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THEORY OF DESIGN AND CALIBRATION OF VIBRATING-
REED INDICATORS FOR RADIO RANGE BEACONS

By G. L. Davies

ABSTRACT

This paper gives a general treatment of the theory of design of vibrating-reed
indicators, which was developed in connection with measurement and design work
on the tuned-reed course indicator for the aircraft radio range beacon. The
equations and conclusions may be readily adapted to apply to any similar vibrating
system.
By assuming that a reed may be replaced by an equivalent particle, vibrating

in the plane of the driving poles, the differential equation of motion is simplified
greatly and becomes readily solvable for small vibrations. Equations are given
for determining the constants of the equivalent particle from the dimensions and
constants of the reed. The expression for the frequency of a loaded uniform reed,
computed by a method equivalent to one given by Rayleigh, checks very closely
with that obtained by Drysdale and Jolley for a similar reed. This theory for
small vibrations is applicable when the amplitude is small enough so that its

square may be neglected in comparison with the square of the air gap.
From an analysis of large vibrations of tuning forks by Mallett, the behavior of

the reed at relatively large amplitudes of vibration is inferred, although an exact
quantitative verification of the theory is difficult.

Design equations are given for uniform reeds and for the type used in the reed
indicator. From the results of both theory and experiment, the effect of the
various factors of design and operation upon the reed frequency is discussed, and
the calibration procedure necessary to take account of these factors is outlined.
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I. INTRODUCTION

This theory of reed indicator design has been developed in con-
nection with a program of measurement and design work on the

tuned-reed visual course indicator for the aircraft radio range-beacon.

The purpose of this work was to improve the sensitivity of the indi-

cator, to standardize the design for production manufacture, and to

develop apparatus and methods for laboratory and production
calibration.

The theory of lateral vibrations of bars has been very completely
developed by Lord Kayleigh. 1 However, his theory, while having

i Lord Rayleigh, Theory of Sound, 1, Ch. VIII, p. 255.
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the advantage of great generality, is somewhat complicated for prac-
tical use, and is not applicable to damped, forced vibrations. Several
investigators have developed simplifications of Rayleigh's theory,
but these have not been found to be useful in connection with this

problem. Mallett 2 has given a very thorough treatment of large

vibrations of electrically driven tuning forks. With certain modi-
fications, necessitated by differences in drives, his equations may be
applied to vibrations of reeds and are used to explain some of the
properties of reeds when vibrating at large amplitudes.

Rayleigh derived an equation for the frequency of free vibration
of a uniform bar, but none of the investigations includes any equation
for the frequency of a reed of nonuniform cross section, nor do they
give any method for the calculation of the sensitivity of driven reeds.

There is a definite need for these equations in indicator design, and
they are developed in this work. The equation for frequency is

obtained by Rayleigh's method, while an assumption that the reed
is replaceable by an equivalent particle enables an expression for

sensitivity to be derived.

The greatest problem encountered in production manufacture has
been nonuniformity of indicators. This has necessitated the expendi-
ture of an inordinately large amount of time in calibration, thus
increasing costs of manufacture. In order to minimize this time, it

is necessary to determine and eliminate the causes of nonuniformity.
Also, careful and exact design results in a simplification of calibration

procedure which is of great value to a manufacture.
It has also been necessary to develop apparatus and methods for

calibration, which includes tuning the reed to the proper frequency
and adjustment of its sensitivity and sharpness of resonance to the
desired values.

II. THEORY FOR SMALL VIBRATIONS

A brief outline of the type of drive used in the reed indicator will

give a clearer conception of what follows. Constructional details of

the indicator are given in a publication by Dunmore,3 and a dia-

grammatic sketch is shown in Figure 1. In this figure, A is the per-

manent magnet used to polarize the reed, B indicates the driving
coils and pole pieces, and C is the reed. The magnetization of the
permanent magnet is such that, with no current in the driving coils,

both pole pieces have a polarity opposite to that of the reed and
exert equal and opposite attractions upon the reed. The driving
coils are connected in such a manner that when a direct current is

passed through them, the ends of the coils nearest the reed have
opposite magnetic polarities. Consequently, when a direct current
flows in the coils, the attraction of one pole for the reed is increased
while that of the other pole is decreased, and a force thus acts on the
reed tending to displace it from its neutral position. If an alternating
current flows in the coils, the attractions of the poles vary periodically

with the current and the force on the reed varies correspondingly.
It is obvious that, as soon as the reed moves from the neutral

position, a second force due to the permanent magnet comes into play,

1 E. Mallett, Resonance Curves of Tuning Forks, Physical Society Proc, 39, p. 334; 1927.
8 Design of Tuned-Reed Course Indicators for Aircraft Radio-Beacon, B. S. Jour. Research, 1 (RP28)

