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The BKZ elas ti c Auid th eory is used to correlate experimental results obtained in biaxial strain 
and steady simple shear. With a he uristi c potentia l fun ction involving three material properti es, 
excellent agreement is obtained between theory and experiment. In the special case whe re one of 
the mate rial prope rti es is dominant , the be havior in steady simple shear is calculated from dynamic 
meas ure me nts in the infinites imal range and is compared with ac tual data. 
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1. Introduction 

In a recent paper [1],1 excellent agree ment was 
shown be tween experime ntal res ults and predictions 
of the BKZ elastic fluid theory [2]. This theory in
volves a potential function, U, but leaves it unspeci
fied . F or a give n material, a knowledge of the results 
of a s uffi cie nt number of bi axial stress-relaxation ex
pe riments will e nable one to predict with the BKZ 
theory th e s tress response to any other deformation 
histor y. However , if one knew a s pecific functional 
form by which U could be closely represented, then 
one would be able to correlate the behavior of differ
ent materials and differe nt strain his tori es from the 
results of only a few experime nts. 

Encouraged by these results [1], I constru cted a 
form of U with whic h the BKZ elas ti c fluid theory 
could quantitatively describe biaxial strain at large 
deformation, biaxial creep, and simple extension of 
vulcanized rubbers. This form of U involves three 
material properties . In simple shear it can quanti
tatively predi ct non-Newtonian be havior, including 
normal stresses. The ra tio of the shearing s tress to 
the rate of shear de pe nds on the rate of shear in such 
a way as to describe either shear thinning or shear 
thicke ning behavior or both , de pending on the relative 
magnitude of the material properties . In the special 
case where one material property is dominant, one 
may use dynamic data take n at infinitesimal strains 
to predict the de pende nce of vi scosity and normal 
stresses on rate of shear. This is presented in section 
4 of this paper and the agreeme nt is excellent. 

I want to e mphasize that the form of U presented 
here is he uri sti c . The purpose of thi s paper is to show 
that with a relatively simple form of U, one may use 
the BKZ elasti c fluid to describe very well the behavior 
of material s whic h can be conside red isotropic and 
incompressible. 

I Figures in brackets indica te the literature references at the end of this paper. 

2. Theoretical Considerations 

The BKZ elas tic fluid is a fluid with an elasti c poten
ti al. The effect of the configuration at time T < t on 
the s tress a t time t is equivalent to the effec t of a stored 
elas tic energy with the configuration at time T as the 
preferred configuration. The effect de pends on the 
a mount of time elapsed be tween T and t. The stress 
a t time t is the sum of contributions from all pas t times . 
For an extens ive description of the theory, we refer the 
reader to the initial pa pers [2] and [3]. 

A particular motion of the material may be specified 
in terms of the Cartesian coordinates Xi of each particle 
at eac h time. Let XI, X2, X3 be the position coordinates 
of the particles in a refere nce configuration . Then , 
a motion is given by a set of fun ctions 

i , k=1 , 2, 3. (2.1) 

At time T, (2.1) becomes 

i, k = 1,2,3. (2.2) 

If we eliminate XI, X 2 , X3 between (2.1) and (2.2) 
we may write 

i, k=l, 2, 3 

where Xi(t) and Xi(T) are the position coordinates at 
time t and T respectively of the same particle. The 
relative deformation gradients Xih·(t , T) are de fined by 

The left Cauchy-Green tensor Cij(t , T) is the n 

Cij(t , T) == Xik(t , T)XjI..(t , T) 
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where repeated indices indicate summation over the 
values 1, 2, 3. 

The principal invariants of Cij(t, T) are 

h(t, T) == ~m+ ~m+ ~m 

13(t, T) == ~m~5 

where a=A[(t, T) are the principal values of Ci/t, T) 
and Ai is the stretch ratio in the Xi direction. 

