Phase Equilibria as Related to Crystal Structure in the System Niobium Pentoxide-Tungsten Trioxide

R. S. Roth and J. L. Waring

Institute for Materials Research, National Bureau of Standards, Washington, D.C.

(April 1, 1966)

The phase equilibrium diagram for the binary system niobium pentoxide-tungsten trioxide has been constructed from results of x-ray diffraction studies on both single crystals and powders and from fusion characteristics. Twelve stable compounds have been found in the system. The exact composition of eight of these compounds has been established by single crystal analyses at the Nb₂O₅: WO₃ ratios of 6:1, 13:4, 7:3, 8:5, 9:8, 1:1, 4:9, and 2:7. The approximate compositions of the remaining four other phases are 30:1, 6:11, 1:11, and 1:15. The 6:1, "6:11", 4:9, and 2:7 phases melt congruently at 1476, 1378, 1380, and 1357 °C, respectively. The "30:1", 7:3, 8:5, 9:8, "1:11", and "1:15" phases melt incongruently at 1470, 1440, 1385, 1375, 1356, and 1358 °C, respectively; and the 13:4 and 1:1 phases decompose before melting at 1435 and 1115 °C, respectively. The 8:5, 9:8, "6:11", 2:7, "1:11", and "1:15" compounds are shown on the phase diagram as having minimum temperatures of stability. One metastable phase having a narrow range of composition near the 3:8 ratio was also encountered. Although Nb₂O₅ apparently exhibits no solid solution, WO₃ was found to accept a maximum of three mole percent niobia in solid solution enabling all the reported polymorphs of WO₃ to be obtained at room temperature.

Key Words: Crystal structure, niobium pentoxide, phase equilibria, system, tungsten trioxide.

1. Introduction

A complete study of the phase relationships in the binary system $Nb_2O_5 - WO_3$ has been conducted as part of a continuing program of fundamental phase equilibria studies of ceramic materials. This particular system was selected for study in order to further the knowledge of the crystal chemistry of niobates in view of the results obtained from previous structural studies of single crystals [1-4].¹

Due to the complex nature of the x-ray diffraction powder patterns in this system, conflicting interpretations of the data have been reported [5-11]. In a previous study of the Nb₂O₅-WO₃ system, Goldschmidt [5] concluded that Nb₂O₅ could accept more than 50 mole percent WO₃ in solid solution and reported the existence of a compound at approximately $Nb_2O_5: 3WO_3$. He also found a limited solid solution of Nb₂O₅ in WO₃. Kovba and Trunov [6] reported that the 1:3 compound was tetragonal with a structure related to that of a tetragonal tungsten-bronze. Fiegel et al. [7], studied the phase equilibria in the system at 1200 °C and below. They reported only about 33 mole percent solid solution of WO₃ in Nb₂O₅ with a 3:2 compound occurring at 1200 °C and a 1:1 compound at 1100 °C and below. They found very little, if any, solid solution of Nb₂O₅ in WO₃ and confirmed the existence of a compound at about 1:3 with a limited solid solution for both Nb₂O₅ and WO₃.

In a description of preliminary phase identification, Roth and Wadsley [1] on the basis of single crystal x-ray diffraction studies reported the existence of five compounds structurally related to Nb₂O₅ occurring at Nb₂O₅: WO₃ ratios of 15:1, 6:1, 7:3, 8:5, and 9:8. They also confirmed the 1:1 phase and noted the existence of at least three phases related to the tetragonal tungsten bronze-type structure. The crystal structures of 6:1, 7:3, 8:5, and 9:8, were reported [2, 3] and the "building block" principle was elaborated as the basis of the crystal-chemistry of niobate compounds [4].

Schäfer and Gruehn [10] and Felten [11] have indicated in private communications that their interpretations of x-ray diffraction powder data for the Nb₂O₅–WO₃ system differ in some respects from the previously mentioned published reports.

Because of the conflicting nature of the reported data, it was thought desirable to study completely the phase equilibria of the Nb_2O_5 -WO₃ system. With the use of the unit cell dimensions derived from

Later [8] they reported that the 1:3 composition gave single crystal x-ray diffraction patterns which showed superstructure differing from one crystal to the next. Kovba et al. [9], also attempted to determine the phases formed in this system at about 1200 °C. They concluded that compounds existed at the Nb₂O₅ : WO₃ ratios of 4:1, 2:1, 4:7, and 1:3. They also reported a phase with variable WO₃ content occurring at high WO₃ concentrations and observed a small amount of solid solution in both Nb₂O₅ and WO₃.

¹ Figures in brackets indicate the literature references at the end of this paper.

single crystal data the existence of the various phases in the powder patterns can now be established more readily. The exact compositions of phases can often be determined only by a solution of the crystal structure. The approximate composition and even the existence of a phase can sometimes be found only by a rather complete phase equilibria study. The two disciplines, crystal structure analysis and phase equilibria are therefore complimentary and no system can be considered to be well characterized unless both such studies have been made. Therefore, x-ray diffraction data together with the melting points of the compounds and solidus and liquidus temperatures at various compositions across the system have been obtained in order to construct an equilibrium diagram.

2. Sample Preparation and Test Methods

The following starting materials were employed for the preparation of the majority of the specimens:

- Nb₂O₅-high purity niobium pentoxide. Spectrographic analysis indicated less than about 0.01 percent Si; 0.001 percent Ca and Mg with As, Cu, and Ta only questionably present.
- WO₃ -high purity tungsten anhydride. Spectrographic analysis indicated less than about 0.1 percent Si; 0.001 percent B, Ca, Cr, and Mg; 0.0001 percent Cu with Pb only questionably present.

A few specimens were prepared with less pure starting materials, in order to determine qualitatively the effect of impurities on the equilibrium products. The following is a typical example of the nature of the impurities present in two specimens of Nb₂O₅: WO₃ ratio of 16:5. For the less pure specimen the first series transition elements, in general, are present in amounts of an order of magnitude greater than for the more pure specimen.

Nb₂O₅: WO₃ (16:5)-higher purity end members. Spectrochemical analyses indicated less than about 0.01 percent Cr, Cu, and Si; 0.001 percent Al, B, Ca, Mg, and Ni; 0.0001 percent Mn with Pb only questionably present. Nb₂O₅: WO₃ (16:5)-less pure end members. Spectrochemical analyses indicated less than about 0.01 percent Al, Ca, Cr, Cu, Fe, Mg, Ni, and Si; 0.001 percent Mn; 0.0001 percent B with Pb only questionably present.

For the preparation of the specimens, the weight percentages were calculated to within ± 0.01 percent, with no corrections made for percentage of purity of the starting materials except for loss on ignition.

For the higher purity specimens, the starting materials were weighed to the nearest ± 0.1 mg, in sufficient quantities to yield 3 g batches. Each batch was mixed in a mechanical shaker for about

15 min and pressed into a disk in a $\frac{5}{s-in}$ diam mold at 10,000 lb/in². The disks were placed on Pt foil and calcined by heating in air at 700 °C for 19 hrs, with heating and cooling rates of approximately 4 °C/min.

The less pure specimens were weighed out in approximately 1 g batches and mixed with an alumina mortar and pestle. In order to minimize any possible loss of WO_3 these specimens were not calcined after mixing.

Subsolidus, as well as melting point data, were obtained by the quenching technique on samples sealed in platinum tubes. An electrically heated vertical tube furnace wound with 80 percent Pt-20 percent Rh wire was used for the quenching experiments. The furnace was controlled by an a-c Wheatstone bridge controller which was capable of holding the temperature to at least ± 2 °C for an extended period of time. Temperatures were measured with a Pt versus Pt-10 percent Rh thermocouple which had been calibrated against the melting points of Au (1063 °C) and Pd (1552 °C) [12]. The thermocouple was recalibrated several times during the course of the work. Specimens were suspended in the furnace by fine Pt wire. In order to quench the wire was fused allowing the sealed tubes to drop out of the heating chamber into a beaker of water. When the tubes were opened the specimens were examined for physical appearances of melting. The first sign of glazing of the surface of the specimen was interpreted as the first experimental evidence for the solidus temperature. Acceptance of this appearance as evidence of melting was found justified in many specimens by an abrupt difference in the x-ray diffraction powder patterns of the specimens. The formation of a concave meniscus, without the formation of relatively large crystals, indicated the liquidus temperature. The overall reproducibility of the temperature measurements for the experimental data points was within ± 2 °C or better and the overall accuracy of the reported temperatures was within ± 5 °C or better.

Equilibrium was considered to have been obtained when the x-ray diffraction patterns of specimens successively heated for longer times and/or at higher temperatures showed no change. X-ray diffraction powder patterns were made using a high-angle recording Geiger counter diffractometer and nickel-filtered copper radiation, with the Geiger counter traversing the specimen at $1/4^{\circ}2\theta/\min$ and the intensity of the radiation being recorded on the chart at $1^{\circ}2\theta/\min$. The unit cell dimensions reported can be considered accurate to about ± 2 in the last decimal place listed.

3. Compounds in the Nb₂O₅-WO₃ System

3.1. Nb₂O₅

The stability relations of the various reported polymorphs of Nb₂O₅ have been summarized by several workers [13–17]. It has been concluded that the hightemperature monoclinic form of Nb₂O₅ is the only stable form at atmospheric pressure [14, 16, 17]. The crystal structure of the high-temperature modification of Nb₂O₅ has been described by Gatehouse and Wadsley [18]. They report this phase to be monoclinic, (space group P2) with 14 formula units in the unit cell and a=21.16 Å, b=3.822 Å, c=19.35 Å. $\beta = 119^{\circ}50'$. The x-ray diffraction powder pattern previously listed for Nb₂O₅ [19] can be more correctly indexed on the basis of the published single-crystal intensity data and is shown in table 1. This indexing leads to slightly revised values of the unit cell dimensions, as follows: a = 21.149 Å, b = 3.823 Å, c = 19.352Å, $\beta = 119^{\circ}48'$, in excellent agreement with the lattice constants given by Gatehouse and Wadsley [18]. The melting point of the pure Nb_2O_5 used for this study was previously determined to be 1485 °C [20].

3.2. Compounds Structurally Related to Nb₂O₅

a. Compounds Belonging to the Homologous Series $B_{nm+1}O_{3nm-(n+m)+4}$

Roth and Wadsley [4] have shown that most of the phases formed by the addition to Nb₂O₅ of oxides with cations similar in size to Nb+5, regardless of valence, can be described by the homologous series notation $B_{nmp+1}O_{3nmp-(n+m)p+4}$. Structurally, these phases are made up of blocks of octahedra in a given plane n long and m wide with a variable number (p)of blocks connected by edge sharing of octahedra at the corners of the blocks. Similar block units occur at two levels in the unit cell, zero and one-half, in a

TABLE 2. X-ray diffraction powder data for the compound WNb₁₂O₃₃ $(CuK_a \ radiation)$

hkl c

001 2.167

201

002

201

 $40\bar{2}$ 2.116

401 2 1 1 2

 $40\overline{3}$ 2.072

003 2 0 4 2

202

110

111

004

603

 $60\bar{2}$

203

11

604

601

205

312

112

204

512

 $51\bar{3}$

113

 $20\overline{6}$

 $51\bar{4}$

312

802

805

515

801

 $40\bar{7}$

607

114

511 712

404

715

800

711

 $31\overline{6}$

608

710

d a

obs

2.128

2 006

1.9375

1.9324

1.9121

1.8729

1.8664

1.8560

1.8524

1.8342

1 8144

1.8090

1.8007

1.7895

1.7720

1.7697

1.7640

1.7567

1.7403

1.7329

1.7311

1.6903

1 6805

1.6709

1.6088

1.6070

1.5975

1.5838

1.5801

1.5734

1.5608

1.5527

1.5405

I b

obs

6

5

6

6

67

52

6

9

8

60

4

5

15

29

8

8

20

8

13

8

9

22

19

21

19

18

20

42

26

21

23

16

21

20

21

19

9

5

 $\frac{1}{d^2}$ calc

0.2135

.2213

2213

2236

2237

2244

2328

.2401

2487 [.2669

.2669

.2683

.2735

2851

.2873

.2903

.2910

2918 2920 .2972

3040

.3063

.3093

.3123

3185

.3193

.3217

.3245

.3305

.3332

.3339

3501

.3545

3547

.3585

.3869

3880

.3924

.3992

r.4006

1.4017

.4049

.4109

.4154

.4227

hkl c

 $10, 0, \overline{6}$

801

808

007

206

517

405

912

802

809

315

020

220

207

022

008

406

209

222

316

223

515

624

11, 1, 8

10, 0, 2

 $2, 0, 1\overline{0}$

9, 1, 10

 $14.0.\overline{5}$

 $10, 0, \overline{11}$

 $13, 1, \overline{5}$

14, 0, 4

4, 0, 11

912

119

12, 0, 5

 $12, 0, \overline{4}$

 $12, 0, \overline{7}$

11, 1, 5

11.1.6

8, 0, 10

12, 0, 8

10, 0, 1

11, 1, 7

10, 0, 7

 $\overline{d^2}$ obs

0.2130

.2209

.2233

2242

.2325

2308

2484

.2664

.2678

.2735

2851

.2871

.2899

.2914

.2969

3038

.3056

.3084

.3126

3185

.3193

.3214

.3240

3302

.3330

.3337

3500

.3541

.3582

.3864

3872

.3918

.3987

.4005

.4039

4105

.4148

.4214

TABLE	1.	X-ray	diffraction	powder	data f	or N	$b_2O_5($	CuK_a radiation)
-------	----	-------	-------------	--------	--------	------	-----------	--------------------

						1				11.08	23
d ^a	Iъ	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl°	da	I ^b	$rac{1}{d^2}$ obs	$rac{1}{d^2}$ calc	hkl ^c	$7.42 \\ 6.43 \\ 5.54$	16 8 18
$16.66 \\ 10.517 \\ 10.063$	6 5 2	0.0036 .0090 .0099	0.0036 .0090 .0097	$\begin{array}{c} 001\\ 201\\ 101 \end{array}$	2.543	36	0.1546	$\begin{cases} 0.1526 \\ .1541 \\ .1543 \end{cases}$	$\begin{array}{r} 80\overline{2}\\ 10\overline{7}\\ 61\overline{4} \end{array}$	$5.35 \\ 5.04$	6 48
9.615		.0108	.0107	$101 \\ 10\overline{2}$	2.523	5	.1571	.1545	015	4.937	12
9.148	5	.0120	.0118	200	2.491	26	.1612	.1612	707	4.674	58
8.354	4	.0143	.0142	002				∫.1623	511	3.743	76
6.942	2	.0208	.0206	301	2.478	8	.1629	1.1625	214	0.700	0.0
6.486	3	.0238	.0236	102	2.452	5	.1664	1.1662	$\begin{array}{r} 41\overline{6} \\ 61\overline{5} \end{array}$	$3.729 \\ 3.702$	96 40
6.285 5.590	11	.0253	.0252	103	2.102	, in the second se		{ .1672		3.697	40
5.590	4	.0320	.0319	003	0.014		10/5	(.1865	$413 \\ 616$	3.670	20
5.273	6	.0360	.0359	$40\overline{2}$	2.314	29	.1865	$\left\{ \begin{array}{c} .1869 \\ .1872 \end{array} \right.$	208	3.616	284
5.116	48	.0382	.0382	401				.2239	414		
4.734	4	.0446	.0446	10 <u>3</u>	$2.114 \\ 2.076$	4 38	.2244 .2321	.2239	$10, 0, \overline{3}$	$3.535 \\ 3.510$	43 300
4.616	36	.0469	.0465	104	2.010	34	.2321	.2410	209	3.437	13
3.852	6	.0674	.0670	305	1.912	29	.2736	.2736	020	3.415	15
0.001		0.005	(.0683	$20\overline{5}$	1.912	29	.2750		3, 0, 10	3.358	29
3.821	6	.0685	.0684	010				2846 .2847	$11, 0, \overline{7}$		
3.737	100	.0716	6.0714	110	1.873	5	.2852	.2847	$11, 0, \frac{1}{3}$ 11, 0, $\frac{1}{3}$	3.203	27
3.636	100	.0756	[.0717	$11\overline{1}$ $10\overline{5}$			1. 	.2855	220	$2.930 \\ 2.901$	16 5
3.030	100	.0750	0755	105						2.866	58
3.577	4	.0782	.0782	111	1.856	3	.2903	.2904	208	2.836	37
3.553	4	.0792	.0791	$11\overline{2}$	1.819	20	.3020	∫.3020	$2, 0, 1\overline{0}$		
3.515	4	.0809	.0807	$60\overline{3}$	1.017	20	.5020	1.3031	$11, 0, \overline{8}$ 407	2.799	7
3.483	100	.0824	∫ .0824	602	1.789	16	.3124	$\left\{ \begin{array}{c} .3115\\ .3118 \end{array} \right.$	407	2.735	41
3.406	4	.0862	0826	012	1.709	10	.3124	.3127	902	2.706	31
3.383	4	.0862	.0859 .0877	$\begin{array}{c} 60\overline{4} \\ 303 \end{array}$				(.3201	124	2.682	17
0.000	4	.0077	1.0886	005				.3201	12, 0, 5	BIOOD	
3.351	28	.0891	.0890	311	1.765	5	.3211	3230	12, 0, 6	2.542	8
3.316	5	.0909	.0911	601			12-12-13 1	.3231	$6, 0, 1\overline{1}$		
3.264	4	.0939	.0936	113	1 740	- 22	0.005	∫.3292	119	0.500	116
3.247	4	.0949	.0951	310	1.742	23	.3295	1.3296	$12, 0, \overline{4}$	2.520	116
3.153	ní	.1006	.1003	013	1.727	25	.3353	.3353	8, 0, 11		
3.078	6	.1055	.1051	$50\overline{6}$	1.709	10	.3424	{.3422	$11, 1, \overline{4}$	2.499	10
2.994	7	.1116	.1113	106				1.3425	$11, 1, \overline{\underline{6}} \\ 12\overline{5}$		
2.832	36	.1247	.1246	$51\overline{2}$	1.692	20	.3493	.3491 (.3530	3, 1, 10	2.462	16
2.826	38	.1252	{ .1248 1969	014	1.683	51	.3529	.3531	$11, 1, \overline{3}$	$2.410 \\ 2.339$	4
0.771		1000	1.1262	$51\overline{3} \\ 51\overline{1}$	1.627	8	.3776	3776	408	2.339	0
2.771	31	.1303	.1301 (.1367	215	1.592	27	.3945	.3946	$7, 1, \overline{11}$		
2.701	34	.1371	.1377	706	1 500	20	2004	∫.3982	11, 0, 1	2.328	15
			1401	$41\overline{5}$	1.582	20	.3994	1.3995	318		
2.668	3	.1405	.1405	207	1.579	18	.4012	.4011	$10, 1, \frac{1}{9}$	0.016	00
2.644	4	.1431	∫ .1426	510	1.556	22	.4130	.4155	12, 1, 8	2.316	29
2.011		.1401	1.1433	804						2.215	11
2.628	5	.1448	1445	803	1					2.183	7
	S. 1. 17. 8		{ .1452	607	1.200				1 - X - 1		

^a Interplaner	spacing.
--------------------------	----------

^b Intensity relative to the strongest peak(s).

