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Slit shaped ape rtures are usuall y used in s mall-angle x-ray scatte ring measure ments in orde r to 
obtain eas il y measure d intens ities of scatte red radiation. As a rf' s)llt, the scattering inten sity a t a 
given angle de te rmined by the camera, the center of the sample, and the central incident x-ray beam 
is not s impl y re lat~d to the scattering from the sample only at tha t a ngle . The expe rimenta lly de te r
mine d inte nsities J(x) are related to the true scatte ring intens ities b y the following integral equ ation: 

i (x) = f~ 1[(X 2 + t2)II' l W(t)dt . 

This integr al equa ti on has been prev ious ly solve d onl y for certain s ,mplified fun ctional fo rms fo r W(t) 

and i (x) . In thi s pa pe r , a formal procedure is developed for calculati ng I (x) from the observed angular 
measureme nts, whi ch does not necess itate ma king any a priori assumption about the form of W(t) 
and i (x) . 

Key words: Di stribution of intensit y, integra l equ ation, scatle ri ng cross sec tion, s li t correc tion, 
s mall -angle x- ray scatte ring. 

1. Introduction 

Narrow slits are ofte n used in small-angle x-ray 
scattering measurements to collimate the incident 
beam sufficiently to allow scattering measure ments 
extremely close to the incident beam. Compared to 
a pinhole of diame ter approximately equal to the slit 
width, the slit system increases the available scatter
ing energy. Howe ver, the scattered radiation meas
ured in a given solid angle can no longer be simply 
described as the scattering coming from a point source_ 
Ins tead, the actual angular scattering measure ments. 
whic h are summations of the scattering contributed by 
each scattering center along the height of the sample 
slit, must be resolved to give the scattering of an infi -
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nitely s mall area at the center of the sample slit. I n 
this paper, a for mal procedure is described for calculat
ing the true scattering cross sections from the observed 
angular measure ments when long but very narrow
width slits are used for collimation_ 

A diagram for the slit sys tem of a small a ngle x-ray 
system is give n in fi gure 1. This is a modification 
of the diagra m given by Shull and Roess [IV The 
plane of the quadrangle txyr is perpe ndicular to the 
camera axis which is in the vertical plane containing 
the collimating slit and the sample slit. The col
limating slit neares t the x-ray tube has le ngth 211, the 
effective length of the slit a t the sample is 2/2 , and the 

1 Figures in brackets indicate the li tera tu re references at the end of this paper. 
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FI GU RE 1. Diagram 0/ a slit collimation system. 
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scanning slit at the detector is of length 2yo. The 
scanning slit and sample slit are shown in figure 1 to 
be in a plane making an angle e with the plane con
taining the camera axis and the collimating slit. Let 
us consider a ray which makes an angle YJ with the 
camera axis and after it hits the sample is scattered 
by an angle E with its original direction. Since the 
angles E, e, and YJ are in practice small, they can be 
replaced by the following ratios: 

and YJ=(t-s)/L. 

E= TIL, 
e= x/L, 

Since r = x2 + (t - y)2, it follows that 

(1) 

(2) 

Let I(e) be the intensity striking the scanning slit cen
tered at e, and let I(E)dYJ represent the increment in 
intensity of scattering in an element dYJ. The fol
lowing equation defines lee) by averaging I(E) over the 
entire scanning area. 

- 1 fYO fl2 1(8+ 1, VL3 I(e) = - dy ds I(E)dYJ. 
2yo - Yo - /2 (s - I,)!L" 

(3) 

Equation (3) is the one obtained by Shull and Roess [J 1. 
The triple integral in eq (3) can be reduced to a 

single integral. One way to do it is by the method 
employed by Schmidt [2]. By changing y, s, and YJ 
into the dimensionless variables 

the limits of the integrations are replaced by constants 
which are descriptive of the geometrical parameters 
of the slit system. One can then integrate the re
sulting expression over SI and YI. After substituting 

tl = l for YJI + Sl, the resulting integral equation is 

However, W(tl) is a complicated function of the geo
metrical parameters of the system. In general, W(tl) 
is a quadratic function of tl, represented by different 
functions for different intervals of tl. Also, W(tl) 
must be premultiplied by a unit step function which 
becomes zero when 

