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In 

Weak coupling of inte rnal degrees of freedom of molec ules to the translational degrees of freedom 
of a fluid res ults in additiona l modes of motion for density fluctuation s. These ne w modes affect the 
spec tral dis tribution of light scattered by de ns ity flu c tuations so that the Landau·Placzek ratio is not 
sati s fi ed. The case of the rmal re laxat ion with a s in gle relaxation time is worked out in de tail. For­
mulas for the spec tral di stribution of the scatte red light , for the ratio of the intens ities of the centra l 
(Rayle igh) to the Brillouin components and for the phonon velocity are de rived and applied to carbon 
di sulfide and carbon tetrac hloride. The data for carbon te trach loride are s hown to be inco ns is tent 
with the s ingle relaxa ti on time model fo r the rm al re laxa tion. 

Key Words: Brillouin scatt e ring, de ns ity flu ctuations in liquids, li ght scatt e ring in liquids, Rayl e igh 
scatt e rin g, spec tra l di s tribution of scatt ered light , the rmal re laxatio n, vulum e viscos it y. 

1. Introduction 

In this paper we are concerned with density fluctuation s in a fluid in which internal degrees 
of freedom of the molecules are weakly coupled to the translational degrees of freedom of the fluid . 
Thermal relaxation is an example of the type of processes we have in mind. Problems of this 
type are of interes t because it is now possible to experimentally probe the fr equency s pectrum of 
de nsity flu ctuations with li ght scatterin g experiments usin g a lase r as th e li g ht so ur ce [1].1 
The coupling of internal degrees of freedom to the translational motion means that the decay of 
de nsity flu ctuations will proceed by more ways than the three " normal modes" usually co nsidered. 
This is reflected in the spectral distribution of light scattered by de nsity fluctuations. In this 
paper we investigate a relatively simple case involving thermal relaxation with a single relaxation 
time. The exis tence of the additional mode is shown and the effect of this mode on the spectrum 
of the scattered light is exami ned in detail. 

Light scattering experiments provide a Fourier analysis of the density variations in a fluid. 
The variation of the intensity of the scattered light with the scattering angle 8 (and therefore with 
the change in the wave vector of the scattered light) Fourier decompose the spatial dependence 
of the fluctuations while the shifts in the frequency of the scattered light decompose the time 
dependence of the fluctuation s [2]. Such experiments enable us to study collective motions in 
the fluid without seriously disturbing the fluid. On the other hand , it is also possible to use light 
scattering measurements in conjunction with a model for the fluctuations to measure several of 
the bulk properties of the fluid. For example, the sound velocity and the so und absorption co­
efficient can be obtained by measuring the shift in frequency and the width of the Brillouin lines. 

In some circumstances it is possible to obtain from light scattering experiments information 
about the structure of the correlation functions whose time integrals are the transport coeffi cients 
[3]. An example of this type provides the basis for the calculations we present. 

This paper consists of three parts. In the first part we review the relationship between de nsity 
fluctuations and light scattering. The phenomenological approach of Einstein and Smoluchow-

l F igures in brackets indica te the lit e rature re ferences at the e nd of thi s pape r. 
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ski [4] is discussed and compared with the formulation of scattering problems of Van Hove [5]. 
The generalized structure factor 8(k, w) is introduced and some of its properties are described. 

The second part of the paper consists of a detailed analysis of the frequency spectrum of 
density fluctuations in a fluid in which thermal relaxation of vibrational degrees of freedom can 
occur. Particular emphasis is placed on single relaxation time processes. The results for 
single relaxation time processes are summarized at the end so that readers not wishing to go 
through the details of the calculation will not lose heart. 

The third part of the paper consists of a comparison of available experimental data with 
the analysis of the density fluctuations. The primary example is concerned with CS2 , a substance 
whose internal degrees of freedom relax with a single relaxation time. We also de monstrate 
that the data for CC14 are not in agreement with the predictions for a single relaxation time. 