Assuming incompressibility, we have 13(t, T)= 1, 
and the constitutive equations for the BKZ elastic 
fluid become [4] 

- 1f rau au -I ] (Tij(t)--pBij+2 -I Cij(t, T)--I- Cij (t, T) dT 
- oo ... a I a 2 

(2.3) 

where (Tjj are the components of the stress tensor, 
p is a hydrostatic pressure, U is a function of II , 12 , 

and t-T 

and Cijl(t, T) are the components of the inverse of the 
matrix l!cu(t, T)II. We may describe an isochoric ho
mogeneous biaxial strain history by writing for (2.1) 

XI(t) = AI(t)XI 

xit) = Ait)X2 

The matrix of the left Cauchy-Green tensor Cij(t, T) 
becomes 

and 

A~(t) 
0 0 

A~(T) 

l!cu(t , T)II = 0 
A~(t) 

0 
A~(T) 

0 0 
A~(T)A~(T) 

A~( t )A~( t) 

A~(t) A~(t) A~(T)A~(T) 
[I(t, T) = AT(T) + A~(T) + AT(t)A~(t) 

A~(T) A~(T) A~(t)A~(t) 

lit , T) = A~(t) + AT(t) + A~(T)A~(T)· 

(2.4) 

(2.5) 

From (2.3), (2.4), and (2.5) we get 

If [AT(t) AT(T)A~(T)J [au A;(t) au] 
= 2 _" AT(T) - Ai(t)A~(t) all + A~(T) aI2 dT (2.6) 

and 

In the case of a single step stress-relaxation experi
ment where 1..;( T) = 1 for times T smaller than zero and 
Aj(T) = Aj(t) = Aj for times t, T greater than zero, (2.6) 
yields 

where 

and 

(T11(t) - (T33(t) 

1.. 2 __ 1_ 
I AiA~ 

Similarly (2.5) becomes 

(2.8) 

(2.9) 

Superficially, expressions (2.8) and (2.10) appear to 
be the same as the relations given by Rivlin and Saun
ders [5]. However W, here, depends on time as well 
as strain and is designed so that (2.10) gives the stress 
during stress relaxation. On the other hand, the W 
of Rivlin and Saunders depends only on strain. 

In the case of simple shear, we introduce an orthog
onal set of coordinates as shown in figure 1, where XI 
is the direction of motion of a particle and Xl is the 
direction of shear. In the case of a steady shearing 
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FIGURE 1. General coordin.ate axes for description of flow. 

motion with constant rate of shear, y, (2.1) reads 

Thus, 

and 

XI(t) = XI (T) +(t - T)YX2(T) 

X2(t)=Xz{T) 

X3(t)=X3(T) 

II Cij(t, T) II = 1 

o 

o 

1 

1 - y(t - T) 0 

IlciJl(t, T)II= --y(t-T) 1+)!2(t-T)2 0 

o 0 1 

Substituting III equation (2.3) with t-T=g, one gets 

(2.11) 

where 

and 

(2.12) 

1" {au aU .? } fT22=-p+2 ---(1 + y-e) dg 
o all alz 

(2 .13) 

1" {au aa fT33=-p+2 --- dg. 
o all aI2 

(2.14) 

These relations hold independe ntly of the form of U. 

3. Experimental Procedure 

From the theoretical considerations of the previous 
section, we see that we may determine a W faIl and 
aWjaI2 as functions of I" 12 , and t from data taken in 
single step stress-relaxation experiments in biaxial 
strain. For vulcanized rubbers we may regard the 
long time isochrones in creep to within a good approxi
mation as isochrones of single step stress relaxation. 
This is true for a material only if the deformation at 
constant load re mains almost constant for long times, 
although not necessarily to infinite tim e. For this 
reaso n we elec ted to do our experiments on vulcanized 
butyl rubber. The experime nts were carried out 
using a tes t piece in the form of a square s hee t having 
sides of 8 cm and a thickn ess of about 0.07 cm. The 
test piece was c ut and marked in a fa shion described 
by Rivlin and Saunders [5]. One square surface of 
the sheet was marked in ink with two se ts of four 
parallel straight lines so as to form a square grid with 
1 cm spacings. In drawing the outer lin es of the grid, 
great care was taken that they be s traight and form a 
perfect sq uare. In figure 2 is shown part of the ap-