^a Interplanar spacing. ^b Observed intensity.

 d^{a}

obs

14.77

I b

obs

19

 $\overline{d^2}$ obs

0.0046

.0081

.0182

.0242

.0326

.0349

.0394

.0410

0458

.0714

.0719

.0730

.0732

.0742

.0765

.0800

.0812

.0847

.0857

.0887

.0974

.1165

.1189

.1217

.1243

.1277

.1337

.1365

.1390

.1548

.1575

.1602

1650

.1722

.1828

.1845

.1864

.2038

2098

 $\overline{d^2}$ calc

0.0046

.0081

.0183

.0241

.0325

0348

.0394

.0411

0458

0713

.0718

.0730

.0732

.0742

.0766

.0798

.0811

0846

.0857

.0887

.0975

.1165

.1189

.1218

.1243

.1279

.1337

.1366

(.1392

1.1392

.1548

(.1574

1.1580

ſ.1599

1.1603

1651

.1722

.1831

r.1842

1.1848

f.1865

l.1868

.2043

.2099

^c Indexed on the basis of a monoclinic unit cell (space group C_2) a = 22.282 Å, b = 3.824 Å, c = 17.724 Å

Indexed on the basis of a monoclinic unit cell (space group P₂) a = 21.149 Å, b = 3.823 Å, c = 19.352 Å, $\beta = 119^{\circ}48'$ and the previously reported observed structure factors from the single crystal data [18].

 $\beta = 123^{\circ}22'$ and the previously reported structure factors from the single crystal data [2].

plane perpendicular to one axis which always has a value of approximately 3.8 Å. This axis is the *b*-axis of a monoclinic cell or the *c*-axis of a tetragonal cell. The octahedra occurring at the two different levels are connected to each other by edge sharing except at the junction of four such blocks, two at each level, where they are bonded by a tetrahedrally coordinated cation. Those compounds in the Nb₂O₅-WO₃ system whose structures have been described all have p=1 and the formula simplifies to $B_{nm+1}O_{3nm-(n+m)+4}$, where the tetrahedral position is always occupied by W⁺⁶ ions. In this arrangement when n=m, the unit cell is body-centered tetragonal as in PNb₉O₂₅ [21]. When $n \neq m$ the cell is C-centered monoclinic.

b. 6Nb₂O₅ · WO₃, WNb₁₂O₃₃)

The unit cell of this compound is C-centered monoclinic (probable space group C₂) having n=3, m=4 [2]. The indexed x-ray diffraction powder pattern obtained in the present study is listed in table 2. The unit cell dimensions derived from this pattern are a=22.282Å, b=3.824 Å, c=17.724 Å, $\beta=123^{\circ}22'$. WNb₁₂O₃₃ is apparently stable from room temperature to the congruent melting point at 1476 °C.

c. $7Nb_2O_5 \cdot 3WO_3$ (W₃Nb₁₄O₄₄)

The unit cell of this compound is body-centered tetragonal, space group I4/m or I4(n=4, m=4 [3]). The indexed x-ray diffraction powder pattern is listed in table 3 and the unit cell dimensions derived from this pattern are a=21.002 Å, c=3.820 Å.

d. 8Nb2O5 · 5WO3 (W5Nb16O55)

The unit cell of this phase is C-centered monoclinic space group C₂ (n=4, m=5, [2]). The indexed x-ray diffraction powder pattern is listed in table 4 and the unit cell dimensions derived from this pattern are a=29.638 Å, b=3.820 Å, c=23.126 Å, $\beta=126^{\circ}27'$.

TABLE 4. X-ray diffraction powder data for the compound $W_5Nb_{16}O_{55}$ (CuKa radiation)

				(Carra)	aararro				
d^{a}	I^{b}	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl ^c	d^{a}	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl ^c
18,58	7	0.0029	0.0029	001	2.397	4	0.1741	0.1744	912
14.84	12	.0045	.0046	201	2.382	8	.1763	.1764	711
9.31	13	.0115	.0116	002	2.350	4	.1811	.1811	12.0.8
7.40	17	.0183	.0183	402				1.1862	207
6.75	4	.0220	.0220	403	2.316	7	.1864	1.1873	8,0,10
								1.1898	911
6.21	12	.0260	.0260	003	2.294	37	.1900	.1903	518
5.85	6	.0293	.0293	202					
4.935	12	.0411	.0411	603	2.254	6	.1969	∫.1968	3 <u>15</u>
4.701	45	.0453	.0453	604				1.1970	$10,0,\overline{10}$
4.652	10	.0462	.0462	004	2.177	6	.2111	.2111	. 910
4.512	35	.0491	.0491	203	2.104	8	.2260	.2260	$51\overline{9}$
3.771	130	.0703	.0703	110	2.067	8	.2340	.2340	$11,1,\overline{2}$
3.767	142	.0705	.0705	111	2.036	52	.2413	.2413	14,0,9
3.717	26	.0724	.0722	005	2.021	36	.2448	.2448	407
3.705	22	.0729	.0731	804	1.9453	4	.2642	.2638	606
			(.0743	803	1.9099	37	.2742	.2742	020
3.660	250	.0747	.0747	204	1.8827	6	.2821	.2823	10,0,3
3.630	40	.0759	.0759	111	1.8783	6	.2835	.2837	12,0,12
3.587	222	.0777	.0733	805					
3.539	25	.0798	.0799	312	1.8602	17	.2890	.2890	0,0,10
3.506	8	.0798	.0813	$\frac{312}{802}$	1.8503	7	.2921	.2919	$16,0,\overline{7}$
					1.8329	18	.2977	∫.2972	16,0,6
3.406	8	.0862	.0863	403				1.2978	2,0,11
3.386	10	.0872	.0872	112	1.8294	26	.2988	.2988	408
3.252	6	.0946	.0947	407	1.8007	12	.3084	.3083	16,0,5
3.188	16	.0984	.0984	513	1.7944	18	.3106	.3107	16.0.10
3.095	12	.1044	.1044	113				(.3153	623
3.072	10	.1060	.1061	205	1.7800	4	.3156	.3157	$4.0,\overline{12}$
2.980	7	.1126	.1126	800	1.7691	7	.3195	.3195	624
2.897	8	.1120	.1120	10,0,6	1 75.00	0.5		[.3233	223
2.832	16	.1246	.1245	713	1.7580	25	.3236	.3238	12,0,13
2.817	47	.1240	.1240	714	1.7452	8	.3283	.3285	119
			(.1273	114	1 7491	14	2.205	.3292	12,0,2
2.804	40	.1272	.1274	408	1.7421	24	.3295		
2.775	5	.1299	.1300	10,0,7	1.7311 1.7229	124	.3337	.3336	31 <u>8</u> 15.1.9
2.740	54	.1332	.1332	715	1.1229	12	.3309	(.3479	517
2.732	65	.1340	.1339	10,0,2	1.6943	28	.3484	.3489	224
2.727	71	.1345	.1345	313					
					1.6862	57	.3517	.3515	15,1,10
2.615	8	.1462	.1463	716				1.3518	825
2.574	16	.1509	.1509	512	1.6303	12	.3763	.3762	12,0,3
2.562	84	.1524	∫.1520	10,0,1	1.6284	13	.3771	.3772	4,0,13
2.002	01	.1027).1528	609	1.6101	10	.3857	.3861	14,0,14
2.549	22	.1539	∫.1538	809	1.5888	12	.3962	.3958	11,1,3
			1.1540	405				∫.4015	13,1,3
2.533	8	.1558	.1559	115	1.5783	14	.4014	1.4015	428
2.479	6	.1627	∫.1627	915	1 5720	96	4041	.4041	3,1,12
2. 119	0	.1021	1.1628	314	1.5732	26	.4041	(.4078	17.1.6
2.425	11	.1701	∫.1699	12,0,7	1.5654	30	.4081	.4078	17,1,0 $10,2,\overline{2}$
a. 720	11		1.1704	916				(.4001	10,2,2
									1

^a Interplaner spacing. ^b Observed intensity.

^c Indexed on the basis of a monoclinic unit cell (space group C₂) a=29.638 Å, b=3.820 Å, c=23.126 Å, $\beta=126^{\circ}27'$ and the previously reported observed structure factors from the single crystal data [2].

TABLE 3. X-ray diffraction powder data for the compound $W_3Nb_{14}O_{44}$ (CuK_a radiation)

d^a obs	I ^b obs	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl¢	d^a_{obs}	I ^b obs	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hklc	$d^a_{ m obs}$	I ^b obs	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hklc
$14.87 \\ 10.52 \\ 7.42 \\ 6.65 \\ 4.951$	25 5 33 8 23	$\begin{array}{c} 0.0045\\ .0090\\ .0181\\ .0226\\ .0408\end{array}$	0.0045 .0091 .0181 .0227 .0408	110 200 220 310 330	2.560 2.546 2.488 2.441 2.421	22 122 10 7 16	0.1526 .1543 .1616 .1679 .1706	0.1524 .1542 .1615 .1678 .1705	611 820 541 750 631	1.8620 1.8564 1.8419 1.8367 1.8007	6 15 28 15 54	0.2884 .2902 .2948 .2964 .3084	0.2884 .2902 .2947 .2967 .3083	941 880 11,3,0/970 312 10,6,0
4.694 4.118 3.757 3.712 3.598	82 5 142 37 480	.0454 .0590 .0708 .0726 .0772	.0453 .0589 .0708 .0725 .0771	$420 \\ 510 \\ 101 \\ 440 \\ 530$	2.358 2.347 2.319 2.302 2.215	9 8 13 41 2	.1799 .1814 .1860 .1887 .2037	.1796 .1815 .1859 .1887 .2040	701 840 910 721 930	$\begin{array}{c} 1.7694 \\ 1.7546 \\ 1.7499 \\ 1.7305 \\ 1.6874 \end{array}$	$ \begin{array}{r} 16 \\ 10 \\ 40 \\ 43 \\ 65 \end{array} $.3194 .3248 .3266 .3339 .3512	.3194 .3247 .3265 .3338 .3511	422 871 12,0,0 961 532
3.539 3.321 3.195 2.968 2.912	52 20 42 8 22	.0798 .0907 .0980 .1135 .1179	.0799 .0907 .0980 .1134 .1179	211 620 321 710/550 640	$2.152 \\ 2.121 \\ 2.100 \\ 2.067 \\ 2.039$	9 3 11 18 130	.2159 .2222 .2268 .2341 .2405	.2159 .2222 .2267 .2340 .2403	811/741 770 10,0,0/860 831 950	$\begin{array}{c} 1.6857 \\ 1.6612 \\ 1.6559 \\ 1.6396 \\ 1.6239 \end{array}$	85 4 5 5 4	.3519 .3624 .3647 .3720 .3792	.3519 .3627 .3647 .3718 .3791	$11,2,1/10,5,1 \\ 12,4,0 \\ 622 \\ 10,8,0 \\ 11,4,1$
2.826 2.756 2.649 2.623		.1252 .1317 .1344 .1453	.1252 .1315 .1343 .1451	501/431 730 521 800	1.9497 1.9102 1.9004 1.8797	$3 \\ 40 \\ 10 \\ 5$.2631 .2741 .2769 .2830	.2630 .2743 .2766 .2831	10,4,0 002 11,1,0 202	1.6103 1.5861 1.5686	35 40 62	.3856 .3975 .4064	.3854 .3973 .4063	13,1,0/11,7,0 12,1,1/981 10,7,1

^a Interplaner spacings. ^b Observed intensities.

^c Indexed on the basis of a tetragonal unit cell (space group I4/m or I4) a = 21.002 Å, c = 3.820 Å.

TABLE 5. X-ray diffraction powder data for the compound $W_8Nb_{18}O_{69}$ (CuK_a radiation)

d^a	Ib	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl^c	d^a	Ip	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl^c	d^a	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hklc
$18.43 \\ 9.33 \\ 6.20 \\ 5.88 \\ 4.640$	4 8 10 10 8	$\begin{array}{c} 0.0029\\.0115\\.0260\\.0290\\.0464\end{array}$	$\begin{array}{c} 0.0029\\.0116\\.0261\\.0290\\.0464\end{array}$	110 220 330 420 440	$2.731 \\ 2.626 \\ 2.622 \\ 2.575 \\ 2.522$	119 12 18 96 11	$\begin{array}{c} 0.1341 \\ .1450 \\ .1455 \\ .1508 \\ .1573 \end{array}$	0.1340 .1449 .1456 .1507 .1572	631 10,0,0/860 721 10,2,0 651	1.9340 1.9068 1.8578 1.8482 1.8216	4 40 10 12 48	0.2674 .2750 .2898 .2928 .3014	0.2673 .2750 .2893 .2927 .3014	11,4,1 002 14,2,0/10,10,0 11,9,0 12,8,0
4.503 4.375 3.771 3.712 3.642	80 5 146 25 372	.0493 .0522 .0703 .0726 .0753	.0493 .0522 .0702 .0725 .0754	$530 \\ 600 \\ 101 \\ 710/550 \\ 640$	$2.477 \\ 2.458 \\ 2.378 \\ 2.304 \\ 2.283$	15 7 9 6 38	.1630 .1744 .1769 .1885 .1918	.1629 .1745 .1768 .1884 .1919	811/741 831 11,1,0 11,3,0/970 921/761	1.7791 1.7561 1.7474 1.7384 1.7235	12 15 26 7 28	.3160 .3243 .3275 .3309 .3366	.3159 .3243 .3275 .3310 ∫.3362	$13,7,0 \\ 532 \\ 15,1,0 \\ 10,9,1 \\ 14,6,0$
3.450 3.378 3.185 3.088 3.054	15 17 12 25 15	.0840 .0876 .0986 .1049 .1072	$\begin{array}{c} .0840\\ .0876\\ .0985\\ \left\{ .1043\\ .1050\\ .1072 \end{array} \right.$	$730 \\ 321 \\ 820 \\ 660 \\ 501/431 \\ 750$	2.253 2.248 2.242 2.156 2.100	11 7 6 9 12	.1970 .1978 .2086 .2151 .2267	$ \begin{array}{c} .1971\\ .1977\\ .2087\\ \{.2145\\ .2151\\ .2267 \end{array} $	$10,6,0 \\ 851 \\ 12,0,0 \\ 12,2,0 \\ 10,1,1 \\ 10,3,1$	1.6943 1.6897 1.6614 1.6532 1.6292	57 65 5 6 22	.3484 .3503 .3623 .3659 .3768	.3368 .3484 .3504 .3624 .3658 .3768	13,4,1/11,8,1 $12,7,1$ 642 $15,5,0/13,9,0$ $14,3,1/13,6,1$ $16,2,0/14,8,0$
2.901 2.793 2.769	5 82 26	.1189 .1282 .1304	.1188 .1282 .1304	910 541 930	2.077 2.015 1.9584	5 85 5	.2319 .2463 .2607	.2319 .2463 .2608	12,4,0 13,1,0/11,7,0 12,6,0	1.5801 1.5688	28 48	.4005 .4063	.4006 .4064	15,2,1 13,8,1

^a Interplaner spacing. ^b Observed intensity.

^c Indexed on the basis of a tetragonal unit cell (space group $\overline{I4}$) a = 26.270 Å, c = 3.814 Å.

Due to the very large monoclinic cell this powder pattern can only be indexed unambiguously with the aid of single crystal data. By utilizing the published F_{obs} values for $W_5Nb_{16}O_{55}$ [2] it was possible to assign indices to the observed peaks in the powder pattern with reasonable certainty up to about $60^{\circ}2\theta$ (Cu radiation). $W_5Nb_{16}O_{55}$ is probably not stable below about 1090 °C and melts incongruently at about 1385 °C.

e. 9Nb2O5 · 8WO3 (W8Nb18O69)

The unit cell of the last compound observed in this structural series has n=5, m=5 [3] and is bodycentered tetragonal with the most probable space group $I\overline{4}$. The indexed x-ray diffraction powder pattern is given in table 5 and the unit cell dimensions **derived from this pattern are** a=26.270 Å, c=3.814 Å. This compound is not stable below about 1265 °C and melts incongruently at about 1375 °C.