2. Light Scattering Formalism 

2.1. Phenomenological Theory of Einstein-Smoluchowski 

The random thermal motion of molecules in t fluid produces fluc.tuations in the density and 
also in the orientation of molecules in volumes small compared to the wavelength of the incident 
light. These fluctuations result in local variations in the dielectric constant and therefore scatter 
light. Weare concerned in this paper only with fluctuations in the density. Orientation fluc­
tuations result in the depolarization of the scattered light making it possible to experimentally 
separate the scattering by density fluctuations, which is fully polarized, from the scattering by 
orientation fluctuations [6]. 

The intensity of the scattered light is 

(1) 

In eq (1) incident plane polarized light of intensity 10 and wave vector k i is scattered at the origin 
and is observed at R. There are N molecules in the scattering volume. The angle between the 
electric vector of the incident wave and R is cP; E(k, w) is the Fourier component of the fluctuation 
in the dielectric constant. The shift in the angular frequency of the scattered light is wand the 
change in the wave vector in the medium of the scattered light is k; since only the direction of 
k changes 

k = 2nki sin e/2. (2) 

The index of refraction of the scattering fluid is n and the scattering angle is e. The angular 
brackets ( ... > indicate an ensemble average over the initial states of the system. 

Direct calculation of E(k, w) is avoided by assuming that fluctuations in the dielectric constant 
are due to fluctuations in the density and the temperature ; 

(3) 

The contribu tion of the temperature fluctuations is i~nored; we assume that (aE/ap)1' 'P (aE/aT)p. 
Equation (1) is now reduced to 

(4) 

where p(k, w) is a Fourier component of the density fluctuation. The problem IS now one of 
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calculatin g p(k, w) from the appropriate kinetic model of the fluid. For dense fluids the appro­
priate model is described by the linearized hydrodynamic equations of irreversible thermodynamics. 

We should note that (aE/ap)T has been assumed to be independent of the shift in the frequency 
of the scattered light, w. If this is not the case it is probably also true that the separation of 
LlE into a thermodynamic derivative times a fluc tuation term is not a meaningful procedure. Of 
course the value of (aE/ap)T may vary somewhat as the frequenc y of the incident light changes, 
reflecting the frequency de pen dence of the dielectri c constant. 

2 .2 . Molecular Theory 

Before we undertake the calculation of p(l.- , w) we revie w the li ght scattering formali s m ob­
tained by adapting Van Hove 's ne utron scattering paper [5] to li ght sca tt e rin g. Komarov and 
Fisher [7] have s hown that the intensity of li ght scattered from a fluid of N molecules of effec tive 
polarizability a is 

I (R , w) = 10 [~;~!] sin2 cp8(k, w). (5) 

The important c hange from eq (4) is to re place the mean square flu ctuati on ( [p(k , W)J2) by the 
generalized s tru cture fac tor 8(k, w) which is the s pace and time Fourier transform of the two-body 
correlation fun ction . The correlation fun ction is de fin ed by Van Hove to be 

(6) 

For long times and s uffi ciently large r, C(r, t) red uces to theautocorre lated densit y 

C(r , t) = N- lj dr'(p[r' - r (O) , 0Jp(r' , t»· (7) 

Equation (7) is appropria te to light scatte rin g in fluid s [8J. Care must be take n to use 

8(k, w) = j dr j dte ikr e- iwtG(r, t ) (8) 

only to describe the fully polarized part of the scattered light. The inclusion of angular correla­
tion s, whi c h res ult in de polarization , is a more complicated problem than the one we cons ider 
here [9]. 

In thi s paper we are concerned with 8(1.-, w) as defined by eqs (7) and (8); 

8(1.-, w)= ( p(I.- , w)p(- I.-». (9) 

Thus eqs (4) and (5) predict the same freque ncy di stribution for light scattered by density fluc tua­
tions. A ~seful property of 8(1.-, w) is the s um rule 

1 I X 5(1.-)= - dw8(I.- , w) = ( p(k)p(- k». 
271' - x 

(10) 

5(1.-) is the ordinary s tructure factor. Finally, we note that 8(k , w) is an eve n func tion of w at hi gh 
te mperatures; that is 1iw/knT ~ 1 where k/i is Boltzman's constant and T is the absolute tempera­
ture. In thi s paper we assume that the inequality is satisfied. 
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3. Density Fluctuations When the Internal Modes Decay With a Single Relaxation 
Time 

Weare concerned with the calculation of 8(k, w) for a fluid whose molecules possess internal 
degrees of freedom which are weakly coupled to the translational modes of the fluid. Further 
we shall suppose that the transfer of energy from the internal degrees to the translational degrees 
of freedom is described by a single relaxation time process [10, 11]. 