FIGURE 2. Schematic diagramfor the biaxial extension experiments. 
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paratus with the sample S. As can be seen from the 
figure, the sample was stretched in the A-B and C-D 
directions with the aid of strings. One end of each 
string was tied to a lug of the sample and the other 
end was attached to a weight or to a turnbuckle. The 
strings were made from unspun fibers of Mylar. For 
the study of the variation of aW/aI\ and aW/aI2 with 
respect to time, the two sets of the three middle lugs 
in the A and C directions were tied to strings support
ing weights. The other 14 lugs were tied to strings 
in which tension was controlled with the turnbuckles, 
which could be adjusted to keep the ink lines on the 
sample straight and parallel. With the aid of a two
way traveling microscope, whose axes of travel were 
set parallel to the stretch directions , we could check 
the uniformity of stretch and measure the extensions. 

In our other sets of biaxial experiments, we loaded 
the sample by first stretching it a predetermined 
amount in the D-C direction and then applying weights 
in the A-B direction. This was done in order to avoid 
diffic ulties due to the history of loading. In these 
experiments, only the three middle lugs in the A direc
tion carried supporting weights. The strings attached 
to the other lugs were adjusted to keep the lines 
straight and parallel to the stretch directions. The 
final readings were taken after 18 hr from the time of 
loading. After each measurement the material was 
allowed to relax for 24 to 48 hr before another loading 
was started. Thus, the values that we obtained can 
be considered as isochronal values of stress relaxation 
at 18 hr. 

In order to be able to compare with experiment the 
predictions of our theory for simple shear flows , we 
performed dynamic and constant rate of shear meas
urements on solutions of polyisobutylene B-140 in 
Mentor 28 oil. Two concentrations were used. They 
shall be designated as 10 percent and 5 percent. We 
do not know the actual concentration accurately, be
cause we lost an unknown amount of solvent while 
preparing what was to be the 10 percent solution. 
We do know that the ratio of the two concentrations 
is two to one. The dynamic data at very small defor
mations were obtained through the cooperation of 
R. W. Penn, using a torsion pendulum at the W. R. 
Grace Laboratories. The torsion pendulum is essen
tially the same as the one described by Morrison, 
Zapas , and DeWitt [6]. The data on viscosity as a 
function of rate of shear were obtained in a capillary 
viscometer. 

4. Experimental Results and Discussion 

The purpose of this paper is to show that with a 
relatively simple form of the potential function U, 
the BKZ elastic fluid can be used to correlate different 
types of behavior of elastomeric materials. The 
heuristic form of the potential function U which I 
shall use here involves three material properties O'(t), 
j3(t) , and c(t). These material properties are positive 
monotonically decreasing functions of time. The 
form of U is given by the following expression: 

-U=~' (l1-3)2+4.5j3' In el +~2+3) 

+24(j3'-c') In G~!~~) +c'(II-3) (4.1) 

where 

,=dO'(t) j3, =dj3(t) d ,_dc(t) . 
a dt' dt ,an c - dt 

From equations (2.9) and (4.1) we get 

aW _ 4.5j3 24(j3-c) 
aI:- O'(lI-3) + II + 12 +3 + 11+ 15 +c (4.2) 

aW 4.5j3 
aI2 II + 12 +3 (4.3) 

where it is understood W, a, j3, and c are functions of 
time. 