The advantage of starting with eq (3) is that L3YJI is 
the coordinate of the length of the slit nearest to the 
x-ray tube. Thus, in the more general case when the 
intensity along YJI is not uniform, but is given by a 
general distribution function g(YJI), eq (4) will still be 
obtained. However, W(tl) will be represented by 

double integrals of the general form 

f f g(YJI-SI-YI)dsldYI, 

with the ranges of integration being determined by 
the parameters of the system. In other words, W(tl) 
in eq (4) results from the projections of the variables 
Sl and YI onto the plane of registration, corrected for 
a possible nonuniformity in the distribution of intensity 
of scattered ratiation along YJI. The only restrictions 
imposed are on the variables SI, YJ I, and YI. These 
angles must be sufficiently small to justify their re
placements by ratios of coordinates (eq (1». 

In the process of determining the formal solution of 
the integral eq (4), one has to calculate derivatives of 
Wet), and for this reason, it would be more advan
tageous to start with a continuous expression for this 
function. This difficulty is eliminated if one starts 
with the experimentally determined Wet) or by using 
the smoothed curve obtained from the calculated 
segments. 

Starting with eq (3), but omitting the slit coordinate 
YJ I, we have the following equation, with wet) repre
senting the intensity distribution in the t direction 

Interchanging the order of integration and making use 
of the fact that W(t) = W(- t), we obtain 

(6) 

with 

W(t) = foo w(t-y)dy. (7) 

Wet) can be determined by measuring the intensity 
in the plane of registration. This is done by taking 
various intervals equal to 2yo along the t axis. These -' 
intervals are equal to the length of the scanning slit. I 
The finite length of the scanning slit restricts the range JI 
of the variable y in eq (7). Therefore, a unit s tep 
function hey) has to be introduced, with h(y) = 0 for 
y> k and hey) = 1 for 0 < Y < k. This process will 
modify Wet) into a convolution integral of wet) and h(t), 

Wet) = f oo w(y)h(t - y)dy. (8) 

The only known solutions of the integral eq (6) were 
obtained for certain special forms of Wet) and of 
/(x). Guinier [3], Fournet [4], and DuMond [5] have 
solved this integral equation for slits of infinite height 
(W(t) = 1). Their method was extended by Kratky, 
Porod, and Kahovec [6], and by Gerold [7] to finite 
beams where Wet) could be represented by a step 
function, or a Gaussian distribution , or a particular 
trapezoidal distribution. Shull and Roess [1] have 
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presented a solution for an arbitrary Wet) if the scat
tering curve i(x) can be resolved into a packet of Gaus
sian functions. The earlier attempts to solve eq (6) 
have been recently reviewed by Beeman, Kaesberg, 
Anderegg, and Webb [8], and by Kratky, Porod, and 
Skala [9]. 

In the following section a formal solution to eq (6) 
is presented which does not require a ny a priori as-
sumptions about the particular forms of i(x) and of 
Wet). 

2 . Solution of the Integral Equation 

2.1. Genera l Cons ide ra tions a nd Discussions 

Equation (6) is rewritten as 

(9) 

To solve this integral equation in one of the standard 
forms it is essential to remove its singularity, since 
the kernel of the equation is infinite at y = x. The 
transformation of this equation, which removes this 
singularity follows the method employed in connection 
with the celebrated Abel's integral equation. A new 
variable in a suitable form is introduced, and both 
sides of the resulting integral equation are integrated 
over the variable x between the value of the new vari
able and infinity. This, combined with the inter
change in the order of integration of the right-hand 
side of the resulting integral equation, through the 
use of the Dirichlet formula, has the effect of remov
ing the singularity. The new kernel is finite every
where, but it is replaced by a bounded integral whose 
integrand involves the original distribution function 
Wet). 