;

November, 1928.
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inasmuch as the reed is then nearer to one pole than to the other.

This force also tends to pull the reed away from its neutral position.

Figure 2 shows a top view of the reed, with the damping vane at-

tached at the narrow end.

For small vibrations, the square of the deflection from the neutral
position may be neglected in comparison with the square of the gap.

N
Figuke 1.

—

Schematic diagram of drive used in reed indicator

(side view)

If it is assumed that the entire reed may be replaced by an equivalent
particle between the driving poles; that is, a particle of which the
displacement at each instant is the same as that of a point on the reed
between the driving poles, and which has the same kinetic energy, the
same potential energy, and thus suffers the same loss of energy per
unit of time as the reed, then the equation of motion may readily be
written and solved. This assumption is the same as saying that the
phase is the same at every point on the reed. There is little but

4
x, r
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Figure 2.— Top view of reed used in reed indicator

pragmatic justification for this assumption, although its success in

numerous similar cases warrants its adoption here. The final

justification, of course, lies in the experimental verification of equa-
tions dependent upon the assumption. If the mass of this hypotheti-
cal particle is m, the damping force per unit velocity is r, and the
restoring force per unit of displacement is s, the equation of motion is

my" + (r +A1)y'+ (s-A2)y =BI cos at (1)

where y is the displacement of that portion of the reed immediately
between the magnet poles, B is the force per unit current, / is the
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maximum instantaneous value, and co the angular velocity of the
current in the driving coils, and the primes over the y's indicate
differentiation with respect to the time t. Ai is a constant represent-
ing the increase in damping caused by magnetic and mechanical
hysteresis, and A2 is a constant denoting the decrease in stiffness

caused by the permanent magnetic field. The quantities, r-\-Ai and
s —A2 , are replaced by r

f and s
r
in the following. The solution of (1)

for a steady state of vibration is

y= -£ sin (<at + 0) (2)

where

Z=V"V 2 +(s'-a>2m) 2

and

6 = tan l
-,— = tan 1 —,

cor r

(3)

s
r

X being written for com. The amplitude of this vibration is a
CO

maximum when Z is a minimum or

/-—

C

(4)
\ m 2m£

This equation shows that the reed vibrates with maximum amplitude
when the frequency of the driving current is somewhat lower than
the frequency of resonance of the damped reed outside a magnetic
field because the quantity s' is less than the normal stiffness of the
reed, and the quantity r' is greater than the normal damping force.

The amount of this lowering of the frequency of resonance by the
magnetic positional force is dependent upon the constants of the
magnetic circuit and the position of the driving coils.

1. EQUIVALENT-PARTICLE CONSTANTS

There remains the problem of determining the constants of the

equivalent particle in terms of the dimensions and constants of the

reed. For convenience the determination of the constants will be
based on the average values of the kinetic energy, the potential

energy, and the rate of dissipation of energy of the reed. The same
final results are obtained as would be obtained by using the instan-

taneous values. If Y=f (x) is the maximum value of the displace-

ment at any point x on the reed (x being measured from the base of

the reed), the r. m. s. values of displacement, velocity, and accelera-

tion at any point are r9 Y, fa^Y, and „wT, respectively. The

average kinetic energy of a small portion "o* the reed dx is

dT=\o>2Y2Apdx (5)

A being the cross-sectional area of the reed and p its density. The

kinetic energy of a load of massM on the reed is -? oj
2MYm, Ym being
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the value of the displacement at the load. The total average kinetic

energy is, then

T=^VapYHx +\»^MY*m (6)

If this is divided by one-half the square of the r. m. s. velocity at the
driving point, the result will be the mass of the equivalent particle

having the same kinetic energy as the reed and the same velocity as

a point on the reed between the driving poles

j^APY2 dx +^MY2M pj^AY2dx +^MY2M
m =_- =_-

(7)

~T ± x o L x

Yx is the value of Y at the driving point, and I is the length of the
reed.