In a pure shear single step stress-relaxation experi
ment with '11.2= 1, and 1\ =h, we get from eq (2.8) 

<TII(t)-<Tdt) 

'11.2_1. 
I '11.1 

2(aw a~ 
aJ;+ aJ;} 

Since O'(t) is taken to be a positive monotonically de
creasing function of time, or zero, eq (4.4) says that 
. <TII(t)-<Tdt) 1 
If one plots 1 at constant t versus ---

'11.2-- 2/1+3' 
I '11.1 

one should get either a curve which is concave up
ward or a straight line. In the case of a straight line 
the slope is equal to 18j3, the intercept, 2c, and a 
equals zero. 

In figure 3 we show the data of Rivlin and Saunders 
[5] on pure shear for vulcanized natural rubber. In 

h· fi <TIl - <T33 1 
t IS gure we plotted ( ) 0'.(1\-3) versus ---

2 '11.2_1. 21\ +3 
I Ai 

for 0'=0 and 0'= 0.06. As can be seen for the case 
where 0'=0, the curve is concave upwards. Here 
0'= 0.06 was found by trial and error. Actually, if 
there is a well defined minimum, one could obtain a 
by following the procedure presented in a previous 
paper [3]. So it is evident that by using the relation 
(4.4) one could get the three material properties from 
pure shear experiments. 

In figure 4 we present a similar check of the ade
quacy of the assumed form of U by plotting 

<T11(t)-<T33(t) I+M 

( 
1 ) 0'(11 -3) versus 1\ + 12 +3 

2 '11.1- A1A~ 
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FIGURE 3. Pure shear data oJ-Rivlin and Saunders on vulcanized 
natural rubber. 

Open circles. 0 = 0. The abscissa is given in kg per cm 2• 

using data obtained on vulcanized butyl rubber in 
biaxial and simple extension deformations as de
scribed in the previous section. For butyl rubber, the 
value of a(t) is small and estimated to be 0.015. Since 
{3 and c are equal, as determined from the pure shear 
data , in a plot of this type the experimental points 
should fall in a straight line. Considering experimen
tal difficulties and uncertainties, the agreement is 
excellent. 

TABLE 1. Biax ial creep of vulcanized butyl rubber 

Time I, I, aw X 10- ' 
ai, 

aW x 10-' ai, 

Hours Dy nes/em 2 Dynes/em'}. 
3 3. 1043 3.1050 2. 15 - 0.10 

20 3. 11 25 3. 11 25 1.9 1 .07 
23 3. 1134 3. 11 3 1 1.83 . 14 
47 3. 11 60 3. 11 56 1. 80 . 16 
66 3. 11 77 3. 11 72 1. 78 . 17 
90 3. 11 99 3. 11 91 1.74 . 19 

11 7 3. 12 11 3. 1203 1.71 .20 
164 3.1233 3. 1224 1.69 .2 1 

In the course of our experiments in biaxial deforma
tion, in a different set of measurements we observed 
a negative value of aW/aI2 at very small extensions, 
while at higher extensions aW/aI2 was positive. This 
was observed in three samples with different degrees 
of vulcanization. For a further study of this peculi
arity we selected a relatively high cross-linked speci
men of butyl rubber and we studied its biaxial creep 
behavior at small deformations. In table 1 we show 
the calculated values of aW/aI1 and aW/aI2 as func
tions of II, 12 , and time . This table shows large varia
tions in aW/ah for small changes in II and 12• A plot 
of aW/aIt + aW/aI2 versus the logarithm of time is 
shown in figure 5. W e see that even in greatly ex
panded scale for aW/aII +aW/aI2 the points fall in a 
straight line. Moreover, after 150 hr the data still 
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FIGURE 4 . Biaxial extension data of vulcanized butyl rubber. 
The abscissa is give n in (dynes/cm 2)lo-a, 
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FIGURE 5. Biaxial creep data on vulcanized butyl rubber. 

did not indicate any sugges tions of leveling off. This 
shows that we cannot neglect the behavior with re
spect to time. From single step stress-relaxation 
experiments in simple extension in vulvanized rubbers, 
we observed that {3 decays with time much faster than 
c. From (4.3) we can see that aW/aI2 will be negative 
when {3 is larger than 1.6c. One can see, at least 
qualitatively, that what seemed to be a paradoxical 
inversion in sign for aW/aI2 is predictable from eq 
(4.3). 

