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Elastic Constants of Synthetic Single Crystal Corundum

Wayne E. Tefft*

(March 10, 1966)

The elastic constants of synthetic single crystal corundum (aluminum oxide) were calculated from
0 to 900 °K from data obtained by a resonance technique from 80 to 900 °K.
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1. Introduction

Two previous papers [1, 2|' have presented respec-
tively, the room temperature values of the elastic
constants of synthetic single crystal corundum [1],
and the temperature dependence of Young’s modulus
for certain crystallographic directions. In the present
paper we present results of an extension of that work
to include measurements of the temperature depend-
ence of the torsional modulus for certain crystallo-
graphic directions, and a calculation from all these
measurements of the complete set of elastic com-
pliances from 0 to 900 °K. There has been a lapse of
several years between the time of performance of
this work and its submission for publication, and
another paper on the subject [3] has appeared in the
meantime. However, the present results cover a
wider temperature range and are believed to be more
accurate than those previously published.

This work was undertaken for several reasons.
First, a knowledge of elastic constants is desirable
for an understanding of the interatomic forces in solids,
and most useful in this respect are the values of these
constants at absolute zero. Second, the variation of
elastic constants with temperature is one important
test of theories of lattice dynamics.

The availability of different kinds of data on the
same material is also of considerable theoretical
importance, because of the interrelations between
various thermodynamic properties. Since corundum
is of technological importance and good single crystal
specimens are readily available, very accurate meas-
urements of its specific heat [4] and thermal expansion
[5] have already been made. Thus, elastic constant
data are desirable to permit a test of thermodynamic
relations in which elastic constants appear [5].

Finally, the results presented here may be con-
sidered as an example of the precision attainable
with the resonance method of elastic constant measure-
ments in its most refined form. It is believed by this
author that none of the other techniques in current
use is more accurate than the one used here, and these
data are presented to support this view.
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2. Experimental Procedure

The determination of the elastic constants of corun-
dum at room temperature, and the temperature
dependence of Young’s modulus of seven sapphire
rods of various orientations, have already been re-
ported [1, 2]. The additional data taken for this
experiment consisted of measurements of the tempera-
ture dependence of the torsional resonance frequencies
of six of the seven rods from 80 to 875 °K.  About 40
measurements of torsional frequency were made on
each rod. Most of the experimental apparatus was
identical in these three studies, and it will be assumed
that the reader is familiar with the first two papers.

The torsional resonance frequencies of the original
rods were of the order of 20 kHz, which was too high
to be excited and detected in the cryostat, and which
would have been difficult to measure in the furnace.
In order to overcome this problem, the diameter of
each rod was reduced by about 50 percent over approxi-
mately the middle two-thirds of its length. This was
equivalent to attaching loading disks to the ends, in
that the resonance frequency was thereby reduced to
about one-third of its original value, but this procedure
was preferable to that of attaching loading disks be-
cause it did not introduce the problem of finding a
bonding material suitable for attaching loading disks
and unaffected by the wide range of temperatures
used. The resultant shape made it impossible to
calculate absolute values of the torsional modulus
from the resonance frequencies, but since the values
at room temperature were already known, only changes
with temperature were needed, and the temperature
dependence of the modulus frequency relationship
was assumed to be the same as for perfect cylinders.
This assumption undoubtedly introduced some errors,
but these errors are believed to be very small because
they would enter through the effect of thermal expan-
sion on small correction factors.

Torsional vibrations were excited and detected
in the furnace as previously described [1] for room
temperature, except that glass fiber instead of thread
was used for the suspension. In order to make
measurements at low temperatures, small flats were
ground at each end of the specimen, and very small
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magnets attached to these. The specimen was then
suspended in a horizontal position by two threads
in such a way that each magnet was perpendicular to
the field of a nearby coil. When an alternating current
was passed through one coil, a net torque resulted,
and the corresponding vibrations of the rod induced
currents in the other coil, which was used to detect
resonance. In both high- and low-temperature meas-
urements, the precision of the frequency determina-
tions was of the order of one part in 30,000, although
temperature gradients and systematic errors such as
changing hardness of bond between magnet and speci-
men and condensation of ice at low temperature, and
gradual crystallization of the glass fibers used for
suspension at high temperatures, probably reduced
the overall accuracy to about one part in 10%

The relation between resonance frequency, f,
density, p, length, [, and torsional modulus, G, of an
isotropic cylinder is [1]