Similarly, the total energy dissipated per unit of time divided by
the square of the velocity at the driving point gives

f%YHx + k2 AvY\
1 x

and the potential energy of flexure divided by the square of the dis-

placement at the driving point gives

-AJA
<

S) 2dx (9)

In these expressions ki and k2 are constants depending upon the
resistance of the air to the motions of the reed and the damping vane
respectively, Av the area of the damping vane, Yv the value of Y at
the center of area of the damping vane, YXo the value of Y at the

driving point, E Young's modulus for the material of the reed, and i"

the moment of inertia of the reed cross section about its neutral
axis. This use of the letter / will be readily distinguishable from
its use to designate the current in the driving coils of the reed, as

these two quantities appear in entirely different expressions in the
following work, and the context will indicate which quantity is meant.
The letters A in equation (7) and / in equation (9) are kept under
the integral signs because the reed may not have a uniform cross

section. Of course, if the reed were not of the same material through-
out, p and E would also have to be placed within the integrals. This
would be a rare case, however.
The above equations define the motion of the reed, provided that

the square of the amplitude in the air gap is negligible in comparison
with the square of the gap itself.

III. EFFECT OF LARGE VIBRATIONS

When the vibration becomes so large that the square of the ampli-
tude becomes comparable in magnitude with the square of the gap,
these equations no longer hold. The frequency of resonance becomes
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a function of the amplitude, and the resonance curve becomes unsym-
metrical, tending to drop off more sharply on the low frequency side

than on the high frequency side.

Mallett's treatment 4 of large vibrations of tuning forks may be
applied to the reed indicator and admirably explains these effects.

When properly transformed to conform to the conditions existing

in the reed indicator and the notation used here, Mallett's solution

becomes

/V — co
2m\ Y~CY*=DIcose

Y+GY3 =DIsinB
(10)

Here, co, /, m, r', and s' are the same as before, except that s' contains a

small term depending upon the current in addition to the terms
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Figure 3.
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-Resonance curves taken with constant current, showing increasing

distortion as amplitude is increased

A, 0.70 ma.; B, 0.83 ma.; C, 0.98 ma.

previously mentioned ; Y is the amplitude of vibration of the equiva-

lent particle; C, D, and G are constants depending upon the char-

acteristics of the permanent magnet and coils and upon the dimen-
sions of the magnetic circuits ; and 6 is the phase angle of the current,

referred to the phase of the vibration as standard.

Resonance curves plotted from graphical solutions of these equa-

tions show an increasing diss}^mmetry as the amplitude is increased.

The equations also show that the damping increases with amplitude.

The fact that the current amplitude enters into the quantity s' also

indicates that the frequency of resonance varies slightly with the

driving current at constant amplitude of vibration, the frequency

* See footnote 2, p. 196.
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decreasing as the current increases. Also, the damping should
change slightly with current at constant amplitude, but this effect is

too small to be detectable.

Experimental resonance curves show all of the above characteris-
tics, the upper portions of curves taken at constant current being
displaced toward the low -frequency side and becoming broader as
the maximum amplitude is increased (fig. 3), while the upper portions
of curves taken with variable current, the amplitude being held
constant as the frequency is varied, are displaced toward the high-
frequency side. (Fig. 4.) A sufficiently exact evaluation of the
constants entering into equation (10) to permit a thorough quantita-
tive check of these results has not yet been made.

It has been found desirable to sacrifice a certain amount of sensi-

tivity in the indicator to eliminate the effects of large vibrations, since

any change of the frequency of resonance with amplitude of either or

64-5 (A3 .6- .7 -6 .9 65.0 .1 .2. .Z>

frlqulncy-cyclejS pes*, slcond
6S5

Figure 4.