4 . 1. Steady Simple Shearing Flow 

We can substitute eq (4.1) into eq (2.11) to ge t 
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Since the viscosity 1)(Y) is defined to be the ratio of 4.2. Comparison of Steady Simple Shearing Flow 
a-I~ to y, eq (4.5) can be written With Measurements at Infinitesimal Deformations 

By considering special cases for which the dominant 
term is that containing a'(~), j3'(O. or c'(g). one can 
see that (4.6) could predict a vis cosity independent of 
rate of shear, or vi scosities as observed in shear thin
ning or shear thickening materials. 

In figure 6 we show schematically the type of be
havior predicted from eq (4.6). For the sake of 
simplicity we can write 

where 

1)a(y) =-2 L" a'(~yy2ed~ 
1)/J(y) = - 2 r x f3' (t)1; d~ 

Jo 1 +~ y2e 
9 

1)c=-2 foX c'(Otd~ 

(4.7) 

(4.7a) 

(4.7b) 

(4.7c) 

We observe that in the case where 1) ,,(Y)=1) rlY)=O 
one gets a viscosity independent of rate of shear. 
When only 1) ,,(Y)= O, one gets a behavior shown in 
curve II of figure 6. Curves III and IV represent the 
cases where 1),,(Y), 1)!3Cy) , and T/c all contribute to the 
viscosity. Naturally, curve IV shows the case where 
1),,(Y) is the dominant quantity. 

- IV 

- ill 

/ I 
JS r---~~~~---~----~----
>=""" 

-II 

LOG Y 

FIGURE 6. Schematic representation of forms of steady shear 
viscos ity curves which can be predicted by eq (4.6). 

For a simple shear deformation, which is specified 
in terms of a single parameter, say Y=Y(T), (2.2) may 
be written 

(4.8) 

To represent single step stress relaxation, we take 
yeT) = 0 for T < 0 and yeT) = y= constant for T > 0, 
and we get 

1 + y2 Y 0 

Ilcull = Y 1 0 
0 0 1 

(4.9) 
1 -Y 0 

Ilc;j-III = - Y 1+ y2 0 
0 0 1 

where II = I~ =3+ y2 . From (2.3), (2.9) , (4.2), (4.3), 
and (4.9), we obtain 

a-I~(t) = 2y [y2a (t) + 99!~~2 + c(t) l (4.10) 

Th I· . f a-dt) f . h ' . h I e Imlt 0 --y or vams mg y gIves us t e re axa-

tion function, G(t) , for infinitesimal deformations: 

G(t) = 2f3(t) + 2c(t). (4.11) 

From the general relation of linear viscoelasticity [7J 
betwee n pe riodic and steady-state functions 

G'(w) + iW1) '(w) = iw f G(t)e- iW1dt , 

we can express 1) '(w) in terms of j3(t) and c(t) as 

1)'(w) = f {2f3(t) +2c(t)} cos wtdt. (4.12) 

Integrating (4.6) by parts we get 

1)(y)=2 l X {3a(~lY2e+ 9f3(~~~~:~:e)+c(~)} ~ 
(4.13) 

Several interestin g observations can be drawn reo 
garding the behavior of a material which can be de
scribed by a potential function U of the form of (4.1) 
by comparing (4.12) and (4.13). First, it is obvious 
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that in general 'Y}(y) cannot be predicted from measure
ments of 'Y}/(w), since the term in aCt) does not show 
up in 'Y}/ (w) at all. Also, f3(t) and c(t) cannot be sepa
rated by measurements of 'Y}/(w). However, if we 
encounter a material for which either f3 or c is the 
dominant term in (4.13) and (4.9) then in principle 
'Y}(y) can be calculated from 'Y}/(w). If c is the dominant 
term, we will have a situation in which 'Y} (y) is inde
pendent of rate of shear, but 'Y}/ (w) may vary with fre
quency and normal stress effects may be observed in 
steady shearing flow_ If f3 is dominant , both Y)/ (w) 
and 'Y}(y) will vary with w or y. 