G=14pl2f. 1)

Thus, if our specimens had been isotropic cylinders,
the torsional modulus, G, at any temperature, T, would
be related to the torsional modulus at room tem-
perature, Gg, by

o 8) (4 (4

Now if the specimens had been perfect cylinders at
room temperature, the anisotropic thermal expansion
would have caused their cross sections to become
elliptical at any other temperature, because for a
crystal of trigonal symmetry, the thermal expansion
(fractional change in length) in any direction is given

by [5]

€(f)=¢€; cos®> O+ € sin® 6

where €, and e are, respectively, the thermal expan-
sions parallel and perpendicular to the crystallographic
c-axis, and 0 is the angle between the c-axis and the
direction under consideration. Thus, the circular
cylinder of length Iz and radius r at room temperature
becomes an elliptical cylinder of length / and semi-
axes a and b at other temperatures. If a is chosen
to be perpendicular to both the rod axis and the
c-axis, and b is in the plane formed by the rod axis
and the c-axis, then these quantities are given by:

[=1z(1+ € cos? O+ €, sin® 0)
a=r(l+e)

b=r(1+€ sin® 0+ € cos? 6).

The density is L, so that the equation for G becomes
wabl
 GEGBRL
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which reduces approximately to

2

G =G (%) [1—e;+ 2(e1 —€2) cos? 0+ €]
R

where the square and higher powers of the difference

(€1—e€32), and the cube and higher powers of €; and e,

have been neglected.

Now, it is true that eq (1) is correct only for a circu-
lar cylinder, and that it should be modified for the
elliptical shape caused by anisotropic thermal expan-
sion. However, it may be shown from the equations
of static torsion of elliptical cylinders that the largest

: . . a—b\ ..
correction term is proportional to (—) which is
always very small. g

A more serious question is what modification is
necessary because of the reduction in diameter over
a portion of the length. There seems to be no very
rigorous argument here, but one can say qualitatively
that since the correction for thermal expansion is
quite small, no appreciable error is likely to be intro-
duced because this correction is not made exactly
as it should be.

3. Analysis of Data

The systematic errors in the compliances are
believed to be smaller than the error introduced
by random error in the orientations. In order to
achieve a higher degree of accuracy, the amount
of data taken was considerably larger than the
minimum needed to determine the six independent
elastic constants of sapphire. An extensive statistical
analysis of these data was made to determine the best
values of these constants, and their variation with
temperature.

In the original room temperature work, Young’s
modulus and the torsional modulus were measured on
29 different specimens, and a standard least-squares
routine was then used to evaluate the six independent
constants from this set of 58 measurements. It was
noted, however, that the differences between measured
and calculated values of E and G were due primarily
to errors in orientation measurements, rather than to
errors in the measured values of £ and G which is
implicitly assumed in the standard least-squares
calculation. In order to take this into account, weights
were determined by a method described by Deming [6].
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After having redetermined the elastic constants at
room temperature, and having measured both E and G
for several orientations as a function of temperature,
the problem arose as to how best to use this information
to estimate the temperature dependence of the elastic
constants. If measurements on all specimens had
been made at identical temperatures, say 50° intervals,
then one might simply have carried out the weighted
least-squares routine at each of these temperatures,
and thereby obtained an adequate representation of
the temperature dependence of the elastic constants.
This, however, would have involved an enormous
amount of experimental work, and would not have
significantly improved the accuracy of the results,
basically because changes in the constants could be
measured with better precision than the absolute
values of the constants, and therefore a smaller number
of measurements was needed.

It was pointed out in reference 2 that an empirical
equation had been found to accurately represent the
variation of Young’s modulus with temperature.
While fitting the experimental data to this equation
by means of a least-square routine on an automatic
computer, calculations were also made of the values
of Young’s modulus at 50° intervals from 0 to 900 °K.
An attempt was made to fit the torsional modulus
variation to the same form of equation. In this case,
although the fit was reasonably good, the deviations
appeared to be systematic, indicating that the equation
did not represent the data within the experimental
precision. Therefore, a plot of deviations versus
temperature was made for each specimen, and correc-
tions ranging up to about 0.04 percent were made for
the calculated values of G at the same 50° temperature
intervals.