—

Resonance curve at constant amplitude, showing increase of fre-

quency as current is decreased

both reeds in an indicator (inasmuch as such a change is nearly always
different for the two reeds), will almost certainly result in a shift of

the course as the operating amplitude of the reeds varies. Such
variation of operating amplitude is inevitable, since it is virtually

impossible to maintain the output of an airplane radio receiving set

constant under operating conditions. Therefore, the gaps between
the reed and pole pieces are made so large that distortion of the reso-

nance curve at normal operating amplitude is negligible. For the
purposes of design, then, the vibration may be considered small,

although an accurate calibration procedure must still take account of

the large vibration effects.

IV. APPLICATION OF THEORY TO REED DESIGN

In order that equations (7), (8), and (9) may be used for the design
of reeds, the form of the function Y, which defines the curve of deflec-

tions assumed by the reed during vibration, must be determined. If

the cross section is uniform (provided the mass of the load is small
in comparison with the mass of the reed, as is usually the case), Lord
B-ayleigh has shown theoretically that the curve assumed by a vibrat-
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ing bar is very nearly the same as that which it would assume stati-

cally if deflected by a force acting at a distance from the base of three-

fourths the total length. Later, however, Garrett 5 showed by experi-

mental methods that the curve assumed during vibration is more
accurately approximated if the force is considered to be applied four-

fifths of the length of the reed from the base. By use of these data,

the curve assumed by a uniform reed vibrating freely is found to be

Y=^j(12l-5x)(o<x<p) (11)

T=^-
I
(15x-4l)(p<x<i) (12)

where P is the force deflecting the reed statically. By substituting
these expressions for Y in the formulas for m and s and carrying out

4
the integrations with x «^ I) equal to the value of x at the driving

poles, and with the load at the free end of the reed, these constants
are found to be as follows

:

2i

m- (12.40^+ 49.5M)
[^^^J

153.6 EIV $ T
s

l
z [_x

2
(12/

I
-5x )J

(13)

Now, even though the damping of the reed is greatly increased by
means of the air vane, the total damping still remains negligibly

r'
small. For example, in the case of a 65-cycle reed with ~— equal to

3, which is about the largest value encountered in actual indicator

reeds, the value of -.—§ is approximately 5X10"5 times the value of

— 1 so that the effect of the damping upon the frequency of free
lib

vibration is less than 1 part in 20,000. Accordingly, the frequency
of free vibration of a reed outside a magnetic field may be expressed

J=Ui (14)

Substituting for s and m the values given above,

, 0.1617cF . .

J ~(l + 2R)l2
{b)

'E
in which c is the thickness of the reed, V= -* /

- is the velocity of sound
V. p

in the material of the reed, and R is the ratio of mass of load to mass
of reed (this is assumed small). For a similar reed, Drysdale and
Jolley 6 give

0.1637 cV
nfi

v

J ~(l+2MR)l2 { }

» C. A. B. Garrett, On the Lateral Vibrations of Bars, Phil. Mag., 8 p. 581; 1904.

• Electrical Measuring Instruments, 2, p. 261. (A misprint has been corrected.)
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The agreement between these two formulas affords excellent con-
firmation of the correctness of the assumptions made regarding the
shape of the curve of deflections, since in the derivation of their

formula Drysdale and Jolley used entirely different assumptions and
a method different from that used here.

It should be pointed out, however, that the validity of equation
(15) does not confirm, the equivalent-particle assumption. The ex-
pression for the frequency may be obtained by equating the average
kinetic and potential energies of the reed. Since the equivalent par-
ticle is assumed to have the same kinetic and potential energies as

the reed, equating the average kinetic and potential energies of the
particle necessarily gives the same frequency, as may be seen by
substituting in equation (14) the values of s and m from equations

(9) and (7). The method here given of computing the frequency,
then, involves the determination of the form of the curve of deflec-

tions, Y=f(x), and it is then equivalent to the approximate method
of Lord Rayleigh. 7

Frequencies computed by means of these formulas will be some-
what higher than those actually given by the reeds in the indicator

because of the lowering due to the magnetic action. If all the factors

entering into these frequency lowering effects are known accurately,

they may be included in the formula, but their presence complicates
the result considerably. Furthermore, these factors are very difficult

to determine before the reed itself is made, so that, generally, it is

far simpler to use the above formula and design the reed, considering
R to be zero, to have a frequency sufficiently higher than the desired

frequency so that, with the reed in the indicator, a certain amount of

loading must still be added to bring the frequency down to the desired

value. This permits adjustment of the load for accurate tuning.