It should be noted that the binary equilibrium stability regions of this structural group of compounds tend to decrease with increasing W^{+6} content. This phenomenon is probably due to the increasing size of the basic "building block" unit, and therefore to the greater energy needed to maintain long range ordering.

f. Other Compounds Structurally Related to Nb₂O₅

In addition to the compounds with structures described by the homologous series formula B_{mnp+1} O_{3nmp-(n+m)p+4}, the existence of several other phases has been reported, but their structures are, as yet, unknown. Notable among these is the NbO_{2.482} (and (Ti,Nb)O_{2.482}) reported by Gruehn and Schäfer [22] which is apparently similar to the 'X' phase reported by Waring and Roth in the system vanadium-oxide-niobium oxide [23]. There are several stable phases in the Nb₂O₅-WO₃ system which fall in this category.

g. $13Nb_2O_5 \cdot 4WO_3 (W_4Nb_{26}O_{77})$

Another phase, previously unreported, was found to occur between the known 6:1 and 7:3 compounds. The composition of this phase was deduced by Schäfer (private communication) to be 13:4 based on oxygen analyses. It was postulated that this compound might have an Nb₂O₅: WO₃ ratio of 16:5 and the structure would then be related to that of Nb₂O₅ by increasing the size of the basic "building blocks" from 3×4 and 3×5 (reported for Nb₂O₅ [18]) to 4×4 and 4×5 . However, single crystals obtained from a 16:5 composition were found by A. D. Wadsley (private communication) to have a unit cell which is C-centered monoclinic a = 29.74 Å, b = 3.823 Å, c = 26.02 Å, $\beta = 92^{\circ}18'$. These values are *not* in agreement with the primitive space group and approximate unit cell dimensions which can be derived for the postulated 16:5 structure. The partially indexed powder pattern is given in table 6. It cannot be fully indexed without the aid of single crystal intensity data due to the very large size of the unit cell. The structure of this phase, is actually a mixture of blocks of 3×4 and 4×4 occurring in alternate sequence to make an "ordered intergrowth" structure [24]. The composition can be arrived at by adding the homologous series twice (as for Nb₂O₅ [4]) n=3, m=4, p=1 (B₁₃O₃₃) plus n = 4, m = 4, p = 1 (B₁₇O₄₄) = B₃₀O₇₇ (13Nb₂O₅ · 4WO₃). Although this compound does not form in short-time experiments (about 1 hr) it can be prepared readily by heating for several days at about 1400 °C. This phase was observed to decompose at about 1435 °C into $6Nb_2O_5 \cdot WO_3$ and $7Nb_2O_5 \cdot 3WO_3$.

h. "30Nb2O5: WO3" 2

Another phase was found to occur in the Nb_2O_5 -WO₃ system at a ratio of approximately 3.5 mole

 $^{^2}$ Quotation marks are used around a composition whenever the phase referred to has not been completely characterized.

TABLE 6. X-ray diffraction powder data for the compound $W_4Nb_{26}O_{77}$ (CuK_a radiation)

TABLE 7.	X-ray	diffraction	powder	data	for	the	composition	
		$30Nb_2O_5$:We	$O_3 (CuK_{\alpha})$	radiat	ion)			

	(01	$i \mathbf{\Lambda}_{\alpha} / 0$	iaiaiii	<i>m</i>)	1000
d^{a}	I ^b	h kl ^c	da	ľ	hkle
a 14.82 12.93 7.43 6.55 5.19 4.951 4.886 3.786 3.748 3.711 3.657 3.610 3.564 3.564 3.264 3.199 2.966 2.971 2.731 2.724	10 8 12 5 7 14 15 50 10 10 10 10 10 10 10 10 10 1	200 002 400 205 602 110 800 205 802 111 111 111 112 207 802 301 112 112 207 802 311 113 113	2.418 2.418 2.346 2.397 2.277 2.113 2.067 2.042 1.912 1.854 1.848 1.835 1.848 1.835 1.781 1.763 1.744 1.736 1.744 1.736 1.744 1.736 1.689 1.689 1.689 1.697 1.597 1.595	P 10 7 22 5 7 13 42 88 68 12 5 5 33 16 15 5 25 68 12 25 68 12 25 68 12 25 68 12 25 8 20 18	020
2.529	90		$1.571 \\ 1.565$	25 38	×

d^{a}	<i>I</i> ^b	d^a	I ^b
16.20	10	2.435	9
13.93	4	2.376	40
10.73	16	2.212	6
8.96	7	2.100	8
8.10	5	2.076	74
6.37	14	2.041	90
5.36	8	1.999	5
5.10	50	1.936	8
4.797	7	1.913	48
4.645	60	1.871	10
3.742	132	1.866	10
3.638	312	1.857	12
3.579	10	1.825	18
3.556	10	1.819	42
3.493	228	1.796	8
3.354	37	1.791	8
3.173	16	1.782	23
3.093	7	1.769	- 7
2.984	14	1.746	14
2.845	55	1.743	25
2.836	47	1.731	30
2.763	- 38	1.716	10
2.707	46	1.693	22
2.693	18	1.684	30
2.647	8	1.680	60
2.614	7	1.623	15
2.597	6	1.603	8
2.538	65	1.595	- 30
2.503	45	1.581	44
2.476	10	1.558	28
2.458	10	1.548	8

^a Interplaner spacing. ^b Observed intensity.

^a Interplaner spacing. ^b Observed intensity.

^c Partially indexed on the basis of a C-centered monoclinic unit cell with a=29.74 Å, b=3.823 Å, c=26.02 Å, $\beta=92^{\circ}18'$ by comparison with the single crystal intensities observed from a film taken with a Weisingberg camera [A. D. Wadsley, private communication].

percent WO₃. This phase is apparently the same as that previously reported to occur at about 15:1, the structure of which could not be verified [1]. The 30:1 ratio is that deduced by Schäfer (private communication). It is apparently composed of some complex packing of the "building blocks" previously described. One possible structure might be n=3, m=4, p=2 (B₂₅O₆₂) plus two blocks of n=3, m=4, p=1 (B₂₅O₆₆)=B₅₁O₁₂₈ (25Nb₂O₅ · WO₃). Another possibility might be n=3, m=4, p=2 (B₂₅O₆₂)+n=3, m=5, p=1 (B₁₆O₄₁)=B₄₁O₁₀₅ (20Nb₂O₅ · WO₃). The exact structure and composition remain to be proven because no good single crystal data is yet available. The "30:1" phase was found to melt incongruently at about 1470 °C. Its unindexed x-ray diffraction powder pattern is listed in table 7.

3.3. Compounds Containing Pentagonal Bipyramid (Sevenfold) Coordinated Cations

a. $Nb_2O_5 \cdot WO_3$ (WNb₂O₈)

A phase isostructural with Nb_3O_7F [25] might be thought likely to occur in this system, but no such structure has ever been reported in pure oxide systems. Instead a new phase was found with unit cell dimensions related to the tetragonal tungsten bronze-type structures. Single crystals of the 1:1 compound were prepared by decomposing the 9:8 phase (made with the less pure end members) at about 1100 °C. Single crystal precession patterns of this phase made by A. Perloff of the National Bureau of Standards staff showed these crystals to be orthorhombic, probable space groups Pmab or P2₁ab. From these data the x-ray diffraction powder pattern given in table 8 was indexed with a = 16.615 Å, b = 17.616 Å, c = 3.955 Å. The compound $Nb_2O_5 \cdot WO_3$ could not be made as a single phase in the quenching experiments. X-ray diffraction powder patterns of these specimens always showed a trace of a metastable bronze-type phase plus some $7Nb_2O_5 \cdot 3WO_3$. However, high temperature x-ray powder patterns showed that the extra phases disappeared quickly above about 900 °C. The 1:1 compound was found to dissociate at about 1115 °C to $8Nb_2O_5 \cdot 5WO_3$ plus a bronze-like phase, probably $4Nb_2O_5 \cdot 9WO_3$.

WNb₂O₈ is related to WTa₂O₈ (a=16.701 Å, b=8.864 Å, c=3.877 Å) by a doubled b-axis. The crystal structure of LiNb₆O₁₅F which is apparently isostructural with WTa₂O₈ was found by S. Andersson and M. Lundberg [26] to be made up of octahedrally coordinated cations. These octahedra are corner shared to form a ring of five octahedra. Within this ring is a cation in sevenfold coordination, in a penta-

d^{a}	ľ	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl ^c	d^{a}	Iъ	$\frac{1}{d^2}$ obs	$rac{1}{d^2}$ calc	hkl ^c	ď	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	h kl ^c
8.83	6	0.0128	0.0129	020	2.250	8	.1976	.1975	611	1.7546	16	.3248	∫.3246	831
8.30	25	.0145	.0145	200	2.223	8	.2023	.2024	451				1.3249	091
4.689	6	.0455	.0145	320				(.2060	541	1.7496	20	.3267	.3266	422
4.403	5	.0435	.0516	040	2.203	19	.2061	.2062	080	1.7464	23	.3279	.3281	481 052
4.259	12	.0551	.0552	140	2.198	19	.2070	.2072	621	1.7247	15	.3362	{.3363 }.3366	680
1.209		10001			2.117	4	.2232	.2233	631				.3394	291
3.952	272	.0640	.0639	001	2.091	8	.2288	.2290	740	1.7154	16	.3398	1.3399	342
3.894	46	.0660	.0660	240						1.7154	10	.0000	.3399	152
3.759	112	.0708	.0708	420	2.078	14	.2316	.2317	800				(102
3.608	4	.0768	.0768	021	2.050	6	.2381	.2379	461	1 (0(0	1 10	0.470	(.3472	841
3.570	9	.0785	.0785	201	2.023	18	.2443	∫.2445	711	1.6969	40	.3473	1.3477	860
								1.2446	820	1.6885	9	.3507	.3508	252
3.449	202	.0841	.0841	340	1.9774	50	.2558	.2557	002	1.6740	7	.3569	.3573	761
3.279	20	.0930	.0929	031	1.9652	7	.2589	.2590	012	1.6684	22	.3593	.3591	522
3.215	8	.0967	.0966	131	10470	18	.2637	.2642	480	1.6662	28	.3602	.3604	911
3.165	22	.0998	.0997	311	1.9473	18	.2037	.2042	081					
3.110	98	.1034	.1034	520	1.9247	13	.2699	2702	202	1.6651	27	.3607	.3607	581
3.051	16	.1075	.1074	231	1.9247	15	.2099	.2702	731	1.6625	26	.3618	.3620	10,0,0
2.937	4	.1159	.1160	060				.2831	222	1.6548	5	.3652	.3652	442
2.893	80	.1195	.1196	160	1.8797	16	.2830	.2833	840	1.6434	4	.3703	.3701	921 062
			(.1251	411				.2846	281	1.6396	4	.3720	.3717 (.3749	10,2,0
2.825	11	.1253	1.1255	331	1.8743	15	.2847	.2847	032	1.6326	12	.3752	3752	532
			1.1303	600	1.8521	18	.2915	.2915	312	1.0320	12	.5752	.3754	162
2.771	78	.1303	1.1305	260	1.0021	10							(.0104	102
2.725	50	.1347	.1348	421	1.8475	24	.2930	{.2929	741	1.6234	14	.3795	.3802	4,10,0
2.654	16	.1420	.1421	540	10110			2934	760 801	1.0201		.0150	(.3861	602
2.644	18	.1430	.1432	620	1.8373	30	.2962	{.2956 .2968	580	1 6006	10	0000	.3861	0.10,1
2.633	12	.1443	.1445	051				.2968	811	1.6096	13	.3860	3.3862	931
					1.8284	15	.2991	.2966	232				1.3862	262
2.599	86	.1481	∫.1481	341	1.8178	6	.3026	.3027	381	1.6029	9	.3892	∫.3893	612
			1.1481	151	1.8081	6	.3059	.3061	920				3898.	1,10,1
2.573	8	.1511	.1509	431	1.0001	0	.5055		120	1.5928	6	.3942	.3942	452
2.518	8	.1577	.1577	511				(.3073	042	1.5853	8	.3979	.3978	542
2.510	8	.1587	.1590	251	1.8017	8	.3081	.3085	821			-		
2.445	44	.1673	.1673	521		_		.3109	142	1.5826	8	.3993	∫.3990	622
0.000	-	1720	.1739	460	1.7908	7	.3118	.3123	571	10020			3992	771
2.398 2.375	7 8	.1739 .1773	.1739	460 351	1.7852	6	.3138	.3137	402	1.5808	10	.4002	{.4005	681
			1.1834	531	1.7762	9	.3170	.3169	412		10].4006	2,10,1
2.334	40	.1835	1.1836	161				.3218	242	1.5640	14	.4088	1.4087	941
2.293	5	.1901	.1903	720	1.7637	14	.3215	3219	751	1.5592	26	.4114	1.4093	960 861
			(.1943	601				.3223	0,10,0		26 12	.4114 .4257	.4116 .4260	10,0,1
2.268	23	.1943	1.1944	261	1					1.5326	12	.4237	.4200	10,0,1

TABLE 8. X-ray diffraction powder data for the compound WNb₂O₈ (CuK_a radiation)

^a Interplaner spacing. ^b Observed intensity.

^c Indexed on the basis of an orthorhombic unit cell (space group Pmab or P2₁ab) a = 16.615 Å, b = 17.616 Å, c = 3.955 Å.

gonal bipyramid configuration. These rings are connected by further corner sharing to form double chains. The doubled cell in WNb_2O_8 is probably due to an alternate puckering of the positions occupied by the sevenfold coordinated ions, but the proof of this must await a complete single crystal structure analysis.

b. 4Nb₂O₅ · 9WO₃(Nb₈W₉O₄₇)

A compound having a general diffraction pattern similar to tetragonal potassium tungsten bronze (K_xWO_3) was reported by Roth and Wadsley [1] to occur at the composition $4Nb_2O_5 \cdot 9WO_3$. Sleight and Magneli [27] described the structure of this phase from a crystal obtained from a 1:3 composition which had been heated to a temperature of 1200–1400 °C. The structure of this crystal was found to be made up of three tetragonal-bronze-like unit cells with four out of the twelve possible five-fold rings being occupied by cations, with oxygens above and below forming pentagonal bipyramid coordination polyhedra. This structure represents the composition $Nb_{16}W_{18}O_{94}$ and has orthorhombic symmetry. The unit cell dimensions found in the present work are a=36.692 Å, b=12.191 Å, c=3.945 Å, and were obtained from

the indexed x-ray diffraction powder pattern given in table 9. This compound was found to be stable from at least 1150 °C to the congruent melting point of about 1380 °C.

The presence of cations in the pentagonal holes of the tetragonal tungsten bronze structure suggests a possible homologous series which can be expressed as:

$nB_{10}O_{30} + mBO \text{ or } B_{10n+m}O_{30n+m}$

where n is the number of subcells of the tetragonal bronze type in the true unit cell and m is the number of pentagonal bipyramid polyhedra occupied by a cation. Each bronze-type subcell has only four pentagonal holes, therefore the maximum value of m must be equal to or less than 4n.

c. $2Nb_2O_5 \cdot 7WO_3$ (Nb₄W₇O₃₁)

One method of reducing the general formula $B_{10n+m}O_{30n+m}$ to include the 4:9 compound and to predict a *minimum* number of other phases is to assume m=4. This results in the formula $B_{10n+4}O_{30n+4}$.