The solution thus obtained is an implicit one, since 
the left-hand side of the integral equation involves 
the integrated form of the experimental function lex). 
In order to obtain an explicit form for the integral 
equation, two additional steps are required: (1) Solution 
of a subsidiary integral equation for another function, 
which essentially compensates for the slit weighting 
function W, (see following section), and (2) differentia
tion of the experimental intensity fUllction lex) with 
respect to x. The details of the solution are given in 
the following section. Here we give the two solutions, 
the implicit and the explicit one in their final forms: 
Implicit Solution: 

with 

(I W(vx) 
K(v) = Jo (1- X2)1 /2 dx; (lOa) 

Explicit Solution: 

(11) 

T he func tion F sati sfi es th e followin g Volterra equa
tion of the secon d kind: 

F(y) = I_l y J Y F(z)K[(y2 - Z2)1/2]dz, 
17 0 

K(v) =~ (I x W ' (vx)dx . 
v Jo (1 - X2) 1/2 ' 

(12) 

(I 2a) 

T he kernels of the implicit and explicit solutions, eqs 
(lOa) and (I2a), are similar in their general forms, 
except that the first one involves the sli t correc ti on 
function W, and the second one involves its derivative. 
The implicit solution is suitable only with the use of 
a digital computer. Both sides of eq (10) are solved 
simultaneously as a se t of simultaneous lin ear equa
tions thro ugh a matrix invers ion method. This method 
can be employed also in order to ob ta in F (u) from 
eq (12). However, the latter equation can be solved 
by expansion of F(u) in a Liouville-Neum a nn seri es. 
These series will converge rapidly, if a good initial 
assumption is made about the approximate for m of 
the function F(u). 

Summarizing, one can demonst rate th at the solu
tion to the problem of slit correction always leads to 
a single integral equation provided that all angular 
variables of the x-ray camera-slit sys tem are small. 
The solution of this integral equation invari a bly leads 
to a solution of the Volterra equation of the second 
kind which has for its inhomogeneous part a cons tant 
term, and whose kernel involves an in tegrated expres 
sion of the derivative of the experimentally determin
able slit correction funct ion. 

At the present time a computer progra m fo r the 
numerical so lution of the eqs (10- 12) is b e in g 
developed. 

2.2. Derivation of Equations (1 0- 12) 

In Abel's integral equation , the kernel K (x , y ) is of 

the form -( 1), with 0 < ex < 1 and x > y. F or 
x-y" 

ex = 1/2, the singulari ty of the kernel is re moved by 
multiplication of both sides of the integral equation by 

dx d . . . h Th ' . (u _ X)I/2 an lIl tegratlllg WIt respect to x . IS IS 

done to make use of the fact that 

(" dx 
Jy [(x- y)(u- X) ]1 /2 = 17. 

(13) 

With W[(y2_X2)L/2]=K(x, y), eq (6) IS writte n in 
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Abelian form: 

I( ) = 2j'" yl(y)K(x, y) d 
x x (:f - X2)1 /2 y. (14) 

For this particular equation , the transformation which 
removes the singularity is based not on eq (13), but 
on an equivalent form: Use is made of the fact, that 

We need a function F(z) , (Z2 = x 2 - u2), which leads to 
K2(u, y) = A, independent of u and y. If .K1(x, y) is 
constant, F(z) then would be a constant also, equal 
to 2/7T. We would then have an Abel-related integral 
quation with a well-known solution for lex). With 
K2(u, y) = '11. , the solution of eq (21) is readily obtained: 

1 d 100 -l(u)=---- 1[(z2+ u2)1/2]F(z)dz, 
2uA du 0 

(22) 

(15) or 

since eq (15) can be shown to reduce to eq (13). We 
therefore multiply both sides of eq (14) by 

xdx 

and integrate over x from U to 00, obtaining 

(00 xl (x) dx. 
Ju (x2 - U2)1/2 

with 

2 (00 J x xyl(y) W[ (y2 - X 2)1/2dydx 
Ju x [(y2 - x 2) (x2 - U 2)]1/2 

= 2 Loo yl(y)K1(u, y)dy, (16) 