Since Drysdale and Jolley have shown 8 that their equation (16)
for the frequency of a reed checks very closely with experimental
results, either equation (15) or (16) may be used to determine the
velocity of sound in the alloy used for reeds in the indicator. This
alloy, known as " Allegheny electric metal," is used because of its high
magnetic permeability and low thermoelastic coefficient. The value
of Young's modulus of this material, which is necessary for the calcu-

lation of the velocity of sound in it, is not available at present. From
observations on a reed made from sheet stock 0.020 inch thick cold-

rolled to a final thickness of 0.015 inch, the value of 7was found to be
4X10 5 centimeters per second. This can be considered as an
approximation only, since experience shows that V varies appreciably
with the thickness to which the 0.020 inch stock is cold-rolled, the
thinner material having somewhat lower values of V.
To obtain an expression for the sensitivity of a reed, equation (2) is

used. This equation gives the value of the displacement of the reed
at the driving poles. It is necessary to multiply this displacement by
the ratio of the amplitude at the tip of the reed to the amplitude in

the gap in order to determine the deflection of the free end of the reed.

Thus, for the tip of the reed

Y TiT
yi=rt ' ir

sin(c4+ ^ (17)

7 See footnote 1, p. 195. 8 See footnote 6, p. 202.
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For values of oj near resonance, Z may be considered as approxi-
mately equal to cor'. Consequently

Y BT
J. x «"

or

r,-^-£ (19)
ar' Y,

Now, r
r

is different for reeds of different frequencies, but since it is

necessary that all reeds in the indicator have resonance curves of the
same shape, the sharpness of resonance SR must be constant for all

reeds. Sharpness of resonance is here defined by the equation

Sr=J^ (20)

where j\ and f2 are the frequencies at which the amplitude on the
resonance curve is 0.707 of the maximum amplitude, and/B is the fre-

quency at maximum amplitude. It may readily be shown that,

defined in this manner

SB=^ (21)

where co is the angular velocity at resonance. On substitution of the
value of r' obtained from equation (21), equation (19) becomes

r,=*pN i (23)

or, since w 2m

To a first approximation, s may be used in place of s', since A2 is

rarely greater than 5 per cent of s.

Now in the case of a forced vibration it is possible that even a uni-

form reed does not conform to the curve of deflections already given,
unless the driving force is applied at a point four-fifths of the length
from the base, which is not usually the case. Furthermore, reeds
having other than uniform cross sections may be desirable in many
instances, as in the reed indicator. In general, therefore, the curve
of deflections must be determined experimentally and the correspond-
ing equation developed. If it is possible to approximate to the curve
of deflections by assuming the reed to be deflected by a single force at

some point, the task of finding the equation of this curve may be
simplified greatly. It should be pointed out here, however, that this

method is useless in the case of a nonuniform reed unless the dimen-
sion (or dimensions) of the reed which varies with the distance from
the base is expressible as a function of x which can be integrated. If

this is not the case, it is necessary to fit a power series or other func-
tion of x to the observed curve. The equations for m, r," s, frequency,
and sensitivity, will then have different forms from those given above.
However, it may be shown, by suitable transformations of variables
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and functions within the integrals, that the occurrence, in the equa-
tions for m, r, s, frequency, and sensitivity, of all quantities independ-
ent of x is not affected by the form of the function representing the
curve of deflections. Thus, these equations may be of some value
even though the exact form of the function representing the curve of

deflections is not known. For a reed of the type that is used in the
reed indicator (fig. 2), m and s may be written

m= jTi (24)

jEfMu b2 , k)
f9

;
s

Here, bi and b2 are the widths of the wide and narrow portions of

the reed, Jc is the ratio of the length of the wide portion to the total

length, and N is a numerical constant. Fh is a function derived
from the equation of the curve of deflections and is equal to the value
of F,

for x= Xo, that is01

F

Yx

Yl

From these values for m and s

=?,=<!) ^
Fh=^ =F(fy = F(h) (27)

f
_NlcV

/
/, (b 1} b2} k)