The procedure to be used is to solve the linearized hydrodynamic equations for p(k, w) in 
terms of an initial fluctuation p(k) [5]. The use of initial values facilitates calculation of the aver· 
age over initial states indicated by < . . . >. 

An equivalent procedure is the hydrodynamic fluctuation theory of Landau and Lifshitz [12]. 
This method has been used by Rytov to discuss fluctuations in a viscoelastic medium [13]. 

The linearized hydrodynamic equations for the system are the continuity equation 

apdat+po div v=O, (11) 

the longitudinal part of the Navier·Stokes equation (suitably modified to allow for a frequency 
dependent bulk viscosity) 

av (C~) (C5/3PO) po ai=- y grad PI - -y- grad TI 

+ (~1J8 + 1Jv) grad div v + f 1J'(t - t') grad div v (t')dt', (12) 

and the energy transport equation. 

(13) 

Here P=PO+PI is the number density, T=To+TI is the temperature; po and To being the equi­
librium values. The shear viscosity is 1J8, the bulk or volume viscosity consists of a frequency 
independent part 1Jv and frequency dependent part which is the Fourier transform of 1J'(t). The 
low frequency (adiabatic) sound speed is Co, the thermal expansion coefficient is /3 , the thermal 
conductivity is A and the ratio of the specific heat at constant pressure Cp to the specific heat at 
constant volume Cv is denoted by y. 

The analysis proceeds as in reference 8. First the Fourier (space) and Laplace (time) trans­
forms are taken of eqs (11), (12), and (13). Then we solve for 

in terms of the initial value 

The result is 

p(k) = i drc,kr per, 0) 

p(k, s) F(s) 
p(k) = G(s) 
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where 

and 

The quantities 

a = A/poCv 

b = (4/3YJs + YJn)/ Po 

b'(s) =~ 1'" e- stYJ'(t)dt 
po 0 

(17) 

(18) 

(19) 

have bee n introduced tu s implify th e notation . Equation 19 for b'(s) appli es to a ny frequ e ncy 
dependent bulk viscosity. We will be co ncerned with b'(s) for a single relaxation time process; 

where T is the relaxation time. 
Th e di spersion equation is 

C(s) = 0 

and is used in ultrasu ni cs with s re placed by iw. lt is known frum ultrasun ics 110] tha t 

where c'" is the infinite fr eque ncy sound s peed. In thermal relaxation [11] 

bl = [(Cp - cv)c,] 2oT, 
(CV - c,)cp 

where c, is the s pecific heat of the vibrational degrees of freedom. 
To compute 8(k , w) we first observe that 

p(k, w)=2 Re L'" dte- iw1p(k, t) 

where p(k , t) is the inverse Laplace transform of p(k, s). It follows that 

8(k, w) = (p(k)p(- k») {2 Re F (iw)/C(iw)} 

= (p(k)p(- k»)u(k , w). 

(20) 

(21) 

(22) 

(23) 

(24) 

An exact expression for a-(k, w) may be readily obtained by replacing s by iw in eq (16) and taking 
twice the real part. The resulting expression is quite involved; direct substitution leads to 

(25) 
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K ' 8 .608 X 10· cm- I 

co 
a 

10 K' 8.608x I0 ·cm-1 

V( K) ' 1.240x 103m/sec 
re '5.3 x I07rod/sec 

Q) 5 
Q 

3 
,; 
b 

O L-______ ~ ________ _L ________ ~ ______ ~ 

2 3 4 

w, Id rod / sec 

3 5 

b 

OL-______ ~ ________ _L ________ ~ ______ ~ 

1. 0 6 0 1070 1.080 

FI GU RE 1. The central component of <T(k, w ) f or scattering 
in CS, at :20 °C as a function of w. 

FI GU RE 2. The phonon component of <T( k, w) fo r scattering 
in C5, at :20 °C as a f unction of w. 