A further correction was necessitated because the
temperature dependence was measured for fewer
specimens than were used in the room temperature
measurements. It was first thought that an adequate
correction would be to adjust the base (room tempera-
ture) values of £ and G for each specimen so that they
agreed with the calculated values in the room tem-
perature curve fit. However, it was noted that the
elastic anisotropy increased rather markedly with
temperature, and that orientation errors were intro-
ducing appreciable scatter at the highest temperature.
In order to partially overcome this difficulty, the orien-
tation angles of two of the specimens (those whose
calculated modulus values were most sensitive to
orientation errors, and which had the largest deviations
at room temperature) were adjusted to give the smallest
possible deviations of £ and G at room temperature
(the deviation of either could be made zero in this
manner, but not both simultaneously). The remaining
deviations in £ and G at room temperature for all
specimens were then corrected for, and a least-squares
solution for the elastic constants made at 50° intervals.
The final result was that the errors in temperature
dependences of the elastic constants were somewhat
smaller even at the highest temperature than were
their absolute values at room temperature. There-
fore, the values quoted at 900 °K should be in error

(in absolute value) by less than twice the errors of
absolute value at room temperature. Since measure-
ments were only made down to liquid nitrogen tem-
perature, the errors in the values at absolute zero are
somewhat uncertain, but there is reason to believe
that they are less in error than the values at 900 °K,
although certainly somewhat more in error than the
values at room temperature. The reason that these
errors are small in spite of the 80° extrapolation is
that nearly all the variation takes place at higher
temperature; i.e., the modulus temperature curves are
very nearly flat up to about 100 °K.

4. Results and Summary

Values of the six elastic compliance constants of
corundum in the temperature interval 0 to 900 °K are
given in table 1. The base values, at 25 °C and their
standard error estimates, are given in the first row.

TABLE.l The elastic compliances of corundum in units of
10-2m?/N (10-'* c¢m?/dyn)

The first row lists room temperature values together with their standard deviations.
These values were combined with measurements of relative changes with temperature
to obtain the values at other temperatures.

Temper- Sit S33 Saq Siz Si13 Si4
ature

°K

273.2 2.353 2.168 6.940 —-0.716 —0.368 0.491

+0.002 +0.002 +0.008 +.007 +.006 =+.005
0 2.326 6.765 =693 —.362 465

100 2.326 6.776 .695 —.363 467

150 2.330 6.802 —.698 —.364 471

200 2.336 6.841 —.704 ~ .365 477

250 2.344 6.889 ==K —.366 483

300 6.942 =716 —.368 .491

350 7.000 =L723 —.369 .500

100 7.061 — 701 —.370 509

450 7.126 —.740 —.370 519

500 7.193 —.748 —.371 .530

550 2.412 2.209 7.263 =757 —.372 -541

600 2.425 2.218 7.334 —.766 —.372 .552

650 2.438 2.228 7.407 =7l —.373 564

700 2.453 21237 7.482 —.784 —.373 576

750 2.467 2.247 7.559 —.796 —.374 .587

800 2.482 2.258 7.638 —.808 —.374 .600

850 2.497 2.268 7.719 —.820 —.374 613

900 2:512 2.279 7.803 —.832 —=.375 626

These values were determined from measurements
on the same set of 29 specimens used in reference 1,
but the present results are believed to be slightly
more accurate because of improved temperature
control and use of a weighted least- squares routine.

The values at other temperatures are based on
values at 25 °C, and therefore include in their absolute
magnitude the errors of the base values. However,
the changes with temperature over any small tempera-
ture interval were determined more accurately even
though based on only seven specimens, because
changes in Young’s modulus and the torsional modulus
could be measured more accurately than the actual
values of these moduli. On the other hand, the
anisotropy (as estimated, for example, from the varia-
tion in Young’s modulus with orientation) increased
significantly with increasing temperature. Thus, the
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small orientation errors which remained after making
the room temperature corrections described earlier
would have introduced some error into the tempera-
ture dependence of the elastic compliances, even
if the moduli had been measured exactly.

The result was that the change in any constant
between room temperature and either 0 or 900 °K
was determined with an accuracy approximately
equal to the accuracy of that constant at room tem-
perature. One cannot make a more precise state-
ment than this because, while systematic errors are
believed to be insignificant in the room temperature
results, they may be comparable to the random errors
at other temperatures. Furthermore, even random
errors, such as would result from misorientation,
cannot be estimated very well for the temperature
dependence measurements because of the small num-
ber of specimens used.
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