I
2 V/i (K 62, *) +/2 (6i, b2 ,

k) R {Zb)

1 E &f* (b lt b2 , k)
^yj

where Ni is a numerical constant and B' is the constant B of equa-
tion (4) multiplied by the numerical factors arising from the substi-

tutions and transformations made to obtain equation (29). In these
equations, the manner of occurrence of the quantities, c, Z, p, E, and
V is independent of the form of the function representing the curve of

deflections. Therefore, if the values of bi, b2 , and k are, or can be,

fixed, and an approximate value for Fn obtained, either experimentally
or mathematically, the equations have a certain field of usefulness as

design equations. Thus, for the type of reed in use in the radio-

beacon course indicator, Fh is found to be very nearly proportional
to h2

, and the following relations are found useful, in connection
with experimental data:

focf2 (30)

Fa »*
(31)

An exact equation for / may be derived by fitting to the experi-

mentally observed curve of deflections an empirical equation and



206 Bureau of Standards Journal of Research [Vol. r

using this equation to determine the values of Ni and the functions
of bi t &2j and k. This has been done in the present investigation as
follows : The curve of deflections of the indicator reed was determined
by measuring the double amplitude of the vibrating reed at a num-
ber of points along its length, by means of a traveling micrometer
microscope. The distance from the base of the reed to the meas-
uring point was determined in each case. The values for the double
amplitude were then corrected for the thickness of the reed, divided
by two, and plotted against the corresponding distances from the
base of the reed. To fit this observed curve, it was found necessary
to use three separate equations—the first, containing terms in x
and x 2

) applied from the base to the end of the wide portion; the
second, also quadratic in x, applied from the end of the wide portion
to a point three-fourths of the length from the base; and the third,

which was linear, applied to the remaining portion of the reed. By
calculation from these equations, taking bi = 0.794 cm, 62 = 0.127
cm., and & = 0.465 (which are the standard values for all indicator
reeds), the values of/i,

/

2 , and/3 were found to be as follows:

jx (b lt b2,k) = 0.037.

j% (b l} b2,k) = .172.

fz (b l} b2,k)= .179.

Also

Upon the introduction of these values, equation (28) becomes

/=
0£c7

J
J
2

Vl+4.65#
or, if R is small

, 0.35 c V ,««\
J

Z
2 (l+2.33#) y }

This equation and the relations (30) and (31) have been found to

check very well with experimental data taken on a large number of

indicators. Figure 5 shows the current required to drive a reed at

8 mm. total tip amplitude plotted against K\ Equation (32), of

course, does not include the effect of magnetic action upon the reed

frequency. As a consequence, frequencies calculated by this equa-
tion are consistently higher, by approximately 2 per cent, than the

frequencies of the reeds in an indicator. In designing reeds, approx-
imately five cycles per second allowance is made for the effect of

magnetic action and load; that is, the dimensions for a 65-cycle reed

are calculated from equation (32) by using /— 70 cycles per second.

In special cases, when an unusually large load must be attached to

the reed, greater allowances must be made.
An interesting application of these results occurs in the 3-reed or

12-course indicator. Because of space limitations in this type of

indicator, it is not possible to set the driving coils at the proper posi-

tions to give equal reed sensitivities for equal gaps. In this case, the

distance from the driving pole to the free end of the reed is considered

constant and the reed sensitivity varied by moving the base of the

reed, thus varying the length and driving distance (x ) simultaneously.
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As the length of the reed is varied, the thickness must also be changed

to keep the ratio „, and hence the frequency, constant. If du d2 ,

and dz represent the distances from driving poles to reed tips, and
l1} l2 , and l3 the lengths of the 65, 86%, and 108% cycle reeds, respec-
tively, the following equations are obtained from the given conditions

:

(-!)' (>-£)' (-!)"
27V 64Z2

3
125/,3 (34)

Each of these fractions is proportional to the sensitivity of the cor-
responding reed, so that a graph of the value of each fraction against

g \.oz
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Figure 5.

—

Relation between current necessary to drive reed at 8 mm tip double
amplitude and square of ratio of driving distance (x ) to length of reed (I)

the corresponding length will show how the sensitivity of that reed
changes as the length is varied under the prescribed conditions.