Whe n a He- Ne lase r is the suu rce. k= 8.608 X 104 e m - I c urre s ponds 10 sca l­
tering at 30° 

where 

and 

Whe n a He -Ne lase r is the sou rce k = 8.608 X 104 em- I corres pond s to scal­
te ring a t 30° 

(26) 

(27) 

Now we have an exac t e xpress ion for the frequ ency distribution of the scattered light. If 
we wis h to be able to interpre t thi s in te rms of the properti es of the material, we must develop 
a way to pick out the s ignificant portions of a-(k , w) for differe nt values of w. W e have evaluated 
a-(k , w) for a re presentative se t of material parameters and k = 8.608 X 104 ; the result s are shown 
in fi gure 1 and figure 2. This corresponds to ()= 30° for scattering in CS2 using a He-Ne laser. 
To obtain as much useful inform ation as possible from s uch a pattern it is necessary to write eq 
(25) as a sum of terms whi ch are individually important only over a restric ted range of frequencies 
w. The de nomin ator does not obviously factor so an indirect approac h is needed. One method 
is to pic k out th e important te rms, say for small w and to discard the rest. Another approach, 
one used profit abl y in re fere nce 8, is to a pproximately compute the inverse La place tran sform 
of p(k , s) and then to compute p(k, w) by means of eq (23). The virtue of thi s me thod is that alge­
braic expressions for the modes of motion of the density fluc tuations are obtained . The difficulty 
of course is to obtain good a pproximate solutions to the di spersion equation , eq (21). W e shall 
make use of both approaches to inves tigate the properti es of a-(k , w). 

4 . Properties of a-(k , w) 

In thi s sec tion we are concerned with the cons truction of a good approximation to a-(k , w) 
which will permit interpre tation of spectral di stribution c urves in te rms of the properties of the 
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scattering fluid. The results of this section are contained in eqs (43), (45), and (46), and are listed , 
for convenience, in subsection 4.6. 

4 .1. Approximate Solution of the Dispersion Equation 

When b'(s) is given by eq (20) , the tran sform for the de nsity , eq (16), is 

where 

and 

The first s tep in computing p(k , t) is to obtain approximate roots of 

(30) 

It is convenie nt to introduce the dime nsionless quantiti es 

Y =slcok 

(31) 

D= cokT 

into eq (30) with the result 

DP + P [1 + D(a+ ,80)]+ y 2[a + ,80 + ,81 + D(1 + a,8o)] + Y[1 + a,8o + a,81+ Daly] + a/y = o. 
(32) 

F or interesting values of the change in the wave vector , k, 

D = 1, 

while 

a <ii 1, ,80 <ii 1. 
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First we look for solutions of eq (31) which are of order unity. The relevant parts of eq (31) are 

we have neglected terms of order a and 0'2. One root of eq (33) is zero so we also must examine 
eq (32) for solutions of order a. The dominant terms are then 

Y+O'/y= O. (34) 

Here terms of order 0'2 and smaller have been dropped. The solution to eq (34) is 

. Y=-O'/y (35) 

or 

which also appears in classical theory. 
When the Y = 0 term is removed from eq (33) we have 

ya +Y2/D+[D~IJ y+i= O. (36) 

The formal factoring of eq (36) is 

(Y + A )(Y2 + BY + C) = O. (37) 

Two solutions are 

Y = - B/2 ± iC1/2[1- B2/4C]I/2 (38) 

which correspond to the phonon modes. The third solution, 

Y=-A 

yields a second nonpropagating mode. In order that damping occur, it is necessary that A > 0 
be satisfied. For phonons to exist it is necessary that B2/4C ~ 1 so 

Y = - B/2 ±iCl/2. (38') 

Comparison of eqs (36) and (37) shows that 

AC=l/D 

therefore 

Y=-l/CD. (39') 

Now multiply eqs (38') and (39') by cok to obtain 

s = r B ± ivk; vk = COkCl/2 

(40) 
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and 

The lifetime of the phonons is (flJ)- 1 and their speed is v. These are as yet unspecified quantities 
to be extracted from the exact expression of cr(k, w). Before we do this we shall obtain an approxi­
mate formula for cr(k, w). 