(17) 

In obtaining eq (16) and (17), the order of integration 
was exchanged using the following Dirichlet formula: 

( 00 dx J oo G(y, x)dy= ( 00 dy (Y G(y, x)dx. (18) 
Ju x Ju Ju 

The implicit solution (eq (1O-10a)) is obtained from 
(16) and (17) in a straightforward way: we replace 
y - x2 by t 2 • The kernel (17) simplifies to 

((y 2 _U2 ) 1/2 W( t )dt 
K1(u, y) = Jo (y - u2 - t2)1 /2' (19) 

and eq (lO-lOa) follow directly. To obtain the ex
plicit solution of eq (14), we multiply the integrands of 
both sides of eq (16) by F[(x2 - U2)1/2]. F(z) is an un
known function to be determined subsequently. In 
the right-hand side of eq (16) K2(u, y) replaces K1(u, v) 
and is given by eq (20): 

Both sides of the resulting eq (16) are now differ
entiated with respect to u: 

d 100 xl(x)F[ (x2 - u2)1/2] 
-- dx 
du u (x2 - U 2)1/2 

=- 2ul(u)K2(u, u) + 2 (''' yl(y) dK~u, y) dy. (21) 
Ju u 

(23) 

Equation (23) was obtained by Kratky, Porod, and 
Kahovec [6], using a different method of derivation. 

At first glance, the difficulty we encountered in 
solving the original integral eq (14), which is brought 
on by the singularity of its kernel, does not seem to be 
removed. The integral equation for the new function 
F(z) still possesses a similar singularity. However, 
the integral equation for F(z) (eq (20)) is considerably 
simpler than the original integral equation for lex) if 
Kiu, y) = constant. The same procedures which 
were used to remove the singularity in the kernel of 
eq (14) lead to a straight-forward solution for F(z) by 
reducing it to a Volterra-type equation of the second 
kind. Equation (20) is rewritten as 

('y2 _ U2)1/2 F(z)W[(y2 - u2 - Z2)1 /2] _ 

Jo (y2-u2-Z2)1 /2 dZ-A , 

or 

(24) 

with S2=y2-U2. 
Both sides of eq (24) are then multiplied by 

s(u2 - S2)- 1/2 and integrated over s from a to u. The 
following equation is obtained: 

We again interchange the order of integration in the 
l.h.s of eq (25), using the Dirichlet formula to obtain 

iu F(z)dz (u SW[(S2 - Z2)1 /2ds 
o Jz [(S2-Z2)(U2 -S2))1/2 AU . (26) 

Next we subtract and add W(z = s) = W(O) and inte
grate eq (26) to obtain 

7T (U (u 
"2 W(O) Jo F(z)dz- Jo F(z)M(u, z)dz= AU, (27) 

(27a) 
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After differentiating (27) with respect to u we obtain 
the following Volterra-type equation of the second kind 

2,\ 2 (u dM(u, z) 
F(u) = 7TW(O) + 7TW(O) Jo du F(z)dz, (28) 

since M(u, u) = O. 
Equation (28) can also be further simplifi ed. If we 

se t W(O) = 1 and ,\ = 7T/2, then 

F(u) = 1 + ~ (u dM~u , z)F(z)dz . (29) 
7T Jo u 

Equation (27a) is integrated by parts, 

Ther efore, 

dM(u , z) _ _ u ( u SW' [(S2 - Z2)1/2 ] 

ciu - (U2_Z2) Jz [(U2 -S2)]1 /2 cis. (30) 

Integral eq (29) assumes the followin g form 

2 J" F(u) = 1- - F(z)K(u , z)dz, 
7T () 

(31) 

with 

(32) 

The kern el of eq (31) is finite for all values of z, includ
in g z= u. 

Equations (12-12a) follow directly by exchanging 
variables, u being replaced by y. 
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