Figure 6 shows the values of all three of the fractions plotted against
a common scale of lengths for di = d2

= 4.70 cm, and a\ = 3.64 cm. The
intersections of any horizontal line with these curves give the lengths
required for equal sensitivities. For actual design, the horizontal
line is taken as high as possible to give maximum sensitivity. After
the lengths are determined from these curves, the corresponding
thicknesses can readily be calculated.

The damping of the reed is not so easily obtained. The air-

damping vane used on the reed introduces many factors the magni-
tudes of which have been difficult to control. Consequently, at the
present time, no thorough experimental verification of theoretical

60869—31- 14
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expressions for damping is available, and the design of the air dampers
continues to be mainly empirical. Equation (8) indicates that the
value of r', for a reed of fixed dimensions driven at a fixed point, should
be a linear function of Av , the area of the damping vane. The data
available at present, however, when plotted against the area of the
damping vane, give points that are too scattered definitely to deter-
mine the shape of the required curve. Further experimental work,
perhaps, accompanied by a more detailed theoretical analysis, will be
necessary for a final determination of equations for the design of

damping vanes.

V. CALIBRATION OF REED INDICATORS

The tuning of the reed is of the utmost importance, as the operating

requirements are very exacting. Since the frequency of maximum
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Figure 6.
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Curves for determining length of reeds in 12-course indicator

response and the damping change with amplitude, a standard cali-

brating amplitude must be chosen and all measurements made at this

amplitude. A very convenient method for determining the frequency
and sharpness of resonance at a given amplitude Y consists in adjust-

ing the driving source so that, as the frequency is varied, the maxi-

mum amplitude obtainable is equal to ^2Y. If, then, the frequency
alone is varied so that the reed vibrates with amplitude Y (which will

occur at two frequencies), and the frequencies giving this amplitude
measured, the frequency and sharpness of resonance may readily be
computed. The measured frequencies are denoted by/i and/2 , and
SR is found by means of equation (20) while the frequency of reso-

nance,/^ is given by

tR~~2~ (35)
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As noted above, resonance curves taken with constant current
show a marked dissymmetry, the upper portions being displaced

toward the low-frequency side. If the voltage across the indicator

instead of the current through it is held constant, this dissymmetry
is even more pronounced. Curves taken at constant amplitude, with
variable current, on the other hand, show only a slight dissymmetry,
and here the displacement of the upper portions is toward the high-
frequency side. The frequency and sharpness of resonance for the
same reed will have different values when determined from these

different resonance curves. Consequently, it is necessary to select as

a standard, one of the three possible methods of tuning a reed—at

constant voltage, at constant current, or at constant amplitude. The
proper choice obviously will depend upon the conditions under which
the indicator is to be used.

Before this analysis is taken up, however, the cause of the difference

between resonance curves at constant current and those at constant
voltage should be considered. If the reed is held stationary in its

neutral position and the impedance of the driving coils measured at
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Resonance curves showing effect of impedance variations upon fre-
quency and sharpness of resonance

various frequencies in the neighborhood of the frequency of resonance
of the reed, this impedance will be found to be exactly the same as

that of any impedance having the same constants. This is termed
the damped impedance. If, now, the reed is allowed to vibrate, and
the impedance again measured, at frequencies near the frequency of

resonance of the reed the impedance will have values considerably
different from the damped impedance. At frequencies slightly below
resonance, the impedance is greater than the damped impedance,
while at frequencies above resonance the impedance is less than the
damped impedance. Consequently, when the voltage is held constant
for measurement of a resonance curve, the current through the driving
coils will vary with the frequency, being lower for frequencies lower
than resonance than it is for frequencies higher than resonance. This
explains the greater dissymmetry evidenced by curves taken at con-
stant voltage. These impedance variations must be considered in
tuning the reed if the indicator is to be operated under conditions such
that its impedance variations will cause variations of the current
through it. (See fig. 7.)

Now, the reed indicator was developed for use in the output of a
radio set as a visual course indicator for the radio range beacon.
Furthermore, pilots are instructed to use it at a fixed amplitude
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(8 mm). The volume control on the radio set may be either manual
or automatic. If manual, the indicator may be considered to be
operating in a series circuit comprising the indicator, a resistance

equal to the output impedance of the set used, and a source of con-
stant voltage but slightly varying frequency (because of slight varia-

tions in the modulating frequencies of the beacon transmitter).