4 .2 . Calculation of cr(k , w) 

We take C1(s) to be 

C1(S) = T(S + ak2 /y) (s + f IJ - ivk) (s + f IJ + ivk) (s + C6lV2T). (41) 

Combining eqs (28) and (41) it is a s traight forward process to obtain the inverse Laplace trans­
form of p(k , s). Ignoring small terms, we obtain 

Next we apply th e operation indicated in eqs (23) and (24) to obtain 

+ [[1 - c5/v2(1-1/y)] [v2k2 + C5lV2T2] - (c; - c5W] 
CUV4T2 + v2k2 

The prime means that cr' is an approximation to cr(k, w), which is given by eq (25). 

(42) 

(43) 

The first term in eq (43) corresponds to decay of a fluctuation by a thermal diffusion process. 
We refer to it as the thermal mode. The second term also represents a non propagating type of 
decay which is coupled to the internal degrees of freedom of the molecules. The last term rep­
resents the phonon modes. Equation (43) is derived on the assumption that (ak2 /Y)T is much 
less than one. If this is not the case, eq (43) is a poor representation of the nonpropagating modes. 

4 .3_ Determination of v(k) and fli 

Thus far the phonon speed v and width flJ are undetermined quantities. In thi s subsection 
we remedy this by comparing the phonon terms of eq (43) with the significant parts of cr(k, w), 

eq (25), when w ~ vk. 
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FIGURE 3. The phonon veLocity v(k) as a function of the 
wave vector k for CS2 at 20°C. 

> 1.1 0 

V(k) vs k 

C5 2 T:20'C 
The experimental point (x) is taken from reference lB. Equation (45) and 

parame ters from table 1 were used to construct this c urve. 

1.00 L--___ --'--___ -.-J'---___ --'::-___ ----' 

o 0.5 1.0 1.5 

The direct evaluation of u-(k , w) shows that the phonon peak coincides with the vanishing of 
the imaginary part of the dispersion relation, 

The positive root of eq (44) determines the phonon frequency v(k)k. Neglecting the term involving 
the thermal diffusivity , a, eq (44) is 

The solution is 

(45) 

From eq (45) we see that as k ~ 0, v(k) ~co and as k ~ 00, v(k) ~ CX ' The variation of v(k) with 
k is indicated in figure 3 

The width [R is obtained by observing that if D2(V(k)k) = 0, DI(v(k)k) = - 2[v(k)kJ2[ H. 

minus sign is necessary so that [H > 0 be satisfied. Direct substitution in eq (26) yields 

2[ - k2 b k2 _ (C5) (ak2) + [ blk2 ] (1- k2 ) 
B - a + 0 v2 ')' 1 + v2k2-r2 a 7. 

The 

(46) 

It should be noted that the width due to the relaxation is not simply added to the classical absorp­
tion term ak2(1- 1/,),) + bok2• In practice this difference may not be significant , although for 
CS2 it amounts to about 5 percent of [H. 

The me thod used to obtain v(k) and [H should be applicable to more complicated situations 
although it would be advisable to examine D 1(w) and D 2(w) numerically and to verify that D2(v(k)k)=0 
for each new situation . 

4.4. Comparison With the Exact Expression 

The approximate frequency distribution contained in eq (43) has been compared numerically 
with the exact expression, eq (25). This is illustrated in figure 4 where the percent deviation of the 
approximate expression from the exact one is shown as a function of frequency. The parameters 
are the ones used to obtain figure 1. The deviation in the central components is probably due to 
a small error in the width of the thermal diffusion mode. A decrease of 1 percent in that width 
would eliminate most of the difference between u-(k , w) and u-'(k, w). The deviation in the phonon 
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FIGURE 4. The percent deviation [(0' - 0")/0' ] 100 of the 
approximate freqllency distriblltion , O"(k , w) , from the 
exact distribution, O'(k , w), is shown as a function of fre· 
qllency w. 