d^{a}	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl ^c	d^{a}	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hklc	d^{a}	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl ^c
11.59 10.14	4	0.0074	0.0075	110 210	2.835	5	.1244	0.1244	901	1.8671	15	.2869	.2869	222
9.16 8.64	8 9	.0119 .0134	.0119 .0134	400 310	2.827	9	.1251	${ .1248 \\ .1256 }$	031 131	1.8553	34	.2905	$\begin{cases} .2905 \\ .2906 \end{cases}$	612 322
7.34	6	.0186	$\left\{ \begin{matrix} .0186 \\ .0186 \end{matrix} ight\}$	500 410	2.799	7	.1277	${ .1276 \\ .1278 }$	721 231	1.8503	20	.2921	$\begin{cases} .2919 \\ .2926 \end{cases}$	15,3,1 951
6.12 6.09	6 11	.0267	.0267 .0269	600 020	2.783	76	.1315	${ .1311 \\ .1315 }$	911 331	1.8219 1.8178	34 53	.3013 .3026	.3012 .3024	18,3,0 960
5.46 5.08	57	.0335 .0388	.0335 .0388	610 420	2.732 2.727	80 78	.1340 .1344	.1339 .1344	$12,2,0 \\ 640$	1.8040 1.7924	6 10	.3073	.3072 {.3107 {.3116	161 622
4.314	22	.0537	.0537 .0602	620 900	2.684 2.643	12 7	.1388 .1432	.1387 .1434 (.1514	821 531 921	1.7872	5	.3131	.3132	18,1,1 361
$4.081 \\ 4.064 \\ 4.044$	10 10	.0605 .0612	.0606 .0613	030 130	2.569	77	.1515	1.1516	631	1.7749	8	.3174	$\begin{cases} .3172 \\ .3176 \end{cases}$	902 032
$3.945 \\ 3.867$	212 176	.0643 .0669	.0643 .0669	001 910	2.490	6	.1613	.1612	731 12,3,0	1.7568	22	.3240	$\left\{ \begin{array}{c} .3239 \\ .3243 \end{array} \right.$	912 332
3.858	195	.0672	.0672 (.0709	330 301	2.442	5	.1677	1.1678	940	$1.7397 \\ 1.7360$	12 30	.3303 .3318	.3304 .3319	170 18,2,1
3.754 3.732	6	.0710 .0718	1.0710 .0717	011	2.416 2.411 2.405	9 10 6	.1713 .1720 .1729	.1712 .1719 .1727	$ \begin{array}{c} 12,0,1 \\ 041 \\ 141 \end{array} $	1.7305	60	.3339	${ .3332 \\ .3343 }$	661 21,1,0
3.678	10	.0739	.0740	211	2.370	52	.1780	.1779	12,1,1	1.7269	80	.3353	.3353	15,5,0
3.660	28	.0746	$ \begin{cases} 0.0743 \\ 0.0746 \end{cases} $	10,0,0 820	2.366	64 22	.1787 .1850	.1786	341 931	1.7238 1.7172	55 20	.3365	.3364 ∫.3390	370 15,4,1
3.587 3.559	4 14	.0777 .0790	.0777 .0791 ∫.0828	311 530 501	2.245	33	.1984	.1982 .1987	12,2,1 641	1.7045	20	.3442	$\left\{ \begin{array}{c} .3394 \\ .3441 \\ .3443 \end{array} \right.$	12,5,1 922 632
3.474 3.388	6 164	.0829	l.0829 .0871	411 920	2.158 2.095	4 10	.2147 .2278	.2146	12,4,0 15,3,0	1.6808	6	.3540	.3545	21,2,0
3.384	166	.0873	.0873	630	2.091	14	.2286	.2284 (.2314	950 15,0,1	$1.6703 \\ 1.6540$	$\frac{7}{32}$.3583 .3655	.3584 .3655	16,5,0 18,3,1
$3.316 \\ 3.260$	5 13	.0909 .0941	.0910 .0942 (.0977	601 221	2.078	10	.2316	$\left\{ \begin{array}{c} .2318 \\ .2321 \end{array} \right.$	12,3,1 941	1.6513 1.6417	40 24	.3667	.3666 .3707	961 12,1,2
3.197	60	.0978	l.0979	611 321	2.072	10	.2330	$\left\{ \begin{array}{c} .2325 \\ .2332 \end{array} \right.$	051 151	1.6273	7	.3776	1.3714 .3777	342 932
3.145 3.115	7	.1011 .1030	.1012	10,2,0 421	1.9725 1.9681	54 35	.2570 .2582	.2570 .2583	002 15,2,1	1.5991	12	.3911	.3909 .3914	12,2,2
3.058 3.048 3.019	20 25 6	.1070 .1076 .1097	.1070 .1077 .1098	$ \begin{array}{r} 12,0,0 \\ 040 \\ 521 \end{array} $	1.9644 1.9473	12	2591 .2637	.2592 ∫.2637	651 012	1.5921 1.5841	9 40	.3946	.3947	171
2.964	146	.1138	.1137	12,1,0				l.2637	302	1.5818 1.5798	40 46 42	.3985 .3997 .4007	.3985 .3996 .4006	21,1,1 15,5,1 371
2.958 2.912 2.878	158 17 50	.1143 .1180 .1208	.1143 .1179 .1207	340 621 930	1.9332 1.9278	45 48	.2676 .2691	.2676 .2690	18,2,0 660	1.5635	10	.4091	∫.4089	18,5,0
2.010	30	.1200	.1207	300	1.9072	12	.2749	${ .2748 \\ .2752 }$	15,4,0 12,5,0	1.0000	10	.4091	1.4094	15,6,0

TABLE 9. X-ray diffraction powder data for the compound $W_9Nb_8O_{47}$ (CuK_a radiation)

^a Interplaner spacing.

^b Observed intensity. ^c Indexed on the basis of an orthorhombic unit cell with a = 36.692 Å, b = 12.191 Å, c = 3.945 Å.

For the 4:9 compound n=3. The composition of n=2 is Nb₂O₅ · WO₃ and the composition of n=4would be $2Nb_2O_5:7WO_3$. The 1:1 compound does not belong to the general homologous series but has a unique structure only vaguely related to the tetragonal tungsten bronze type, as previously described. The structure predicted for $2Nb_2O_5 \cdot 7WO_3$ would be either orthorhombic with one a-axis multiplied by four or tetragonal with both *a*-axes doubled. The latter structure, which exhibits a higher symmetry than the former, was found to occur for the 2:7 composition between a minimum temperature of about 1245 °C and the probable congruent melting point of 1357 °C. A crystal structure analysis of this compound is currently being conducted by N. Stephensen [28]. The unit cell dimensions of $Nb_4W_7O_{31}$ are a = 24.264 Å, c = 3.924 Å, and were obtained from the indexed x-ray diffraction powder pattern listed in table 10.

d. $(6Nb_2O_5 \cdot 11WO_3)$ ($Nb_{12}W_{11}O_{63}$)

Roth and Wadsley [1] reported another compound in this system occurring at a ratio of about 13Nb₂O₅: 24WO₃. Kovba and Trunov [9] described a phase to which they assigned the composition $4Nb_2O_5:7WO_3$. The only logical ratio, near this composition, which could belong to the general formula $B_{10n+m}O_{30n+m}$ is $6Nb_2O_5:11WO_3$. In order to include this composition with the 4:9 and 2:7 compounds in one simplified formula, it is sufficient to postulate a series limited to the case m = n + 1. The new homologous series formula then becomes $B_{11n+1}O_{31n+1}$. In this case for the 2:7 compound, $n = \infty$ and for $4Nb_2O_5 \cdot 9WO_3$, n = 3. When n = 2the composition is $B_{23}O_{63}$ and the predicted structure has two bronze-like subcells in the unit cell, with three filled pentagonal holes. Such a structure would have a very low symmetry and is apparently not formed

Table 10. X-ray diffraction powder data for the compound $W_7Nb_4O_{31}$ (CuK_a radiation)

d a	I b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl °	d a	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl °	d a	I b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl °
$\begin{array}{c} 10.84\\ 8.56\\ 6.06\\ 5.43\\ 4.289\\ 4.046\\ 3.994\\ 3.924\\ 3.839\\ 3.735\\ 3.67\\ 3.429\\ 3.366\\ 3.333\\ 3.265\\ 3.181\\ 3.052\\ 3.034\\ 2.942\\ 2.898 \end{array}$	$\begin{array}{c} 10\\ 8\\ 8\\ 35\\ 8\\ 8\\ 18\\ 5\\ 5\\ 5\\ 194\\ 256\\ 25\\ 136\\ 136\\ 8\\ 10\\ 52\\ 7\\ 18\\ 146\\ 5\end{array}$	0.0085 .0136 .0272 .0340 .0493 .0544 .0611 .0626 .0649 .0679 .0696 .0717 .0764 .0850 .0883 .0900 .0938 .0989 .1074 .1155 .1191	0.0085 .0136 .0272 .0340 .0493 .0544 .0612 .0628 .0649 .0679 .0679 .0679 .0696 .0717 .0764 .0849 .0883 .0900 .0938 .0989 .1074 .1087 .1155 .1193	210 220 400 420 520 600 610 001 620 540 201 630 710/550 640 720 411 421 501/431 800 820 441	2.860 2.838 2.822 2.816 2.713 2.660 2.851 2.555 2.473 2.399 2.399 2.311 2.290 2.232 2.177 2.128 2.064 1.9620 1.9182	$\begin{array}{c} 31\\ 8\\ 8\\ 10\\ 98\\ 102\\ 10\\ 18\\ 50\\ 8\\ 5\\ 50\\ 10\\ 5\\ 50\\ 10\\ 5\\ 40\\ 5\\ 12\\ 14\\ 42\\ 60\\ 7\end{array}$	0.1223 .1242 .1256 .1261 .1359 .1414 .1500 .1532 .1635 .1737 .1804 .1804 .1804 .1807 .2008 .2209 .2308 .2347 .2598 .2347 .2598 .2718	$\begin{array}{c} 0.1223\\.1240\\.1257\\.1261\\.1359\\.1414\\.1499\\.1635\\.1635\\.1635\\.1737\\.1804\\.1872\\.2008\\.2300\\.2308\\.2310\\.2348\\.2310\\.2348\\.2598\\.2718\\.2778\\.2778\\.2778\\.2778\\.2778\\.2786\\\end{array}$	660 830 750 601 621 840 631 711/551 641 731 841 11,3,0/970 10,6,0 10,0,1/861 002 12,4,0 11,2,1/10,5,1 10,8,0	$\begin{array}{c} 1.8664\\ 1.8606\\ 1.8447\\ 1.8384\\ 1.8189\\ 1.8087\\ 1.7878\\ 1.7878\\ 1.7878\\ 1.7878\\ 1.7468\\ 1.7468\\ 1.7232\\ 1.7160\\ 1.6949\\ 1.6426\\ 1.6426\\ 1.6426\\ 1.6326\\ 1.6177\\ 1.5896\\ 1.5720\\ 1.5535\\ \end{array}$	9 11 24 11 12 36 7 8 20 50 104 15 6 7 30 15 4 12 63 7	0.2871 .2887 .2939 .2959 .3023 .3057 .3129 .3142 .3277 .3368 .3396 .3481 .3533 .3682 .3706 .3481 .3532 .3706 .3482 .3706	$\begin{array}{c} 0.2869\\ .2886\\ .2937\\ .2960\\ .3022\\ .3058\\ .3129\\ \left\{.3141\\ .3142\\ .3267\\ .3367\\ .3367\\ .3367\\ .3685\\ .3707\\ .3685\\ .3707\\ .3685\\ .3707\\ .3753\\ .3825\\ .3957\\ .4047\\ .4145\\ \end{array}$	$\begin{array}{r} 402\\ 412\\ 412\\ 10,6,1\\ 502/432\\ 12,6,0\\ 11,5,1\\ 442\\ 13,4,0/11,8,0\\ 622\\ 12,4,1\\ 14,2,0/10,10,0\\ 642\\ 12,8,0\\ 802\\ 12,6,1\\ 822\\ 662\\ 802\\ 12,6,1\\ 12,10,0\\ 12,10,0\\ \end{array}$

Interplanar spacing

 $^{\circ}$ Interplana spacing b) Observed intensity. $^{\circ}$ Indexed on the basis of a tetragonal unit cell with $a\,{=}\,24.264$ Å, $c\,{=}\,3.924$ Å.

in this system. Experimentally the compound "6Nb2O5 · 11WO3" was found to be orthorhombic, probably with the *a*-axis of the tetragonal bronze subcell tripled. It is stable from about 1210 °C to the apparently congruent melting point of 1378 °C. The x-ray diffraction powder pattern listed in table 11 is indexed with a = 36.740 Å, b = 12.195 Å, c = 3.951 Å. It may be concluded from the size and symmetry of the unit cell, that the homologous series formula $B_{11n+1}O_{31n+1}$ is not correct for this compound. Therefore, " $6Nb_2O_5 \cdot 11WO_3$ " either has a defect structure or belongs to some other structural homologous series, as yet unknown. A single crystal structure analysis is currently under study by N. Stephenson [28].

e. Metastable Tetragonal Bronze-Type Solid Solution ("3:8")

In addition to the ordered bronze-like phases which have been found in the Nb₂O₅–WO₃ system, another, apparently disordered, phase has also been reported at about the Nb₂O₅:3WO₃ composition [5, 6, 7]. In the present study a tetragonal bronze-type phase without any indication of superstructure in the powder pattern was found to occur from about 72 to 74 mole percent WO₃ in a temperature range from about 1100 to 1250 °C. The unit cell dimensions of this phase were found to vary from about a = 12.190 A, c = 3.968 Å for the composition containing 72 mole percent WO₃ to a=12.178 Å, c=3.930 Å for the composition containing 75 mole percent WO₃. It must be concluded that the lower temperature phase is only metastable, because it decomposes at high temperatures into the two ordered compounds, $4Nb_2O_5 \cdot 9WO_3$ and $2Nb_2O_5 \cdot 7WO_3$.

3.4. Compounds Related to the ReO₃ Structure-Type. The Magneli "Shear Phases"

In the temperature interval from about 1270 to 1358 °C, at least two phases have been found to occur with x-ray diffraction powder patterns suggestive of the Magneli "shear phases" [29], which are structurally related to WO3. These phases have been found to occur between about 91 and 94 mole percent WO₃. Due to the difficulty of obtaining equilibrium and the complex nature of the diffraction patterns, it is very difficult to decipher the exact composition of the phases by powder data alone. Although no single crystals have been examined, the best interpretation of the data suggests that there are two equilibrium phases having the Nb₂O₅:WO₃ ratios of 1:11 and 1:15. These compositions would correspond to the members n = 13 and n = 17 of the homologous series B_nO_{3n-1} . It is possible that other structurally related phases are formed in this compositional region which have very little or no thermal stability. Unindexed x-ray diffraction powder patterns for the "1:11" and "1:15" phases are given in tables 12 and 13, respectively.

3.5. Polymorphs of WO₃ and WO₃ Solid Solutions

WO₃ has been reported to occur in many different polymorphs [30-32]. None of the various high- or low-temperature polymorphs have been previously reported to be quenchable to room temperature. However, many of these reported phases have been found at room temperature in the Nb₂O₅–WO₃ system.

TABLE 11. X-ray diffraction powder data for the phase $``6Nb_2O_5 \cdot 11WO_3"$ (CuK_a radiation)

d ^a	I b	$\frac{1}{d^2}$ obs	$rac{1}{d^2}$ calc	hkl c	d ^a	Г ^ь	$rac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl ^c
11.62	5	0.0074	0.0075	110	2.328	15	.1846	.1846	931
10.18	14	.0097	.0097	210	2.248	25	.1978	.1977	12,2,1
9.16	8	.0119	.0119	400	2.246	22	.1983	.1983	641
8.62	8	.0135	.0134	310	2.097	7	.2273	.2272	15,3,0
5.47	36	.0334	.0334	610	2.095	8	.2282	.2281	950
4.320	16	.0536	.0536	620	2.072	6	.2330	.2329 .2563	151
4.070	8	.0604	{.0600	900 030	1.9355	85 22	.2563 .2669	.2669	$002 \\ 18,2,0$
0.050	1		1.0605		1.9290	26	.2688	.2688	660
3.952	236	.0640	.0641	001	1 0007	0	0745	[∫.2743	15,4,0
3.865	140	0000	∫.0667	910	1.9087	8	.2745	1.2748	12,5,0
9.809	140	.0669	1.0672	330	1.8696	7	.2861	.2861	222
			f 0707	301	1.0090	· '	.2001		612
3.742	7	.0714	{.0708	011	1.8585	13	.2895	{.2897 .2898	322
			0715	111	1.05.00	15	0012	.2913	15,3,1
3.682	8	.0738	.0738	211	1.8528 1.8496	15 11	.2913 .2923	.2913	951
			(.0741	10,0,0					
3.663	19	.0745	1.0743	820	1.8239	25	.3006	.3006	18,3,0
2.500		0.774		4	1.8195	32	.3021	.3021	960
3.596 3.562	6	.0774	.0775	311				∫.3230	912
5.502	10	.0788	.0790	530	1.7593	23	.3231	1.3235	332
3.388	156	.0871	∫.0869	920				(.3302	170
0.000	150	.0071	1.0872	630	1.7384	22	.3309	.3310	18,2,1
3.223	12	.0962	.0964	11,1,0	1.7332	33		.3328	661
0.220	12	.0902	(.0975	611	1.7552	- 33	.3329	.3320	001
3.201	24	.0976			1.7317	35	.3335	.3334	21,1,0
			1.0976	321	1.7284	52	.3348	.3348	15,5,0
3.061	14	.1067	.1067	12,0,0	1.7244	51	.3363	.3362	370
3.049	22	.1076	.1076	040				1.3384	15,4,1
2.968	100	.1135	.1134	12,10	1.7184	8	.3386	.3389	12,5,1
2.959	106	0.1142	0.1143	340				(
2.917	10	.1175	.1176	621				(.3432	922
2.880	33	.1205	.1205	930	1.7072	22	.3431	.3435	
2.803	5	.1273	.1273	721					631
2.763	70	1010	(.1308	911	1.6559	15	.3647	.3646	18,3,1
2.705	76	.1310	1.1313	331	1.6524	25	.3663	.3662	961
					1 6449	22	0.000	J.3697	12,1,2
2.735	45	.1337	.1336	12,2,0	1.6442	22	.3699	1.3705	342
2.730	49	.1337	.1330	640	1.6294	8	.3766	.3768	932
2.687	12	.1385	.1384	821	1.0271		.3700	.5700	932
2.644	5	.1431	.1431	531		1.2		(.3899	12,2,2
2.573	62	.1511	ſ.1510	921	1.6012	12	.3901	1.3905	642
2.010	02	.1011	1.1513	631	1.5926	5	.3943	.3943	171
					1.5858	25	.3943	.3943	171
2.492	5	.1610	.1609	731	1.5833	32	.3989	.3973	21,1,1
2.421	6	.1706	.1708	12,0,1	1.5801	24	.4005	.4002	15,5,1
2.414	7	.1716	.1717	041				.1002	371
2.373	49	.1776	.1775	12,1,1	1.5654	5	.4081	.4081	18,5,0
2.368	59	.1783	:1783	341	1.5640	7	.4089	.4081	15,6,0
			-						10,0,0
	L		1		и				L

Interplanar spacing

^b Observed intensity ^c Indexed on the basis of an orthorhombic unit cell with a = 36.740 Å, b = 12.195 Å, c = 3.951 Å.

a. Room Temperature Monoclinic Polymorph

A monoclinic polymorph of WO3 was reported by Tanisaki [32] to have a monoclinic unit cell with a = 7.30 Å, b = 7.53 Å, c = 7.68 Å, $\beta = 90^{\circ}54'$ at room temperature. However, the x-ray diffraction powder pattern can be completely indexed with the c-axis equal to one-half that of the true unit cell. The presence of superstructure requiring the doubled cell can apparently only be found with single crystal data. For this reason, the x-ray diffraction powder pattern listed in table 14 has been indexed on the basis of one-half the real *c*-axis value. The unit cell dimensions obtained from this pattern were found to be a = 7.299 Å, b = 7.535 Å, c = 7.688 (3.844) Å, β $=90^{\circ}54'$. With 1 mole percent solid solution of Nb₂O₅ in WO₃, the parameters are changed to a

= 7.317 Å, b = 7.532 Å, c = 7.684 (3.842) Å, $\beta = 90^{\circ}55'$. For pure WO_3 this monoclinic polymorph is apparently stable from about 17 °C [32] to about 310 °C.