The conditions are the same if an automatic volume control operated
by the received carrier wave is used. However, if an automatic
volume control operated by the voltage across the indicator such as

that recently developed by the National Bureau of Standards, is

used, the fluctuations of the voltage across the indicator caused by
variations in the modulation frequencies will be corrected by the
volume control; and the voltage directly across the reed indicator,

rather than that of the source in the series circuit mentioned above,
will be maintained constant. Generally, the reed will be operated on a
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Schematic diagram of reed calibrating equipment

resonance curve with a maximum amplitude of 8 mm. (This includes

the width of the tab on the front of the reed, the actual amplitude of

vibration being only 6 mm).
For use with a radio set having manual or carrier-operated auto-

matic volume control, the indicator should be connected in series with
a resistance equal to the output impedance of the radio set and a

variable voltage of controllable frequency inserted in series with this

circuit. This voltage is then adjusted so that the maximum amplitude
obtainable, as the frequency is varied, is 8 mm, and, for determination
of fR and S, the frequencies/! and f2 giving 6.2 mm amplitude are

measured, the voltage in the circuit being held constant. This value
of 6.2 mm is obtained by taking 70.7 per cent of the actual amplitude
of vibration, 6 mm, and adding the 2 mm width of the tab on the tip

of the reed. The sensitivities of all reeds in the indicator are adjusted
so that their amplitudes are the same for a given voltage impressed in

the circuit described above.
For use with a radio set equipped with an automatic volume

control operated by the indicator voltage, sensitivity adjustments
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are made as above, and tuning adjustments are made at the same
amplitude. The voltage, during tuning adjustments, is maintained
constant directly across the indicator terminals.

When tuned by either of these methods and operated under the
corresponding conditions, the reeds show a minimum amount of vari-

ation due to the unavoidable causes pointed out in the above analysis

of the operation of the reed.

In practical calibration work, the reed is driven by a vacuum-tube
oscillator and when this oscillator is adjusted to one of the "test
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Figure 9.—CTiari /or determining frequencies of resonance of reeds

frequencies" (/i and f2 of equation (20)) its frequency is determined
by measuring with a stop watch the time required for 10 beats between
the driving oscillator and a standard frequency source. The standard
frequency source used at the National Bureau of Standards consists

of three alternators, giving 65.000, 86.667, and 108.333 cycles per
second, all mounted on the same shaft and driven by a 1,000-cycle
synchronous motor. The current to drive this motor is obtained
from the primary-standard frequency equipment. Beats between
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the standard frequency and the driving oscillator are indicated by a
vacuum-tube beat frequency indicator. A schematic diagram of the
complete calibrating equipment is shown in Figure 8.

To eliminate the arithmetical work necessary to calculate the
frequency and sharpness of resonance from the measured times for

10 beats at the test frequencies, two nomographic or alignment charts
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Chart for determining sharpness of resonance of reeds

have been designed to facilitate the work. These charts are shown
in Figures 9 and 10, the former being used to obtain the frequency
and the latter for sharpness of resonance. In the first figure, the

two measured times are located on the scales indicated for them, and
the straight line connecting these two points crosses the central line

at a point which determines the frequency of resonance. The second
figure is self-explanatory.
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VI. CONCLUSION

By means of Rayleigh's approximate method, equations are
obtained for the frequency of free vibration of a uniform reed and
for a particular type of nonuniform reed.

To obtain an expression for the sensitivity of a driven reed, the
entire reed is assumed to be replacable by an equivalent particle

located at the driving point. The equation thereby derived for the
sensitivity of the reed checks very closely with results observed with
the type of reed used in the reed indicator.

The theory also points out factors affecting the performance of

the reeds which must be included in any consideration of procedures
of calibration and adjustment, and it enables a method of calibration

to be developed which will give the most desirable performance of

the reeds in operation.

In conclusion, the writer wishes to express appreciation to F. W.
Dimmore for much information regarding practical considerations in

connection with the reed indicator, and to H. Diamond for many
valuable suggestions.

Washington, March 25, 1931.