0 r-------~----_7~~~----1-------~ 

The parameters are those of CS2 at 20 °C and k = 8.608 X 1()4 C Ol - I , 

-3L-______ -L ______ -J ________ ~~ ____ ~ 

1.060 1.070 1.080 
W, 10 10 rod/sec 

component indicates that the maxima of the exact and approximate expressions do not quite coin­
cide. This res ults in the oscillating deviation s hown in figure 4. Deviations greater than 1 per­
cent occur whe n the magnitude of CT'(k , w) has fallen to less than 1 percent of its maximum value 
CT'(k , 0). The s um rule, eq (10) , is satis fi ed by the approx imate express ion CT'(k, w) to within 1 
percent using thi s set of parameters. 

lti s, of course, possi bl e to improve the accuracy of CT'(k , w) by ob taining more accurate solu­
tions to the di s persion equation. This would involve using th e soluti ons we have found , eqs (35) 
and (40), as th e starting point of an iteration of the di spers ion equation. Th e resulting form ula 
for CT' (k, w) would be mu c h more complicated than eq (43) . 

4.5. Intensity Ratio 

The ratio of the intensity of the unshifted (central) components of the scattered light to the 
intensity of the Brillouin components is a quantity which is readily obtained experimentally. 
This ratio, Y = I{,/2 I/3 , is easily obtained from eq (43) by integrating the individual terms: 

(47) 

At low phonon fr eque ncies vk1' ~ 1 this reduces to th e Landau-Placze k res ult 

Y= y-l. (48) 

At large phonon frequencies (vkT ~ 1) a more involved expression than eq (48) is obtained; 

Y = ( y - 1) [1 + {y / ( y - I)} {( c; - c&) / c&} ] . (49) 

The high freque ncy limit, eq (49) was obtained earlier by Rytov [13]. 
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The ratio of intensities yr, given by eq (47) agrees within 1 percent of yr obtained by numerical 
integration of the exact expression for u-(k, w). From an experimental point of view, eq (47) should 
be taken to be an upper bound on yr. This is because it may be difficult to detect all of the light 
scattered by the second non propagating mode; the difficulty arises from the large width of this 
component. 

4.6. Summary of the Properties of u-(k, w) 

In the previous paragraphs we have shown that u-(k, w) , the frequency distribution function, 
may be approximately represented as a sum of four Lorentzian curves; ~ 

+ [[1 - cij/v2(l-1/y)] [v2k2 + CUV2T2 J -(c~ - c5)k2] 
CMV4T2 + v2k2 

x [ [/I + [n ] 
n+(w-vk)2 f;}+(W+Vk)2 

where the phonon speed v (k) satisfies 

and the phonon width is 

(43) 

(44) 

(45) 

(46) 

The ratio of the central components to that of the Brillouin lines is , in the high frequency limit 
(v(k) ~ c,J 

kP =(y-1)[l + {y/(y-1)} {(c;'-cij)/cij}]. (49) 

5. Comparison With Experiment 

5.1. CS 2 

In the previous sections, various points have been illustrated by using parameters appropriate 
to carbon disulfide (CS 2 ). For example, Figures 1,2, and 3 show u- (k, w) and v (k) for CS 2 as 
predic ted by egs (25) and (45). Comparison with experiment is limited to the phonon speed and 
to yr , the ratio of the intensities of the central and Brillouin components. 

Th e parameters for CS 2 at approximately 20 °C are listed in table 1. Several measurements 
of the phonon speed are listed in table 2. To within the precision with which T and k are known , 
eq (45) predicts that v (k) lies within the experimental uncertainty in each case. 
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TABLE 1. Material parameters: CS 2 at :20 °C 

Param eter Value Refere nce 

(/ 1.95 X 10 :1 (,1ll~/sc(' 6 
b, 3.84 X 10- ;1 (; m"!./se<: 14 
b, 4.76 c lll ~/see 10 
c" 1.142 X l(}; crn /s t:c 10 

2.04 X I O- ~ Sec 10 
1.675 6 

p" 1.262 ~m/l'Ill :1 6 
y I.SS 10 

TABLE 2. Phonon velocity alld illtellsity ratio; CS2 

E xpe rim enta l Calcu lat ed 
Hde rent.:c 

Veiul: il y .f Veluc it y .f 

III/sec III /sec 
15 1235 - 124 1 0.83 
16 124 1 ·0.77 1241 .83 
17 1250 .71 124 1 .83 
6 1265 .9:1 124 1 .83 

18 1223 - 1212 .69 

The ex pe rimental ve locities have been reJuced 10 20 °C us in g: dv/dT=- 3.2 m/ticc­
dcg 161. Th t, veh,c it ics were calculated using eq (45). .f v<lI LI es we re calcula ted lI S ill~ 
cq (47). The mate rial pararm: lcrs were taken from taL le I and k, the wave vectur. was 
delt:! rmined from in furmatiu n in the rdercnces. 