For many materials aCt) is negligible, but ordinarily 
both f3(t) and c(t) contribute to y) (y), with f3(t) contribut
ing the dominant term within experime ntally acces
sible rates of shear. However, at very high rates of 
shear, any nonzero c must become dominant. For 
the range of rates of shear for which 

we may utilize Y)/(w) to evaluate f3(t) and calculate a 
lower bound for the measured Y)(y). The calculated 
'Y}(y) should be in close agreement with that measured 
at low values of y, but would fall below the measured 
values at high rates of s hear. 

For the actual compari son of the two measured func
tions Y)/(w) and 'Y} (y) , it is be tter to formulate our ex
pressions in terms of relaxation spectra corresponding 
to f3(t ) and c(t) entirely analogous to the spectrum repre
sentation of C(t). The relaxation spectrum F(T) may 
be defined by [7]: 

and may be expressed as the sum of two terms Fib) 
and Fe(T) defined by 

2f3(t) = L X> F/3(T)e - tlr dT 

(4.14) 

In terms of (4.14) we have 

C/(w) =f oo -{F/3(T) + Fe(T)}W2T2dT 
o 1 + W 2T2 

(4.15) 

(4.16) 

and in the case where aCt) == 0 from eq (4.6) 

3 3 

2 
T 
'0 

'T}'(w) 
c. 

1 
}: 
'" 0 
.J 

o 0 

-I '-----1--"---'----...lo---+---~--....J 

FIGURE 7. 
28 oil. 

TABLE 2. 

Log[W, sec-I] 

Dynamic data on 5 percent solution of B-140 in Mentor 
Solid circles represent the values calculated from data give n in table 2. 

Relax ation spectmm for 5 percent solution of polyiso
butylene 8 - 140 in Mentor 28 at 25°C 

19 .0 
15.2 
10 
3 
1.0 
0.3 

. 1 

.03 

.01 

0.0 
.1 
.5 

7.3 
39 

120 
245 
41 0 
420 

We calculated H(T)=TF(T) from measurements of 
'Y}/ (w) and C/(w) on the five perce nt solution of B-140 
by an iterative method which will be described in 
another paper. In figure 7 we show the dynami c 
rigidity and viscosity as a function of frequency_ 
The black points represent points calculated from 
H(T) as obtained by our iterative method and tabu
lated in table 2. The agreement indicates that we 
have a good re presentation within the range of meas
ure ments. In figure 8 we show the viscosity at steady 
shearing flow as a function of rate of shear, with the 
open circles representing values calculated from eq 
(4.17) assuming that the contribution of the integral 
of Fe(T)T is negligible. The agreement between ex
perimental and calculated values is excellent. 

The same arguments can be used for the deter
mination of the normal stress differences 0"11 - 0" , 

0"22-0", and 0"33-0" (where 30"=0"1l +0"22+0"33) as can 
be seen from eqs (2.12) to (2.14). An interesting result 

is that the limiting value of the ratio 0"22-0":3:3 at s mall 
0"11 - 0":J3 

rates of shear is 0.46 in the case where f3 is the domi
nant term. This compares very well with the value 
of 0.4 reported by Markovitz [8] for a 5.39 percent 
solution of polyisobutylene in cetane. 
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FIGURE 8. Dynamic viscosity and steady shear viscosity data on 
5 percent solution of B-140 in Mentor 28 oil. 

Solid circles are the calculated values. 

In conclusion, we should emphasize that all these 
derivations were obtained with the assumption of 
incompressibility. In reality aW/all and aW/ah de
pend also on 13 , the influence of which can not be 
evaluated from the experiments reported above. 
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