TABLE 12. X-ray diffraction powder data for the composition Nb2O5:11WO3 (CuKa radiation)

d^{a}	I b	d a	I ^b
4.638	5	1.927	90
4.308	7	1.910	30
3.966	25	1.865	58
3.850	350	1.845	90
3.726	230	1.812B	18
3.690	350	1.712	32
3.116B	15	1.700	14
2.764B	10	1.677	100
2.677	178	1.664	50
2.670	190	1.569	8
2.579	28	1.541	18
2.202	25	1.530	25
2.190	25	1.493B	10
2.139	12		
1.998B	10		

B=broad.

^a Interplaner spacing. ^b Observed intensity.

TABLE 13. X-ray diffraction powder data for the composition Nb₂O₅:15WO₃ (CuK_a radiation)

d^{a}	I ^b	d^{a}	I^{b}
3.931	25	1.898	27
3.839	284	1.869	65
3.760	116	1.855	20
3.682	336	1.841	40
3.134	10	1.812B	15
3.089	23	1.799	25
2.763	7	1.711	23
2.676	140	1.695	20
2.647	96	1.671B	65
2.584	18	1.652	15
2.214	14	1.573	8
2.181	30	1.555	10
2.152	12	1.546	15
2.006B	10	1.529	34
1.922	58	1.525	30

B = broad

Interplaner spacing.

^b Observed intensity

b. Low-Temperature Triclinic Polymorph

According to Tanisaki [32] the room temperature polymorph of WO3 transforms to a triclinic form at about 17 °C, on cooling. However, on reheating there is still some of the triclinic form remaining at room temperature, indicating some hysteresis in the phase transition. It was found in the present study, that the room temperature monoclinic polymorph could be partially transformed to the triclinic modification by grinding the specimen in a mortar and pestle, without lowering the temperature. The unit cell dimensions of the triclinic form were reported [32] as a = 7.30 Å, b = 7.52 Å, c = 7.69 Å, $\alpha = 88^{\circ}50'$, $\beta = 90^{\circ}55'$, $\gamma = 90^{\circ}56'$. The indexed x-ray diffraction

TABLE 14. X-ray diffraction powder data for the room temperature (monoclinic) form of WO_3 (CuK_a radiation)

d ^a	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl ^c	d ^a	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl c
3.840	154	0.0678	0.0677	001	1.8111	45	0.3049	0.3050	112
3.761	160	.0707	.0705	020	1.7977	42	.3094	.3094	112
3.646	268	.0752	.0751	200				(.3413	022
3.419	5	.0856	.0853	011	1.7116	48	.3414	1	
3.344	65	.0894	.0892	120				l.3414	202
3.114	70	.1031	.1030	111	1.6914	40	.3495	.3495	041
3.083	50	.1051	.1050	iii	1.6894	32	.3504	.3504	202
2.689	132	.1383	.1382	021					
2.667	72	.1407	.1406	210	1.6740	35	.3569	.3569	240
2.629	54	.1447	.1450		1.6581	34	.3637	.3636	401
2.629	54	.1447	.1450	201	1.6504	24	.3671	.3672	141
2.620	152	.1457	.1455	220	1.6455	42	.3693	.3694	141
2.533	152	.1457	.1455	$1210 \\ 121$	1.6423	80	.3708	.3708	420
2.555	22	.1539	.1580	121					
2.314	38	.1362	.1360	$\frac{121}{221}$	1.6385	50	.3725	.3725	401
2.176	- 36	.2112	.2110	221	1.6231	5	.3919	.3918	331
2.154	- 50	.2150	.2155	221	1.5843	5	.3984	.3985	331
		2262	0000	0.21	1.5584	30	.4117	.4119	222
2.103	6	.2262	.2262	031	1.5419	32	.4206	.4208	222
2.043	17	.2395	.2394	$\frac{320}{131}$					-
2.025	12	.2438	.2439		1.5384	27	.4225	.4224	241
2.016	14	.2461	.2461	$\frac{131}{311}$	1.5312	10	.4265	-4268	241
1.9955	20	.2511	.2509	311	1.5179	15	.4341	.4341	421
					1.5029	20	.4427	.4430	421
1.9709	12	.2574	.2576	311	1.4981	22	.4456	.4459	132
1.9216	44	.2708	.2708	002				1	100
1.8838	60	.2818	.2818	040	1 4000	10	45.05	.4503	132
1 0014	100	0.001	ſ.3004	400	1.4899	42	.4505	4.4507	312
1.8246	133	.3004	1.3006	140	1 4670	14	4640	.4508	340
			(10000	110	1.4679	14	.4641	.4641	312

^a Interplaner spacing.

^b Observed intensity.

 $^{\rm c}$ Indexed on the basis of a monoclinic unit cell with $a\,{=}\,7.299$ Å, $b\,{=}\,7.535$ Å, $c\,{=}\,3.844$ Å ($\frac{1}{2}\,{\times}\,7.688$ Å), $\beta\,{=}\,90^{\circ}54'.$

powder pattern of the triclinic polymorph obtained at room temperature from a specimen which had been removed from liquid nitrogen, is listed in table 15. The value of the *c*-axis was again halved, as the larger value is not necessary to index the powder pattern. According to Tanisaki, this phase is stable from about -40 °C to about 17 °C. The triclinic polymorph was never observed in any of the Nb₂O₅-WO₃ solid solutions.

c. Lowest Temperature Polymorph (Monoclinic)

From about -40 °C to below liquid nitrogen temperature, another monoclinic polymorph occurs in pure WO₃ which was reported by Tanisaki [32] to have a = 5.27 Å, b = 5.16 Å, c = 7.67 Å, $\beta = 91^{\circ}43'$. This polymorph can be obtained essentially single phase at room temperature by quenching a solid solution of 2Nb₂O₅:98WO₃ from the temperature interval 1230 °C to about 1385 °C, the solidus temperature. This polymorph also occurs as a mixture with other polymorphs in specimens containing 1 and 3 mole percent Nb₂O₅. The unit cell dimensions obtained from the powder pattern for the 2 mole percent Nb₂Q₅ specimen are a = 5.305 Å, b = 5.192 Å, c = 7.671 Å, $\beta = 91^{\circ}33'$. The indexed x-ray diffraction powder pattern is given in table 16, utilizing the 7.671 Å value for c as several peaks necessitating this doubled value are observed in the powder pattern. Hightemperature x-ray patterns show this phase to be apparently stable in the 2 mole percent Nb₂O₅ composition up to a temperature of about 735 °C, at which temperature it transforms to a tetragonal polymorph. If the temperature is not raised above about 750 °C. this transition is reversible. However, if the temperature is raised to 900 °C the low-temperature monoclinic polymorph is not recovered and the tetragonal phase transforms to the orthorhombic polymorph.

Tungsten trioxide has been reported to be ferroelectric below about -40 °C [33]. Specimens of sintered WO₃ containing 2 to 4 mole percent Ta₂O₅ were reported to exhibit ferroelectric behavior at room temperature [34]. The low-temperature monoclinic polymorph formed by quenching a specimen containing 2 mole percent Nb₂O₅ was examined for evidence of ferroelectricity [35]. However, no conclusive ferroelectric properties could be found.

d^{a}	I ^b	$\frac{1}{d^2}$ obs	$rac{1}{d^2}$ calc	h kl °	d^{a}	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl°	da	I^{b}	$rac{1}{d^2} \mathrm{obs}$	$rac{1}{d^2}$ calc	hkl ^c
3.840 3.760 3.652 3.362	284 224 350 20	0.0678 .0707 .0750 .0885	0.0677 .0707 .0749 .0885	$ \begin{array}{r} 001 \\ 020 \\ \underline{200} \\ 120 \end{array} $	2.159 2.154 2.150 2.120	20 53 51 3	0.2145 .2155 .2163 .2224	0.2145 .2158 .2163 .2227		1.8040 1.8007 1.7931 1.7244	$26 \\ 43 \\ 26 \\ 17$	0.3073 .3084 .3110 .3363	0.3068 .3086 .3113 .3360	$ \begin{array}{r} \overline{112} \\ 1\overline{12} \\ 11\overline{2} \\ 02\overline{2} \\ \end{array} $
3.322 3.143	20 25 42	.0883	.0906	$\begin{array}{c c} 120\\ 120\\ \hline \hline 111 \end{array}$	2.082	5 4	.2306	.2310	$031 \\ \overline{3}20$	1.7113	24 23	.3415	.3420 ∫.3451	$20\overline{2}$ $04\overline{1}$
3.143 3.099 3.085 3.070 2.714	42 20 65 42 55	.1012 .1041 .1051 .1061 .1359	.1013 .1042 .1051 .1059 .1358	$ \begin{array}{c} 111\\ \bar{1}11\\ 1\bar{1}1\\ 1\bar{1}1\\ 02\bar{1}\\ \end{array} $	2.039 2.046 2.032 2.025 2.011	8 5 10 9	.2388 .2422 .2439 .2474	.2389 .2423 .2439 .2481		$ \begin{array}{r} 1.6975 \\ 1.6897 \\ 1.6825 \\ 1.6653 \end{array} $	22 17 13	.3470 .3503 .3533 .3606	\.3457 .3470 .3506 .3536 .3608	$ \begin{array}{r} 202 \\ 022 \\ 041 \\ \underline{240} \\ 141 \end{array} $
$\begin{array}{c} - & 2.667 \\ 2.660 \\ 2.640 \\ 2.632 \\ 2.600 \end{array}$	108 102 80 93 58	.1407 .1413 .1435 .1443 .1480	.1407 .1413 .1435 .1443 .1477	$ \begin{array}{r} 20\overline{1} \\ 021 \\ \overline{2}20 \\ 201 \\ 220 \\ 220 \\ \end{array} $	2.005 1.9985 1.9844 1.9746 1.9713	12 10 9 12 14	.2487 .2504 .2540 .2565 .2573	.2490 .2503 .2540 .2564 .2568	$ \begin{array}{r} 13\overline{1} \\ 1\overline{3}1 \\ 3\overline{1}1 \\ 31\overline{1} \\ \overline{3}11 \\ \overline{3}11 \\ \overline{3}11 \\ \end{array} $	$1.6612 \\ 1.6570 \\ 1.6537$	52 31 28	.3624 .3642 .3657	.3620 .3635 .3660 (.3669	$ \begin{array}{c} 240 \\ 401 \\ \overline{4}20 \\ \overline{1}41 \end{array} $
$2.562 \\ 2.527$	13 11	.1524 .1567	.1524 .1564	$\frac{\overline{121}}{\overline{121}}$	1.9216 1.8801	48 52	.2708 .2829	.2708	002 040	1.6502 1.6358	33 30	.3672 .3738	(.3672 .3736	401 141
$2.501 \\ 2.500 \\ 2.202$	15 17 20	.1598 .1600 .2063	.1598 .1600 .2066	$\begin{array}{r}121\\1\overline{2}1\\\overline{2}21\end{array}$	1.8273 1.8198	148 44	.2995 .3020	$\begin{cases} .2995 \\ .2995 \\ .3021 \end{cases}$		1.6337 1.6303	35 18	.3747 .3763	.3744 .3760	$420 \\ 1\overline{4}1$

TABLE 15. X-ray diffraction powder data for the triclinic form of WO₃ (CuK_a radiation)

^a Interplaner spacing

^b Observed intensity. ^c Indexed on the basis of a triclinic unit cell with a = 7.30 Å, b = 7.52 Å, c = 3.845 Å ($\frac{1}{2} \times 7.69$ Å), $\alpha = 88^{\circ}50'$, $\beta = 90^{\circ}55'$, $\gamma = 90^{\circ}56'$.

TABLE 16. X-ray diffraction powder data for the low-temperature monoclinic form of WO_3 taken from $2Nb_2O_5$: $98WO_3$ solid solution (CuKa radiation)

d ^a	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl ^c	d a	I ^b	$\frac{1}{d^2}$ obs	$\cdot \frac{1}{d^2}$ calc	hkl ^c
3.834	400	0.0680	0.0680	002	1.7990	54	0,3090	0.3090	014
3.703	380	.0729	.0729	110	1.7875	28	.3130	.3130	104
3.145	25	.1011	.1011	102	1.7163	37	.3395	.3394	111
3.083	50	.1052	.1051	012	1.6900	25	.3501	.3501	114
3.067	32	.1063	.1064	102	1.6805	37	.3541	.3542	222
2.691	138	.1381	.1382	112	1.6692	41	.3589	.3592	310
			(.1432	200	1.6557	28	.3648	.3648	222
2.641	144	.1433	1.1435	112	1.6448	26	.3697	.3696	130
2.594	40	.1486	.1484	020 -	1.6179	4	.3820	.3821	302
2.458	6	.1655	.1654	021	1.5851	4	.3980	.3981	302
2.294	10	.1900	.1900	013					
					1.5776	5	.4018	.4018	032
2.236	5	2000	[.1998	121	1.5729	10	.4042	.4044	204
		.2000	1.1999	211	1.5464	18	.4195	.4192	312
2.206	22	.2056	.2058	202	1.5422	21	.4205	.4202	024
2.148	70	.2167	(.2163	022	1.5326	6	.4257	.4257	204
			.2165	202					
2.120	12	.2429	.2429	212				(.4349	132
2.002	14	.2496	.2495	122	1.5161	28	.4351	1.4352	31:
								1.4402	13:
1.9860	17	.2535	.2536	212	1.5056	26.	.4412	.4415	214
1.9815	18	.2547	.2548	122	1.4895	13	.4508	.4507	124
1.9178	68	.2719	.2719	004				(.4614	124
1.8521	100	.2915	.2915	220	1.4700	24	.4621	.4628	214
1.8192	27	.3022	.3023	104				0.1020	21

^a Interplaner spacing. ^b Observed intensity.

^c Indexed on the basis of a monoclinic unit cell with a = 5.305 Å, b = 5.192 Å, c = 7.671 Å, $\beta = 91^{\circ}33'$.

d. High-Temperature Orthorhombic Polymorph

Although no thermal effect was indicated with DTA. the room-temperature monoclinic polymorph of pure WO_3 is observed in the high temperature x-ray furnace to transform reversibly at 310 °C to an orthorhombic phase in agreement with Wyart and Foex [31]. This orthorhombic form is observed at room temperature in the solid solutions whenever the low-temperature monoclinic polymorph is heated to about 900 °C and cooled by removing from the furnace. The indexed x-ray diffraction powder pattern of a specimen of this polymorph containing 2 mole percent Nb_2O_5 is listed in table 17. It shows no indication of a doubled *c*-axis and is indexed on the basis of the smaller orthorhombic cell. The unit cell dimensions obtained for this composition, at room temperature, are a = 7.384 Å, b = 7.512 Å, c = 7.692 (3.846) Å. The orthorhombic phase is observed in this composition to transform to tetragonal in the high temperature x-ray furnace at 510 °C and the reverse transition was observed to take place at 440 °C.

e. Tetragonal High-Temperature Polymorph(s)

In pure WO₃ the orthorhombic polymorph was found to undergo a transition to the tetragonal form at about 750 °C in the high-temperature x-ray furnace. The DTA data indicated that the phase transition occurred at a temperature of 740 °C on heating and 730 °C on cooling. These results are in reasonable agreement with those of previous workers [7, 31]. The tetragonal polymorph is found as a single phase as low as 440 °C in the specimen containing 2 mole percent Nb₂O₅. However, in the 3 mole percent Nb₂O₅ specimen, the low-temperature monoclinic polymorph transforms after heating at about 900 °C into a mixture consisting predominantly of a tetragonal modification with only a trace of the orthorhombic form. The unit cell dimensions obtained at room temperature from this composition are a=5.265 Å, c=3.846 Å, and the x-ray diffraction powder pattern from which the data were obtained, indexed on the basis of the smaller cell, is listed in table 18.

In addition to the transformation at 730–740 °C, another transition is observed at about 900 °C in pure WO_3 , as indicated by a very small peak in the DTA pattern. High-temperature x-ray diffraction powder patterns indicate that WO_3 is tetragonal both above and below this minor thermal discontinuity. It is possible that the unit cell has a doubled *c*-axes below 900 °C and only above this temperature does the powder pattern yield the correct unit cell. However, this hypothesis cannot be verified without single crystal data.

Although WO_3 might be expected to have a cubic polymorph of the ReO₃-type, there is no evidence in either the present work or previously reported studies that such a polymorph exists.