T hree of th e references contajn meas ure me nts of ..fi. H ere th e agreement js not as close. 
The value of ..fi predi c ted by eq (49) is 0.83. That the agreement wjth th e phon on veloc jty js be tter 
than the agreement with ..fi is not s urpri sjng. Th e Ijmjted se ns itjvjty of th e de tec tors used in these 
meas ure me nts makes it diffic ult to obta jn accurate determination s of ..fi. Th e prese nce of th e 
"second " nonpropaga tjn g mode aggravates th e s ituation; unless the de tec tor is quite se ns jtjve, 
muc h of th e Ijght in th a t mode would be los t in th e noj se of the detec tor. 

5.2. CCI 4 

Sufficient data exi s t for carbon te trac hloride (CCI4) to warrant co mparj son wjth the predjc tj on 
of th e s in gle re laxation tim e th eory. This comparison indj ca tes that only a part of th e ene rgy of 
the inte rnal degrees of free do m re laxes wjth a tim e on the order of 10- 10 - 10- 11 sec. Pres umabl y 
the r e m a jnd e r of the e ne rgy re laxes more rapidly than can be d e tec t e d by light sca tt e rin g 
experim e nts . 

The pa rameters for CCl~ at approximately 20 °C are Ij s ted jn tabl e 3 . Four meas ure me nts 
of the ph onon s peed obtajned from Brilloujn scatte rin g measurem e nts and one aco usti c meas ure· 
ment of th e s peed of sound in CC I4 are li s ted in table 4. Th e calc ulated velocities in table 4 are 
based on th e assumption that only 75 percent of the inte rnal specific heat is involved jn th e relaxa­
tion process and that T = 5.12 X 10- 11 sec. Thi s value for T is co ns iste nt with th e acousti c meas ure· 
ment. The agreement be tw een th e meas ured and calculated values of ..fi is poor. This is not 
unexpec ted if another relaxation time exists for CC14 • Thj s would imply th e existe nce of another 
non propagating mode which would make ..fi large r than the prediction of e q (47). 

Also , for CC1~, there is a meas urement of the width of the Brillouin line. Experjm e ntally 
r/J = 4 X lOB rad/sec whjle eq (46) predicts r/J = 5 X 109 rad/sec if 3/4 of the internal specific heat 
js involve d in the relaxation process. 

TABLE 4. Phonon velocity and intensity ratio; CCl 4 

TABLE 3. Material parameters: CCI. at 20°C 
Ex perimenta l Ca lculated 

Reference 
Parameter Value Reference 

Ve loci t y .f Ve lucit y J 

a J .78 X 10- :1 cm2/sec 6 
bo 5.98 X 10- 3 crn 2/ scc 14 Ill/sec m/sec 
h, 3.59 X 10- 2 cm 2/sec 10 6 1040 I. 10 1024 0.77 
c, 9.20 X 10" em/sec 10 16 988 0.75 990 .62 

5. 12 X 10 II sec 17 1000 .72 990 .62 
1.472 6 20 1002 - 990 .62 

p o 1.594 g m/cm 2 6 19 972 acousti c 
y 1.46 10 m easurem ent 

---

The re laxatiun t ime 'T was estimated fru m acoust ic measurements [191. The ex perimental ve loc ili t:s have been reduced 10 20 °C using dv/dT =- 3.1 m/sec - d eg 
[6J. The veloc ities were calc ulat ed us ing eq (45). $ values were calc ula ted us ing eq 
(47). The mate ri al paramet e rs we re taken from tabl e 3 a nd k , the wave vectur. was 
determined from information in th t: refe rences. 
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In a previous publication [21J we stated that more than one relaxation time exists In CC14 

and therefore the single relaxation time theory did not apply. Although the available data are 
insufficient to fully verify this statement, the phonon speed comparison suggests that this state· 
ment is correct. 
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