

av=a—3A, po= ay'(B+ap—24a—c?), aa=(upo)'?. u by (31), C» by (32.2), C, by (31.1), P by (32.3),
by=—3%A, by=B"2 a;=— % pa;'. Then compute

Ay, As, Az, Avr, Arz, Asx, Ass, Ao, Asiy Asi, Ass, Ass, Asy by p. 198 of V1961b.
Now compute Q= (P*+S)'?, B, by (65), B} by (76), B; by (95), { by (102.2),
e=Q(1—P)! e;=Q(1+P)!
27y, by (122.1), 27rv, by (122.2), and [y and g by (123). Then

M,g:1(1+2771/1t, le:l(;+g()+27ﬂ/3l

o= ae
a+b|

<e<].

Find M+ E, by solving
M+ E,—e' sin (M;+ Eo) = M;.

Solve (132) for v=M;+ vy and (133) for . Then find M, by (136.2) and E,; by (137) and solve
(132) forv=M+ vo+v;. Find s by (139) and then M, by (143.2) and E, by (143.1).
Solve (132) for v= M+ vy + v, +v» and find ¥ by (145). Then

E:MN+E()+E1+E2,U:MS+U()+U1+U2, lb:¢s+¢0+ll-’l+¢’2-
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The spheroidal coordinates p and 7 are then given by
p=a(l—e cos E)=(1+e cosv)'p
n=P+(Q sin .

To find the right ascension ¢, note first the correct formulas for A3 and A3z in (146.1) of this
paper or on p. 198 of V1961b. Then compute h; and /» by (147) and a3 by (148).  Define E5(y) by

(1—e2)"2 sin y
I +e: cos y

e+ cos y
1+es cos y

cos Ey(y)= sin Ey(y)=

and the requirement that E;and y shall be equal whenever y is a multiple of 7. Define E;(y) in the
same way, with e; replacing e..

Then calculate x, and x, by (114) and ¢ by (150). Having p. 5. and ¢, we may now find the
rectangular and spheroidal coordinates by means of (1.1) and (1.2).

13. Further Remarks

The present inclusion of /-; into the separable orbit has apparently led to new secular terms
. S 3 . .
of order J3. These terms, — ( I’+ CG3Q® in By and — (,-I in By, are proportional to J3/;*

= ((/3) and lead to terms in 11\. s, dnd <p bmce no previous treatment of third harmonic perturba-
tions has led to such secular terms, the result requires checking.
To do so, note that by (2) and (3) the present ¢? is given by

?=c2— 8

where ¢g=r?J>. It turns out that the & terms implicit in the new ¢? are just sufficient to cancel
the new terms in &%

Since c*= ¢{—2c}6*+ 6%, terms of order ¢* cannot cancel terms in 82. In expanding the fun-
damental frequencies it is thus sufficient to carry terms only through ¢ and &%, in checking this
point. A rather long calculation then shows that

M,\-:27TV] = n(;+0(C4)

U= 2m1=ny [l +§ % 4— SS)] O(c?)
4 p*

- 3¢t B e
©=2mr3=ny Sgn o [ (4 5= 2p? 1—5)1/2] SR OGS

Here ny= w'2ay??, the mean motion corresponding to ap=— w(2a;)"', where «; is the total energy.
This means that, if we solve the problem for given initial conditions without using the third harmonic
and then re-solve it with inclusion of the third harmonic, there will arise no secular terms of order
J2J52, provided that we use the same initial total energy. In turn, this means that if we use the
same initial coordinates, we must change the initial velocities slightly or that if we use the same
initial velocities we must change the initial coordinates slightly.

It does not appear worth while to do the extra calculation that would give us final formulas

manifestly free of secular terms of order /3/52. If we use the present results, we shall obtain secu-
lar terms correct through order J3; this limitation comes from the error of order /3§ in (31.2). To
obtain this secular accuracy, we find from (122) and (150) that we should keep terms through order
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J3 in By and B3 and through order /3 in B;. By improving the solution of the cubic (27), we could
calculate secular terms to any order of accuracy. Periodic terms are correct through order J3;
they also may be carried to a higher order if the need ever arises.

To obtain the orbital elements one may proceed as follows. From initial values determine
oy, o, and a3 by the appropriate modifications of eqs (3.8), (3.9), and (3.10) of V1961. They are

a1 =17 u}— p(pi+nid) (p}+ c*n})!

O3 = r? COS2 0i¢i - xf)'/i —yiaéi
a3 =(1—m})"[(p} + *n}*ni + o5 — (L —m3) Cerc®n; + 2um:d)].

Here the equation for o, follows from (10.2), (13.2), (50), and (59.1) of V1959. The subscript i means
initial value and u; is the initial speed.

From the «’s one can determine ay, eo, po, and i, from eqs (21) and (28) of the present paper
and then determine a, e, and no=sin I by means of the equations on pp. (172) and (173) of V1961b.
Knowing a, e, and [ to this approximation, one can then determine the values of B1, B2, and B3 or
of ly, g, and B3 by fitting the values of p, 1, and ¢ at various times, still using the equations in
V1961b.

To improve these elements, now calculate the orbit, with elements a, e, S=sin? I, [y, g, and
Bs by means of the present paper. Observe the residuals and use them, with the aid of least
squares, to obtain a differential correction to improve the orbital elements. Here a word of cau-
tion is necessary. If the orbit is close to equatorial, S may go negative. This is all right, since
it is only 9?=P?+ S that cannot become negative, with the present method.

Then repeat the process, until the elements converge to fixed values. One or two iterations
should suffice, according to Bonavito (1964).

The present method of accounting for J3 ought to be an improvement over the perturbation
theory of V1963, for two reasons. There appear no small denominators, such as those containing
e or sin [ in the perturbation theory. All periodic terms are correct through order J3.
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