TABLE 17. X-ray diffraction powder data for the orthorhombic form of WO_3 taken from $2Nb_2O_5$:98 WO_3 solid solution (CuKa radiation)

d^{a}	I ^b	$\frac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	h kl °
3.845	248	0.0676	0.0676	001
3,754	156	.0710	.0709	020
3.691	232	.0734	.0734	200
3.427	232	.0852	.0853	011
3.346	18	.0893	.0892	120
3.104	60	.1038	.1037	111
2.686	85	.1386	.1385	021
2.662	80	.1411	.1409	201
2.633	126	.1443	.1442	220
2.525	10	.1568	.1568	121
2.173	42	.2119	.2118	221
2.099	5	.2270	.2271	031
2.056	5	.2365	.2359	320
2.018	20	.2455	.2454	131
1.9976	14	.2506	.2504	311
1.9232	48	.2704	.2704	002
1.8779	33	.2836	.2836	040
1.8461	46	.2934	.2934	400
1.8198	21	.3020	.3019	140
1.8064	37	.3065	.3064	112
1.7119	24	.3412	.3413	022
1.7057	25	.3437	.3437	202
1.6879	35	.3510	.3512	041
1.6740	26	.3569	.3569	240
1.6645	32	.3609	.3610	401
1.6568	34	.3643	.3643	420
1.6453	14	.3694	.3695	141
1.5968	5	.3922	.3922	331
1.5530	10	.4147	.4146	222
1.5349	17	.4244	.4245	241
1.5217	20	.4319	.4319	421
1,4933	16	.4484	<i>§</i> .4482	132
			1.4486	340
1.4858	13	.4530	.4531	312

^a Interplaner spacing. ^b Observed intensity.

^c Indexed on the basis of an orthorhombic unit cell with a = 7.384 Å, b = 7.512 Å, c = 3.846 Å ($\frac{1}{2} \times 7.692$ Å).

TABLE 18. X-ray diffraction powder data for the tetragonal form of WO_3 taken from $3Nb_2O_5$: $97WO_3$ solid solution (CuK_{α} radiation)

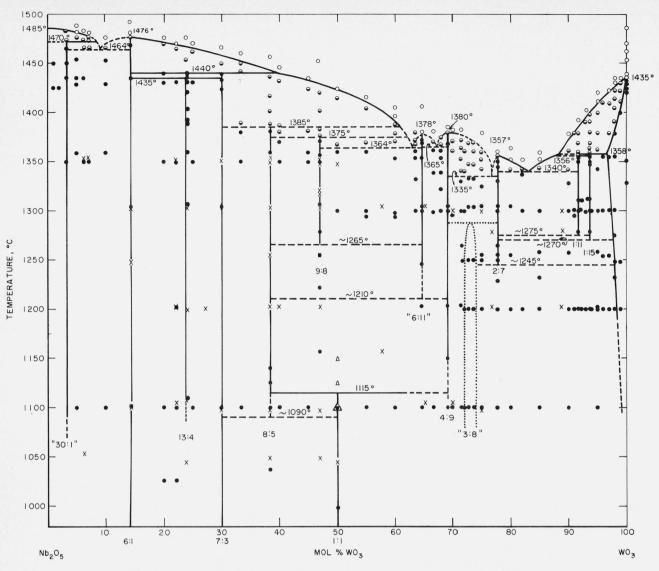
d ^a	Гъ	$rac{1}{d^2}$ obs	$\frac{1}{d^2}$ calc	hkl °
3.847	280	0.0676	0.0676	001
3.725	252	.0721	.0722	110
3.106	58	.1037	.1037	101
2.674	116	.1398	.1398	111
2.638	96	.1438	.1443	200
2.173	40	.2118	.2119	201
2.008	25	.2481	.2480	211
1.923	45	.2705	.2705	002
1.861	48	.2886	.2886	220
1.806	42	.3067	.3066	102
1.707	26	.3430	.3426	112
1.675	40	.3566	.3563	201
1.665	48	.3606	.3608	310
1.597	5	.3922	.3923	301
1.552	8	.4150	.4148	202
1.528	28	.4284	.4284	311
1.489	15	.4204	.4204	212
1.409	15	.4310	.4309	212

^a Interplanar spacing. ^b Observed intensity.

^c Indexed on the basis of a tetragonal unit cell with a = 5.265 Å, c = 3.846 Å.

4. Discussion of Phase Equilibria

The postulated phase equilibrium diagram of the binary system $Nb_2O_5-WO_3$ is shown in figure 1. The experimental data from which this diagram was constructed are given in table 19. The system contains four compounds which are shown as melting congruently, $6Nb_2O_5 \cdot WO_3$, " $6Nb_2O_5 \cdot 11WO_3$," $4Nb_2O_5 \cdot 9WO_3$, and $2Nb_2O_5 \cdot 7WO_3$. Six compounds melt incongruently " $30Nb_2O_5 \cdot WO_3$," $7Nb_2O_5 \cdot 3WO_3$, 8Nb₂O₅ · 5WO₃, 9Nb₂O₅ · 8WO₃, and the two Magneli phases estimated to be "Nb2O5 · 11WO3" and "Nb₂O₅ \cdot 15WO₃." In addition, two stable phases, $13Nb_2O_5 \cdot 4WO_3$ and $Nb_2O_5 \cdot WO_3$ dissociate before melting as does the apparently metastable disordered bronze type solid solution labeled "3:8" in the phase diagram. Six of the compounds (8:5, 9:8, "6:11",2:7, "1:11," and "1:15") are shown on the phase diagram as having minimum stability temperatures. In many of these cases, it is impossible to determine whether or not the minimum temperature represents a stable transition. The existence of solid solution could neither be definitely established in any of the compounds nor in Nb₂O₅. However, WO₃ accepts a maximum of about 3 mole percent Nb₂O₅ in solid solution.


The solidus temperature between the "30:1" phase and $6Nb_2O_5 \cdot WO_3$ has been found to be about 1464 °C. The exact eutectic composition has not been determined but probably exists between about 7 and 10 mole percent WO₃. The peritectic corresponding to the incongruent melting point of $7Nb_2O_5 \cdot 3WO_3$ occurs at 1440 °C and about 40 mole percent WO₃. However, the composition of the two peritectics at 1385 and 1375 °C and of the eutectic at 1364 °C, were not determined exactly. They probably occur between about 60 and 63 mole percent WO₃.

Both the 8:5 and 9:8 compounds apparently have minimum temperatures of stability. However, all efforts to locate accurately the temperature of these minimums proved inconclusive (table 19). For both compounds, the experimental temperature at which the phase begins to form on heating and the temperature at which it begins to dissociate on cooling had a wide range of overlap. Furthermore, the actual temperature of the minimum stability seemed to be strongly dependent on the purity content (table 19, parts I and II). For these reasons the minimum stability temperatures of the 8:5 and 9:8 are indicated on the phase diagram by dashed lines and the temperatures assigned to each, ~ 1090 and ~ 1265 °C, respectively, represent the best compromise between the inconsistencies in the experimental data.

None of the ordered bronze-type phases can be prepared in reasonable laboratory time at 1100 °C. The "6:11" phase was not found to be well crystallized below about 1210 °C. The minimum line at this temperature is dashed to indicate uncertainty in both the temperature value and the stability relation. The same discussion also is relative for the minimum value of the 2:7. In this case, however, the superstructure lines characteristic of this phase do not begin to appear below about 1245 °C. The three ordered bronze-type phases, "6:11", 4:9, and 2:7, all appear to melt congruently at 1378, 1380 and 1357 °C, respectively. The solidus temperatures between these phases at 1365 and 1335°C appear to be measurably lower than the observed melting temperature of the compounds. However, no eutectic compositions could be experimentally determined, possibly due to reduction and, therefore, the liquidus curves are necessarily dashed (see discussion on reduction in sec. 5).

The ability to distinguish a two-phase region between the two bronze-type phases $4Nb_2O_5 \cdot 9WO_3$ and $2Nb_2O_5$ \cdot 7WO₃ was greatly increased by a separation of those phases in the experiments of long-time duration. The top of the specimens within the two-phase region showed only 4:9 in the x-ray diffraction pattern while the bottom of the specimen showed mostly 2:7. This apparent gravity separation is probably enhanced by an appreciable vapor phase in the sealed Pt tube and is considered to be due mainly to vapor transport. A similar gravity separation takes place throughout most of the system and adds more evidence to the probability of a two-phase region between "6Nb₂O₅ $\cdot 11WO_3$ " and $4Nb_2O_5 \cdot 9WO_3$. This two-phase region is based mostly on the different morphology and color of these phases, as well as the slight differences in the superstructure exhibited by single crystal patterns. Almost all of the high-temperature phases in the Nb₂O₅-WO₃ system are needle formers. Most of those which contain appreciable WO_3 are yellowgreen or blue-green in color. However, the "6:11" phase is white and forms tabular crystals rather than needles.

A eutectic exists between the 2:7 compound and the Magneli "shear" phases at about 1340 °C and 83 mole percent WO₃. However, the exact compositions of the peritectics at 1356 and 1358 °C, corresponding to the decomposition temperatures have not been determined.

 $\label{eq:FIGURE 1. Postulated phase equilibrium diagram of the binary system \ Nb_2O_5-WO_3.$ Heavy lines represent well-established portions of the system and dashed lines represent not as well-established portions. Dotted lines represent metastable equilibrium.

● – not melted.
 ● – partially melted.

 \bigcirc - completely melted.

 \times – experimental data obtained from "less-pure" materials.

△-high-temperature x-ray data.

Tungsten trioxide has been found to accept a maximum of about 3 mole percent Nb₂O₅ in solid solution at the solidus temperature of 1358 °C. The amount of solid solution decreases with decreasing temperature to about 2 mole percent at 1230 °C and less than 1 mole percent at 1100 °C. The melting point of WO₃ was found, in the present study, to be 1435 °C. This value was independently confirmed by E. M. Levin [36] and is in disagreement with the previously published value of 1472 °C (Jaeger and Germs) [37]. In a discussion of the 1472 °C value for the melting point of WO₃, Phillips and Chang [38] concluded that this temperature was probably too low and might actually represent the eutectic between WO₃ and W₂₀O₅₈. However, they did not attempt to experimentally determine the melting points of the compounds WO₃ and W₂₀O₅₈ or the solidus temperature between them. The 1435 °C value for the melting point of WO₃ is internally consistent with the experimental phase diagram of both the Nb₂O₅-WO₃ and WO₃-B₂O₃ systems [36]. This value apparently represents the practical melting point for the experimental conditions utilized: sealed Pt tube, heated for very short intervals of time (≤ 5 min). This method is preferable to that of Jaeger and Germs [37] who utilized an open Pt crucible and much longer heating time. However, the true melting point of WO₃ can probably only be established by utilizing an oxygen pressure furnace and extrapolating to one atmosphere pressure.

Compo	osition	1.00	Heat tre	eatments			Results
		Init	ial ^a	Fir	nal ^b	Physical observation	X-ray diffraction analyses ^c
Nb_2O_5	WO3	Temp.	Time	Temp.	Time		
1ole %	Mole %	°C	Hour	°C	Hour		
99	1			$1425 \\ 1450 \\ 1425$	65 66	No meltingdo	Nb ₂ O ₅ . Nb ₂ O ₅ .
98 96.77 (30	2 3.23	1350	2	1425	65	No melting No melting	$Nb_2O_5 + "30:1"$.
95	5			1435 1450 1465 1474 1483 1100 ^d	$46 \\ 66 \\ 1 \\ 0.5 \\ .5 \\ 60$	do No melting (?) Partially melted No melting	"30:1". "30:1". "30:1". "30:1". "30:1"+Nb-Q. (2)+6:1 (2)".
90	0	1359	2	1429 1435 1454 1476 1481	88 46 1 1 1	do	$ \begin{array}{c} ``30:1'' + Nb_{2}O_{5}\left(?\right) + 6:1\left(?\right)^{o}. \\ \hline ``30:1'' + 6:1\left(?\right). \\ \hline ``30:1'' + 6:1. \\ \end{array} $
93.75	6.25	1350	2	1488	0.833	do	Low Nb ₂ O ₅ .
(15	:1)			1435 1468 1474 1483	46 0.5 .5 .5	No melting Partially melted do Completely melted	"30:1" + 6:1. "30:1" + 6:1. "30:1" + 6:1.
92.86 (13	7.14 :1)	1350	2	$1466 \\ 1473 \\ 1476 \\ 1478 \\ 1481$	0.5 .117 .5 16.5 0.5	Partially melted do do do Completely melted	(6:1 + "30:1" (?) 6:1 (+ unknown). 6:1.
90	10	1359	2	1401 1100 d 	60 	No melting dodo	6:1+"30:1". 6:1+"30:1" (?). 6:1+"30:1" (?).
85.71	14.29			1429 1453 1466 1476 1100 ^d	1 1 1 60	Partially melted Completely melted No melting	$\begin{array}{c} 6.1 + 30.1^{\circ}, \\ 6.1 + 30.1^{\circ}, \\ 6.1 + \log Nb_2O_5. \\ 6.1. \end{array}$
(6:	:1)	1304	2	1435 1467 1476 1481 1492 1026	0.25 .25 .5 .5 .25 136	dodo Partially melted Completely melted No melting	6:1. 6:1. 6:1+low Nb ₂ O ₅ . Low Nb ₂ O ₅ . 6:1+7:3 (+ unknown tr) ^e .
80	20	1350	2	1100 ^d 1102 1430	60 65 1	dodo	6:1 + 7:3 6:1 + 7:3 $6:1 + 7:3 + 13:4 (+ unknown)^{e}$. $6:1 + 7:3 + 13:4 (tr)^{e}$. $6:1 + 13:4 + 7:3 (tr)^{e}$. $6:1 + 13:4 + 7:3 (tr)^{e}$.
77.78	22.22			1431 1440 1470 1476 1026	17 1 0.5 .5 136	Partially melted Completely melted	6:1+7:3. 6:1+7:3 (+ unknown tr) ^e .
	:2)	1350	2	1100 ^d 1102 1202	60 65 20	do do do do do	6:1+7:3+13:4 (+unknown tr) ^e . 6:1+7:3+unknown+13:4 (tr) ^e . 6:1+7:3 (+unknown tr) ^e .
(c 76.19	:2 con) 23.81			1431 1465 1470 1109 1110	0.5 .5 .5 2 18	do Partially melted Completely melted No melting do	13:4+6:1+7:3 °. 6:1+7:3+unknown °. 7:3+unknown +6:1 (?) °.
(16	:5)	1360	2	1307	1	do do do do	6:1+7:3 °.
				1393 1404 1421 1431 1452	88 0.25 .25 17 0.5	do do do Partially melted	13:4. 13:4+6:1+7:3 (?) ^e .
		1360 1389 900	$\begin{array}{c}2\\119\\0.33\end{array}$	1476 1435	.25	No meltingdo	13:4. 13:4.
75	25			1439 1440 1454 1100 ^d 1102	$ \begin{array}{c} 17 \\ 1 \\ 10 \\ 60 \\ 65 \\ \end{array} $	dodo Partially melted No meltingdo	13:4 + 7:3 + 6:1 (?) ^e . 13:4 + 7:3 + 6:1 (?) ^e . 13:4 + 6:1 + 7:3 (?) ^e . 7:3 + 6:1 + 13:4 ^e . 7:3 + 6:1 + 13:4 + unknown ^e .
		1350	2	1431 1462 1470	17 0.5 .5	Description do Partially melted Completely melted	13:4+7:3 (?).
70	30 3)	1304	2	1100 d	60	No melting	7:3 + "bronze" (tr) ^e . 7:3.

TABLE 19. Experimental data for compositions in the binary system Nb_2O_5 -WO ₃ . Part I	TABLE 19.	Experimental	data for	compositions	in the	binary	system	$Nb_2O_5-WO_3$.	Part I
---	-----------	--------------	----------	--------------	--------	--------	--------	------------------	--------

Comp	osition		Heat trea	itments			Results
		Init	ial ^a	Fin	al ^b	Physical observation	X-ray diffraction analyses ^c
Nb ₂ O ₅	WO ₃	Temp.	Time	Temp.	Time		
1ole %	Mole %	°C	Hour	°C	Hour		
66.67	33.33	1350	2	1434 1439 1449 1466 1100 ^d	$1 \\ 17 \\ 0.583 \\ .33 \\ 60$	Completely melted	
61.54	38.46 :5)			1381 1389 1442 1450 1461 1037 1100 ^d	$1 \\ 1 \\ 0.5 \\ .5 \\ .5 \\ 236 \\ 60$	Partially melted (?) Partially melted do	7:3+8:5.
(0		1357	3.5 .	1100 1125 1140	167 160 65	do do do do do	$\begin{array}{l} 7:3+1:1+8:5^{\circ}.\\ 8:5+1:1+7:3^{\circ}.\\ 8:5+1:1+7:3^{\circ}.\\ \end{array}$
		1359	2 .	$ 1037 \\ 1100 \\ 1125 \\ 1140 $	$236 \\ 167 \\ 160 \\ 65$	dodo do do do	8:5+1:1 (tr) ^e . 8:5+1:1 (tr) ^e .
		1223	2.	1381 1388 1402 1417 1437 1457	$2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 0.5$	do Completely melted	7:3.
60	40	1350	2.	1100 d	60	No melting	7:3+1:1+"bronze" (tr) ^e .
				1371 1381 1387 1433 1446	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 0.5 \end{array} $	do	
55	45	1050		1100 d	60	No melting	1:1 + 7:3 + "bronze" (tr) ^e .
52.94	47.06	1350	2.	1360 1381 1424 1435 1157	0.67 .5 .5 .5 89		9:8 + 8:5. 8:5 + 1:1 + "bronze" e.
	:8)	1357	2.	1222 1255 1279 1307 1350 1351 1351	$ \begin{array}{r} 168 \\ 89 \\ 64 \\ 1 \\ 1 \\ 2 \\ 18 \\ 18 \\ 18 \\ 1 $	do	$\begin{array}{l} 9:8+8:5+``6:11```e\\ 9:8+8:5+``6:11``e\\ 9:8+8:5+``6:11``e\\ 9:8+8:5+``6:11``e\\ 9:8+8:5(11)`.\\ 9:8+8:5(11).\\ 9:8+8:5(11).\\ 9:8+8:5(11).\\ 9:8+8:5(11).\\ 9:8+8:5(11).\\ \end{array}$
				1222 1255 1279 1371 1377 1383 1402 1422	168 89 64 1 1 0.25 .25	do	$\begin{array}{l} 9:8+8:5+"6:11",\\ 9:8+8:5+"6:11",\\ 9:8+8:5!,\\ 9:8+8:5!,\\ 9:8+8:5,\\ 9:8+8:5,\\ 9:8+8:5,\\ 8:5+Q-\operatorname{liq}!,\\ 8:5+Q-\operatorname{liq}!,\\ \end{array}$
50	50	1300	2.	1452 998 1100 d	.25 144 60	No melting do do	Poorly crystalline 8:5 ^e . 1:1 + 7:3 + "bronze" ^e . 1:1 + 7:3 + "bronze" ^e .
45	55			1361 1368 1414 1424 1100 d	0.5 .67 .5 .5 60	Partially melted Completely melted No melting	
		1300	2 .	1294 1404 1415 1360	65 0.5 .583 0.5	do Partially melted Completely melted No melting do	9:8+ "6:11". 9:8+ Q-liq'. 9:8+ "6:11".
40	60			1370 1100 ^d 1294 1405	.5 60 65 0.5	Partially melted (?) No melting do Completely melted	1:1+ "bronze". (6:11" + 9:8. O-liq + "bronze".
		1298	2 .	1353 1371 1379 1388	1 1 1 1	No meltingdo Partially melted dodo	$\begin{array}{l} ``6:11'' + 9:8 (?) + 8:5 (tr)^{e}. \\ ``6:11'' + 9:8. \\ ``6:11 + 9:8. \\ 9:8 + ``6:11'' + 8:5 tr + Q - liq^{e}. \\ Q - liq + 9:8 (?)^{f}. \end{array}$
36.36	63.64	1300	2	1396 1332	0.833	Completely melted No meltingdo	"bronze" + Q - liq. "6:11" + 9:8 (?).

296

Comp	osition		Heat tr	eatments			Results
Comp	osition	Ini	tial ^a	Fi	nal ^b	Physical observation	X-ray diffraction analyses ^c
Nb ₂ O ₅	WO ₃	Temp.	Time	Temp.	Time		
Mole %	Mole %	°C	Hour	°C	Hour	-	
			Ъ.	$1372 \\ 1380$.5 .5	do do ^r	"6:11"+9:8 (?). "6:11"+9:8 (?).
35.29	64.71			1100 d	60	No melting	"bronze" + 1:1.
(6:1	.1)			$1100 \\ 1203$	64 19	do	"bronze" + 1:1. 4:9 + 8:5 tr.
				1246	165	do	"6:11".
		1298	2	1305	48	do	. ''6:11''.
		1296	2	1246	165	No melting	"6:11".
				1353	1	do	"6:11".
				1369 1371	93 1	do	"6:11". "6:11".
				1380	1	Completely melted	"bronze" + Q - liq. "bronze" + Q - liq. "bronze" + 1:1.
33.33	66.67			1406 1100 d	0.5 60	No melting	"bronze" $+Q-liq$.
50.00	00.01	1296	2			do	(6:11'' + 4:9)
				1339 1362	166 1	do	"6:11" + 4:9 (?).
				1371	1.5	Partially melted	"6:11"+Q - liq.
29	69	1200	2	1381	1	Completely melted	"bronze" $+ Q - liq$ (tr).
32	68	1300	2	1322	17	No melting	4:9+"6:11" (?).
				1339	166	do	4:9+"6:11" (?).
				$1354 \\ 1361$	64 0.5	do	
				1368	.5	Partially melted	
30.77	69.23			1375 1100 d	.5 60	No melting	"bronze"+1:1 (tr).
(4:9				1100	64	do	"bronze" + 1:1 (tr).
				$1150 \\ 1203$	$\frac{160}{19}$	do	Poorly crystalline 4:9. 4:9 + "bronze" + 8:5 (?) ^e .
				1205 1300 d	48	do	$4:9 + \text{ bronze } + 8:5(?)^{\circ}$. 4:9.
		1299	0	1305	48	do	4:9.
		1299	2	1150	160	do	4:9.
				1368	1	do	
				$1379 \\ 1405$	0.75	Partially melted Completely melted	4:9. "bronze" + $Q - liq$ (tr).
30	70			1100 d	60	No melting	"bronze" + 1:1 (tr).
		1296	2	1361	1	Partially melted	
				1371	1	do	4:9 + Q - liq.
28.57	71.43			1382 1100 d	$1 \\ 60$	Completely melted No melting	"bronze $+ Q - liq$. "bronze" $+ 1:1$ (tr)
(2:5				1203	19	do	"bronze" + 1:1 (tr). "bronze" + 4:9 (?).
				$\frac{1300}{1305}$ d	48 48	do do	4:9+2:7 (?). 4:9+2:7 (?).
		1249	70 .			do	
		1265	1	1331	64	do	4:9+2:7 (?). "bronze"+4:9 (?).
				1330	0.5	do	4:9+2:7 (?).
		1296	2	1329	16.5	do do	4:9+2:7 (?).
				1341	1	Partially melted	4:9 + Q - liq.
				1353 1364	1	do do	$4:9 + \mathbf{Q} - \mathbf{liq}.$
			1	1372	1.5	do	
28	72			1382 1100 ^d	$1 \\ 60$	Completely melted No melting	"bronze" $+ Q - liq$. "bronze" $+ 1:1$ (tr) $+ WO_3$ (tr) ^e .
		1200	70 .			do	bronze $\pm 1:1$ (tr) \pm w O ₃ (tr) \pm .
		1300	2	1340	0.5	Partially melted	4:9 + Q - liq.
7.97	79.72			1361	.5	do	
27:27 (3:8	72.73			1100 ^d 1200	60 70	No melting	"bronze" + WO_3 + 1:1 (tr) ^e . "bronze".
		1200	2	1347	64	Partially melted	4:9+"bronze".
		1200	65			. No melting	
		1000	2	1333	67	do	4:9 + 2:7.
		1200 1304	$\frac{2}{16}$.			No melting	
				1369	0.5	Partially melted	(1)
26.42 ((14:3	73.58			1100 ^d 1200	60 70	No melting	"bronze" + WO ₃ + 1:1 (tr) ^e . "bronze".
		1200	2.			do	
		1250	65 .	1333	67	do do	4:9 +2:7.
				1347	64	Partially melted	
		1200	2	1361	0.5		
		1304	16	1270	0 5		
25	75			1370 1100 ^d	0.5 60	Partially melted No melting	"bronze" $+ WO_3 + 1:1$ (tr) ^e .
(1:3				1250	2	do	"bronze + L-MonWO _{3ss} + "1:11" + WO _{3ss} ".

Composition		Heat treatments				Results		
		Initial ^a		Final ^b		Physical observation	X-ray diffraction analyses ^c	
Nb ₂ O ₅	WO ₃	Temp.	Time	Temp.	Time	_		
1ole %	Mole %	°C	Hour	°C	Hour			
		1200	68	1255 1305 1343 1353 1360 1379	65 16 0.75 .5 .5 .5 .5	Completely melted	$\begin{array}{l} 4:9 \mp Q - liq. \\ 4:9 \mp Q - liq. \end{array}$	
22.22	2:7) 77.78			$\begin{array}{c} 1325\\ 1100^{d}\\ 1100\\ 1202\end{array}$	97 60 64 20		"bronze" + WO ₃ .	
		1200	2	1250 1265 1300 ^d 1343 1360	260 1 48 0.5 1	Partially melted ^g dodo dodo Completely melted		
		1200	2	1229 1255 1305 1342 1351	67 65 16 0.5 .583	dodo dodo Partially melted ⁸ Completely melted ⁸	"bronze" + Tet WO _{3ss} . 2:7.	
20	80	1249	70	1229 1331 1344 1350 1357 . 1100 ^d 1200	67 64 0.75 .5 .5 60 2	No meltingdo do do do Partially melted No melting	2:7. 2:7. 2:7.	
		1200	2	1343 1255 1305 1342 1352	0.5 65 16 0.5 .5	Partially melted No meltingdo do Partially melted Completely melted (?)	"bronze" + 2:7 + L-MonWO _{3ss} ^e . "bronze" + 2:7 + "1:11" + "1:15" (?) ^e .	
18	82	1200 1300	2 2	1363 1337 1343 1352	.5 0.5 .5 .5	No meltingdo dodo Partially melted Completely melted	2:7+"1:11". 2:7+Q-liq.	
15	85	1200	2	. 1100 ^d 1232 1258 1300 1343 1352 1359	60 17 16 16 0.5 .5 .5 .5	dodo do Partially melted Completely melted do	"bronze" + L-MonWO _{3ss} + WO _{3ss} (tr). "bronze" + L-MonWO _{3ss} + 2:7 (?) °. 2:7 + "1:11".	
10	90	1200	2	. 1100 ^d 1100 1200 1250 1275	60 20 90 17 144	Partially melted ^g No melting	WO ₃ + "bronze". WO ₃ + "bronze". L.MonWO _{3ss} + "bronze" + WO _{3ss} (?). L.MonWO _{3ss} + "bronze".	
				1258 1300 1301 1328 1342 1343 1361 1378	$ \begin{array}{c} 16\\ 16\\ 69\\ 0.5\\ .5\\ 17\\ 0.67\\ .5\\ \end{array} $	do do do do Partially melted (?) Partially melted Completely melted.	L-MonWO _{ass} + "bronze" + 2:7 (?) ^e . "1:11" + "1:15" + 2:7 ^e . "1:11" + 2:7. "1:11" + Q - liq. "1:11" + Q - liq.	
9	91	1200	2	1295 1301	67 69	No melting do do	"1:11"+2:7 (tr). "1:11"+2:7 (tr).	
8.33	91.67	1200 1300 1200	2 2 2	1379	0.083	No melting. Partially melted No melting.		
	:11)			. 1279 1311 1350	65 70 17	dodo	"1:11" + 2:7 + "1:15" (?) ^e . "1:11" + 2:7 (tr) ^e . "1:11".	
		1200 1300	22	1354 1355 1357 1359 1369 1379 1392	0.33 .5 .5 .5 .5 .083 .083	do	"1:11". "1:11". "1:11". "1:15" + L-MonWO _{3ss} + Q - liq. L-MonWO _{3ss} + Q - liq. L-MonWO _{3ss} + Q - liq.	

Composition		Heat treatments				Results		
		Initi	al ^a	Fin	al ^b	Physical observation	X-ray diffraction analyses ^c	
Nb ₂ O ₅	WO ₃	Temp.	Time	Temp.	Time			
Iole %	Mole %	°C	Hour	°C	Hour			
8	92	1200	2	1301	69	No meltingdo	"1:11"+"1:15" (?).	
7.69	92.31 (12)	1200	2		70			
7.14	92.86	1200	2			No melting		
-7	:13) 93	1200	2		70	No melting		
		1200	2	1299	67	do	"1:15" + "1:11".	
		1300	2	1391 1402	0.083	No melting Partially melted Completely melted		
6.66	93.33	1200	2			No melting	447 - 2 - 2 - 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2	
6.25	:14) 92.75	1200	16		68	No melting	" $1:15$ " + " $1:11$ ". Tet WO _{3es} + "bronze" + tr WO _{3es} .	
	:15)	1200	0	1279 1312 1350	65 68 17	do do do do	$\begin{array}{l} \label{eq:constraint} Tet \; WO_{3ss} + "bronze" + tr \; WO_{3ss} \cdot \\ "1:15" + L-Mon WO_{3ss} + "1:11" + 2:7 \; (tr) \\ "1:15" + L-Mon WO_{3ss} \; (?) . \\ "1:15" + L-Mon WO_{3ss} \; (?) . \end{array}$	
		1200	22	1355 1369 1380 1391 1398	0.5 .5 .083 .083 .083 .083	No meltingdo Partially melted do do do do do	$\label{eq:constraint} \begin{array}{l} ``1:15"+L-MonWO_{3ss}\left(?\right)+``1:11"\left(?\right)^{e}.\\ ``1:15"+L-MonWO_{3ss}\left(?\right)+``1:11"\left(?\right)^{e}.\\ L-MonWO_{3ss}+Q-liq.\\ \end{array}$	
		1300	2			NT L.		
		1347	4.5	1357 1359	0.5 .5 .5	No melting do Partially melted	"1:15" + L-MonWO _{3ss} (tr). "1:15". L-MonWO _{3ss} + Q $-$ liq.	
6	94	1200	2	1364	.5	do No melting	$L-MonWO_{3ss} + \tilde{Q} - liq.$	
5	95	1200	2	1299 1100 ^d 1100 1200 1202 1250 1275	67 60 20 90 20 16 144	do No melting do Dartially melted (?)* Partially melted * No melting.	$\begin{array}{c} ``1:15'' + L-MonWO_{3s}, \\ WO_3 + ``bronze'', \\ WO_3 + ``bronze'', \\ L-MonWO_{3s} + ``bronze'' + WO_3 (tr), \\ L-MonWO_{3s} + ``bronze'' + WO_3(tr), \\ L-MonWO_{3s} + ``dronze'' + WO_3(tr), \\ L-MonWO_{3s} + ``1:15'' + WO_3 (tr), \\ L-MonWO_{3s} + ``WO_{3s} + ``bronze''. \\ \end{array}$	
				1200 1258 1299 1300 1343 1343 1362 1379 1400 1411 1420	70 16 67 16 0.5 17 0.75 .75 .5 .083 .25	do do	L-MonWO _{3as} + WO _{3as} + "bronze". L-MonWO _{3as} + "bronze". "1:15" + L-MonWO _{3as} + "1:11" ("1:15" + L-MonWO _{3as} + "1:11" (?) ^e . L-MonWO _{3as} + Q-liq (?). L-MonWO _{3as} (?).	
4	96	1200	2	1254 1355	66 19	No melting do do	L-MonWO _{3ss} +"1:15".	
				1355	0.083	Partially melted		
		1200 1301	2 68		0.25	do	L-Mon WO_{3ss} + "1:15". Tet WO_{3ss} + "1:15".	
3	97	1200	2	1254 1355 1379 1409 1422	66 19 0.083 .083 .083	do		
		1200 1301	68			No melting	L-MonWO _{3ss} + "1:15".	
2	98	1200	2	900 h	.025	do	Tet WO_{3ss} + "1:15".	
		1200	2	1200 1232 1275 1355 1379 1391 1405 1414 1422 1430 1435	90 17 19 0.083 .083 .083 .083 .083 .083 .083 .08	do	L-MonWO ₃₈₅ + WO ₃₈₅ + "bronze". L-MonWO ₃₈₅ . L-MonWO ₃₈₅ + WO ₃₈₅ + "bronze".	
		1248	67	900 ^h 900	0.25 .25	No melting do do	Orth WO_{3ss} + Tet WO_{3ss} (tr).	

299

Composition		Heat treatments				Results	
		Initial ^a		Final ^b		Physical observation	X-ray diffraction analyses ^c
Nb_2O_5	WO_3	Temp.	Time	Temp.	Time		
Mole %	Mole %	°C	Hour	°C	Hour		
0	99	1200	2 67	$\begin{array}{c} 1200\\ 1400\\ 1411\\ 1422\\ 1430\\ 1435\\ 1435\\ 1435\\ 1435\\ 1435\\ 1435\\ 1420\\ 1424\\ 1420\\ 1424\\ 1420\\ 1423\\ 1435\\ 1435\\ 1435\\ 1435\\ 1435\\ 1436\\ 1437\\ 1439\\ 1453\\ 1462\\ 1470\\ 1485\\ \end{array}$	90 0.083 .083 .083 .083 .083 .083 .083 .0	do	WO ₃ . WO ₃ +TriWO ₃ . WO _{38s} +TriWO ₃ .

TABLE 19. Experimental data for compositions in the binary system Nb₂O₅-WO₃. Part I-Continued.

Experimental data for compositions in the binary system Nb₂O₅-WO₃. Part II (less pure end members)

Composition		ion	Heat tr	eatments		Results	
	Somposition		Initial ⁱ	F	Final	Physical observation	X-ray diffraction analyses ^c
93.75	(15:1)	6.25	1354 48	. 1053	336	No melting	$6:1 + Nb_2O_5.$ " $30:1" + 6:1$ (?).
	1			1053	336	do	"30:1" + 6:1 (?).
92.86	(13:1)	7.14		. 1354	40	No melting	"30:1" + 6:1.
85.71	1	14.29		. 1100	66	No melting	6:1.
00111	(6:1)			. 1248	64	do	6:1.
	(011)		1	1352	66	do	6:1.
77.78		22.22		. 1104	68	No melting	6:1+7:3+13:4.
11.10	(7:2)	22.22		1203	89	do	6:1+13:4+7:3 (?).
	(1:2)				21		
74.10		00.01		1352		do	6:1+7:3+13:4 (tr).
76.19	1	23.81		. 1044	336	No melting	13:4+6:1(?)+7:3(?).
	(16:5)			. 1109	65	do	13:4 + 6:1 (?) + 7:3 (?).
				1200	138	do	13:4 + 6:1 + 7:3.
				1303	71	do	6:1+7:3+13:4 (tr).
72.73	(8:3)	27.27		. 1201	89	No melting	13:4+7:3.
70	1	30		. 1097	94	No melting	7:3 + 13:4 (tr).
	(7:3)			1349	23.5	do	7:3 + 6:1 (tr).
61.54	(1.0)	38.46		1097	94	No melting	7:3 + 1:1.
01.04	(8:5)	00.40		1201	113	do	8:5+7:3 (tr).
	(0.3)			1201	42	do	8:5 + 7:3 + "bronze".
	1				65		
				1255		do	8:5+7:3 (tr).
				1255	92	do	
				1303	16	do	8:5+7:3 (tr).
				1350	19	do	8:5 + 7:3 (tr).
			1354 16			No melting	8:5+7:3 (tr).
				1048	336	do	8:5+7:3+"bronze"+1:1.
60	(3:2)	40		. 1203	89	No melting	8:5+ "bronze" (tr).
52.94		47.06		. 1097	70	No melting	7:3 + 1:1 + "bronze" (tr).
	(9:8)			. 1201	113	do	8:5 + "bronze".
	1			1255	65	do	8:5 + "bronze" +9:8 (?).
	1			1303	16	do	9:8 + 8:5 (tr).
				1318	67	do	9:8+8:5 (tr).
				1321	19	do	
				1348	20	do	9:8 + 8:5 (tr).
				1350	19	do	9:8+8:5 (tr).
				1350	21	do	9:8+8:5 (tr).
				1352	68		9:8+8:5 (tr).
			1054	1352	08	do	
			1354 16	1040	226		
50				1048	336		1:1 + 7:3 + "bronze" + 9:8 (tr) + 8:5 (tr).
50		50		. 1098	336		1:1+"bronze"+7:3.
			1	1101	66	do	1:1+"bronze"+7:3.

Experimental data for compositions in the binary system Nb₂O₅-WO₃. Part II (less pure end members)-Continued.

Initial Final Physical observation X-ray diffraction analyses 42.31 57.69 1348 20	Composition	Heat tre	atments	Results	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	composition .	Initial ⁱ	Final	Physical observation	X-ray diffraction analyses ^c
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No meltingdo No meltingdo No meltingdo No meltingdo No meltingdo Partially melted (?) ^s Partially melted (?) ^s No melting Partially melted (?) ^s	8:5+"6:11"+1:1. "bronze"+1:1+8:5. "6:11"9:8. "6:11". "6:11". "6:11". "6:11". "bronze" (?). "bronze" (?). "bronze". "bronze

^a All specimens were initially calcined at 700 °C for 19 hr with heating and cooling rates of approximately 4 °C/min. Small portions of this calcine were then reheated for the designated time at one or more designated higher temperatures and generally quenched in sealed Pt tubes. ^b After the initial heat treatment(s) all specimens were reheated at the indicated temperature and quenched in sealed Pt tubes.

specified. ^c The phases identified are given in the order of amount present at room temperature. The phases are not necessarily those present at the tem-

(?) = interpretation is not certain ss = solid solution.

(tr) = trace just barely discernible in x-ray pattern.

(u) - tace base based unknown structure occurring at a mole ratio of approximately 30:1 Nb₂O₅: WO₃. (unknown) = extra peaks in the x-ray pattern which cannot be assigned to any recognized phase. 6:1 = 6Nb₂O₅ · WO₃ (WNb₁₂O₃₃).

 $\log Nb_2O_5 = nonequilibrium phase (similar to the low temperature form of Nb_2O_5)$, when quenched from above the liquidus and examined at room

low Nb₂O₅ = nonequilibrium phase (similar to the low temperature form of Nb₂O₅), when quenched from above the liquidus and examined at room temperature.
7:3 = 7Nb₂O₅ · 3WO₃ (W₃Nb₁₄O₄₄).
13:4 = 13Nb₂O₅ · 4WO₃ (W₄Nb₂₆O₇₇).
"bronze" = a metastable disordered phase having a variable composition and an undistorted tetragonal-tungsten-bronze type x-ray pattern (designated as "3:8" on the phase diagram).
8:5 = 8Nb₂O₅ · 5WO₃ (W₃Nb₁₆O₂₆).
9:8 = 9Nb₂O₅ · 5WO₃ (W₃Nb₁₆O₂₆).
1:1 = Nb₂O₅ · WO₃ (Whb₂O₈).
"6:11" = a tungsten bronze type phase of orthorhombic symmetry and with superstructure lines indicative of the unit cell being tripled in the *a* and *b* directions.

"6:11" = a tungsten bronze type phase of orthorhombic symmetry and with superstructure lines indicative of the unit cell being tripled in the a and b directions.
Q -liq = metastable phase or phases which form only from the quenched liquid and give very poorly defined x-ray powder patterns, having the general appearance of the ReO₃ subcell characteristic of most of the compounds in this system.
4:9 = 4Nb₂O₃ • 9WO₃ (Nb₃W₉O₄₇).
L-MonWO_{3ss} = the monoclinic polymorph of WO₃ reported [30] to occur below -40 °C "stabilized" by a small amount of solid solution of Nb₂O₃ in WO₃.
1:11" = Magneli "shear" phase having the approximate composition 1Nb₂O₃:11WO₂.
"1:15" = Magneli "shear" phase having the approximate composition 1Nb₂O₃:15WO₃.
Tet WO_{3ss} = the high temperature polymorph of WO₃ ordinarily stable between about 320 °C and ~745 °C, "stabilized" by addition of Nb₂O₃ in solid solution.
Tri WO₂₀ = the neghtemporth of WO₂ which is stable just helow room temperature and concurst at computing when pure WO₂ is ground in

Tri WO3 = the polymorph of WO3 which is stable just below room temperature and occurs at room temperature when pure WO3 is ground in a mortar and pestle for a short time. ^d Specimen heated and cooled at about 4 °C/min rather than quenched.

⁶ Nonequilibrium, probably due to incomplete reaction.
⁶ Nonequilibrium, postulated as being due to reduction.
⁶ Metastable melting.

Pt tube not sealed

¹Did not receive preliminary 700° heat treatment.

5. Reduction

As has been previously mentioned there is some tendency for WO_3 to reduce on heating to high temperatures, even in the sealed Pt tubes. This tendency is greatly enhanced by subjecting the specimens to high temperatures for extended periods of time. The problem of reduction of WO_3 is apparently carried into the Nb₂O₅-WO₃ system to such an extent that the system may not be completely binary at high temperatures.

The experimental data indicate that the system probably remains essentially binary as long as no melting occurs. However, above the solidus, reduction very likely takes place and the measured liquidus values may not represent binary equilibrium. The melting relations around the ordered bronze-type phases, from about 60 to 80 mole percent WO_3 , were particularly difficult to obtain experimentally. The three compounds at "6:11", 4:9 and 2:7 all appeared to melt congruently with binary solidus relations between them. However, the liquidus values appear to form smooth curves between these congruent melting points without any indication of a change in slope toward a eutectic composition. The phenomena is characteristic of a nonbinary system. For the sake of simplicity, the phase diagram has been drawn to indicate the most likely binary relationships and liquidus curves have been dashed to illustrate the uncertainty in values.

Another indication of reduction occurs in the melting relations of the $B_{nm+1}O_{3nm-(n+m)+4}$ homologous series compounds. The phases W₃Nb₁₄O₄₄, W₅Nb₁₆O₅₅, and W8Nb18O69 were all observed to melt incongruently. Experimentally these compound compositions were observed to begin to form a second phase at about 1440°, 1385°, and 1375°, respectively. However, compositions in two-phase regions between these compounds did not begin to form the new phase until considerably higher temperatures, even though the specimen may have shown an appearance of partial melting. This apparent increase in the stability temperature of the phases is dependent on the amount of time the specimen is held at temperature, and binary melting relationships can be approximated by only holding the experimental specimens for relatively short periods of time. It may therefore be concluded that reduction takes place in these specimens, when held above the solidus temperatures. However, it has previously been concluded [1-4] that the crystal structure of these compounds precludes any appreciable nonstoichiometry. Therefore, it appears likely that, as the W^{+6} ion is reduced, the Nb/W ratio of these phases shifts towards higher tungsten content, maintaining an essentially constant cation: anion ratio.

In addition to the relatively large amount of reduction which apparently takes place above melting, there is possibly some tendency towards reduction at lower temperatures. The amount of reduction which can take place experimentally below melting is probably several orders of magnitude less than that which occurs above melting because it seems in no way to affect the equilibrium relationships. The only indication of this minor reduction is in a tendency for discoloration of the specimens. Almost any composition in the system, held for long periods of time in a sealed Pt tube will show a much darker green or blue color than does the same composition either held for shorter periods or not sealed. This darker color can always be lightened by annealing the specimen in an open Pt tube, at about 1000 °C.

It is intriguing to postulate that the Nb_2O_5 -WO₃ system might more closely approach binary conditions if the experiments were performed under conditions of high oxygen pressure, such as that utilized by Van Hook [39]. Such studies will probably become more common in the near future.

6. Metastable Phases and Nonequilibrium

6.1. Metastable Melting

It can be seen from table 19, that all compositions containing more than about 72 mole percent WO_3 were calcined for about 2 hr at 1200 °C prior to attempting to obtain equilibrium data. This was because the few preliminary heat treatments, performed at temperatures above 1250 °C, without the 1200 °C calcine, exhibited some indication of melting, whereas those with a prior 1200 °C calcine did not show melting until much higher temperatures.

The metastable melting apparently is due to a eutectic type reaction between the metastable bronzetype solid solution (labeled "3:8" on fig. 1) and pure WO₃. It must be emphasized that in order to obtain equilibrium products in the region 72 to 100 mole percent WO₃, this preliminary calcine at 1200 °C is imperative. Without such preliminary heat treatment, neither the 2:7 compound nor the "Magnelishear" structures can be prepared as single phases.

6.2. Metastable Phases

The bronze-type solid solution previously mentioned ("3:8" of fig. 1) has been interpreted as a metastable phase for several reasons. It appears to be responsible for very low temperature metastable melting which takes place between about 72 and 100 mole percent WO₃. The x-ray powder pattern of the bronzetype solid solution shows no superstructure and the phase must contain disordered pentagonal bypyramid polyhedra. It must be concluded that the disordered phase is metastable because it dissociates on heating to two ordered phases. All compositions between about the 6:11 and 2:7 ratios, when guenched from above the liquidus exhibit the tetragonal bronze-type "disordered" phase with no indication of any superstructure peaks in the x-ray diffraction powder pattern. In addition, many specimens also show a small amount of a quenched liquid phase which exhibits a poorly defined x-ray pattern characteristic of a disordered ReO₃ structure, the basic building unit of all the compounds in the system.

From about 5 mole percent WO₃ to at least 15 mole percent WO_3 another metastable phase is formed from the quenched liquid. This phase has an x-ray pattern, characteristic of the orthorhombic lowtemperature form of Nb₂O₅. The diffraction pattern shows diffuse peaks and little or no superstructure lines. This phase never appears below the melting point and only forms as a single phase if the quenching temperature is considerably above the liquidus. The ability of a specimen to be quenched as a phase with a powder pattern similar to the low-temperature form of Nb₂O₅ seems to be dependent on cooling rate and composition. This phenomena has been previously reported for other niobate systems [23, 40].

As shown in table 19, another unknown phase has been found occasionally in nonequilibrium mixtures between about 7 and 25 mole percent Nb_2O_5 . All efforts to establish an equilibrium region for this phase have proved negative. It is possible that the unknown compound may represent a complex structure involving a mixture of 3×3 blocks along with the 3×4 and/or 4×4 blocks normally found in other compounds occurring in this composition range. Such a structure would contain a considerable number of Nb⁺⁵ ions in tetrahedral coordination and would not be expected to form a stable assemblage.

It has been previously mentioned [1] that WNb₁₂O₃₃ appears to have a small region of homogeneity, in that the 8:1 composition showed only a single phase. However, no change in lattice parameters could be detected. This apparent region of solid solution is most likely due to the very similar powder patterns of the 6:1 compound and the "30:1" phase. A solid solution structure containing either a considerable number of oxygen vacancies or cation interstitials (in either the tetrahedral or octahedral position) would be expected to cause some measurable change in the lattice parameters. One other possible mechanism which has been suggested for solid solution [41] is again raised by the appearance of the "ordered intergrowth" structure of the 13:4 compound, and the suggested possible structure of a 25:1 or 20:1 compound. It is possible that a "disordered intergrowth" of double 3×4 blocks might occur in association with the isolated 3×4 blocks of the WNb₁₂O₃₃ compound [24]. Such a disordered structure or "compositional stacking fault" would cause only a slight broadening of some of the lines of an x-ray diffraction powder pattern, as would a mixture of a small amount of the ordered second phase. It is problematical as to whether such a picture of solid solution would represent a stable or only a metastable condition. Nevertheless, proof of such a postulated disorder would necessarily depend upon other data, outside the scope of this project. A careful electron diffraction and/or electron microscope study might prove of value in deciphering the nature of any possible disorder of this type.

7. References

- [1] R. S. Roth and A. D. Wadsley, Acta Cryst. 19, 26 (1965).
- [2] R. S. Roth and A. D. Wadsley, Acta Cryst. 19, 32 (1965).
- [3] R. S. Roth and A. D. Wadsley, Acta Cryst. 19, 38 (1965).
- [4] R. S. Roth and A. D. Wadsley, Acta Cryst. 19, 42 (1965).
 [5] H. J. Goldschmidt, Metallurgia 62, 241 (1960).
- [6] L. M. Kovba and V. K. Trunov, Dokl. Adad. Nauk. SSR 147. 622 (1962).
- [7] L. J. Fiegel, G. P. Mohanty, and J. H. Healy, J. Chem. and Eng. Data 9, 365 (1964).
- [8] G. P. Mohanty and L. J. Fiegel, Acta Cryst. 17, 454 (1964).
 [9] L. M. Kovba, V. K. Trunov, and Y. P. Simanov, Zh. Neorgan.
- Khim. 9, 1930 (1964).
- [10] H. Schäfer and R. Gruehn, private communication to A. D. Wadsley, 4/14/65.
- [11] E. J. Felten, private communication to R. S. Roth, 12/2/64.
- [12] H. F. Stimson, J. Res. NBS 65A (Phys. and Chem.) No. 3, 139 (1961).
- [13] G. Brauer, Z. anorg. u. allgem. Chem. 248, 1 (1941).
- [14] F. Holzberg, A. Reisman, M. Berry, and M. Berkenblit, J. Am. Chem. Soc. 79, 2039 (1957).
- [15] M. W. Shafer and R. Roy, Z. Krist. 110, 241 (1958).
- [16] H. J. Goldschmidt, J. Inst. Metals 87, 235 (1958-59).
- [17] A. Reisman and F. Holzberg, J. Am. Chem. Soc. 81, 3182 (1959).
- [18] B. M. Gatehouse and A. D. Wadsley, Acta Cryst. 17, 1545 (1964).
- [19] R. S. Roth, J. Res. NBS 62, 27 (1959) RP2925.
- [20] R. S. Roth and J. L. Waring, J. Res. NBS 66A (Phys. and Chem.) No. 6, 451 (1962).
- [21] R. S. Roth, A. D. Wadsley, and S. Andersson, Acta Cryst. 18, 643 (1965).
- [22] R. Gruehn and H. Schäfer, Naturwissenschaften 50, 642 (1963).
- [23] J. L. Waring and R. S. Roth, J. Res. NBS 69A (Phys. and Chem.) No. 2, 119 (1965).
- [24] A. D. Wadsley, S. Andersson, and W. G. Mumme, Acta Cryst. (to be published).
- [25] S. Andersson, Acta Chem. Scand. 18, 2339 (1964).
- [26] M. Lundberg and S. Andersson, to be published.
- 27 A. Sleight and A. Magneli, Acta Chem. Scand. 18, 2007 (1964).
- [28] N. Stephensen, private communication.
- A. Magneli, Arkiv Kemii 1, 513 (1950). 29
- [30] R. Veda and T. Ichinokawa, Phys. Rev. 82, 563 (1951).
- [31]J. Wyart and M. Föex, Compt. Rend. 2459 (1951).
- S. Tanisaki, J. Phys. Soc. Japan 15, 566 (1960). [32]
- [33] B. T. Mathias and E. A. Wood, Phys. Rev. 84, 1255 (1951).
- [34] S. Levine, R. Corwin, and H. L. Blood, Bull. Am. Phys. Soc. Series II, 1, [5], 255 (1956).
- [35] P. H. Fang, private communication.
- [36] E. M. Levin, J. Am. Ceram. Soc. 48, 491 (1965).
- [37] F. M. Jaeger and H. C. Germs, Z. anorg. u. allgem. Chem. 190, 145 (1921).
- [38] B. Phillips and L. Chang, Trans. Met. Soc. AIME 230, 1203 (1964).
- [39] H. J. Van Hook, Rev. Sci. Instr. 36, 1119 (1965).
- [40] E. M. Levin, J. Research NBS 70A (Phys. and Chem.), No. 1, 5 (1966).
- [41] A. D. Wadsley, in Non-stoichiometric Compounds, ed. L. Mandelcorn ch. 3, (Academic Press, N.Y., 1964).

(Paper 70A4-404)