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Oblique propagation of electromagnetic waves in an inhomogeneous magneto-ionic medium is
described by a pair of coupled, linear, second-order differential equations, with coefficient functions
having one essential singularity and more than one pole. An analytic method to study this general
type of propagation has been developed in this paper.

Mathematical expressions for all the physical observables in the ionospheric investigations have
been derived for a parabolic electron layer. The expressions for the phase retardation and the tilt
of the polarization ellipse differ radically from those derived from the ray optics of Appleton and
Hartree.

1. Wave Equations
The general type of magneto-ionic propagation is described by the equation
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where mks units and symbols (see appendix) have been used.

The statement of the physical problem and a brief summary of the previous work in this line
have been discussed in part I of this paper.

In the above wave equation let, (i) the partial time derivatives be replaced by iw; (ii) the
steady magnetic field H,, (wy = euoH./m) be in the xz-plane with the vertical z-axis as the direc-
tion of propagation; (iii) the collision frequency v be independent of z; and (iv) N, the electron
density, be given by

2
N(Z) = Nm(l ——%) for 22 < 12, (2)
=0 for z22>0

where z=0 is fixed at the layer of maximum ionization.
Under the above set of assumptions (1) decomposes into

e KB — iQLEEY=0, R4 [KE, +iQL@E]=0, 3
where
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Z=1—ww, ="+ 5, 0= magnetic dip angle,

2
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For 0=§ (transverse propagation), the above pair of coupled equations reduces to a pair of

separate equations, discussed in part I of this paper. In the longitudinal case with 6=0 or 7,
the linear combinations (E,*iE,) obey separate equations similar to the one satisfied by the trans-
verse ordinary or o-mode. Except for these limiting cases, separate wave equations obeyed by
linear combinations of the type (fi(z)E:+ f2(z)E,) cannot be set up for any type of functional de-
pendence of N with z. Hence general magneto-ionic propagation is always governed by coupled
wave equations.

2. Nature of the Solutions

For frequencies used in radio communications wy < w, i.e., |22| < [2, and hence solutions for
the region z2> |z§| are of more practical importance than those for the magneto-ionic core with
z2<|z}|. Changes in the variables from E, iEy, and z to uy=¢"*: E;, us=¢"E,, and § = iKz*
reduce (3) to the form

3
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where

iK iK
M1,2=T [af’2+b";‘2—z(2)], M:I [fas=EE=22)

2

K K2
M= [B—at ] [2-8,], A=T@-a)@—D),

£o=iKz2.

If ui— wio, us— us,, as & > o, the equations obeyed by the asymptotic functions w1, 2.,
when the terms of the order of 1/¢2 and smaller are neglected, assume the form

d'ur,, | (1 2p\ dPui. | [1—-Q* ﬂ] .
7z +< 2*5) & +[ 6 2] =0 &)

e e (4

2}L:M1+M2

Solutions of (5) can be expressed as
4
Ut = fc e™ [ m—my)% dn, (6)
=1
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where
aj:_(1+lb/27)j)» h, =2 %m, 7)3'4=i%m,

and the contour C is a combination of four loops, Cj’s, j=1 to 4, each round one of the four singu-
larities m; ==V 1= Q of the integrand. Along any ray in the n-plane, the contribution to (6) from
the loop Cj can be written as

1,3
(B1c)= f . e (m—m;)% [H (n— nk)“k] dn

J k#j
= Pyent [1+ 3 e,
p=1

where Pjj is the phase factor independent of ¢.  Evaluation of these phase factors from the asymp-
totic solutions of the type (6) is necessary for the study of the Stoke’s phenomena and the esti-
mation of the observables. The solutions of (4) can now be expressed as

A 4
u = 2 Pljenjf Fi(é), Uz = ; PZjenjf sz(f)’ (6a)

=1 J

where Fij(¢) and Fyj(£) are series in descending powers of ¢ with unity as the leading term. These
series can be evaluated by substituting (6a) in (4) and equating the coefficients of the different
powers of (1/£) for each of the four wave terms ej¢, after 1/(¢ — &) has been expanded. Compari-
son of these solutions with those for the transverse modes reveals that the wave factors exp

[+2V1+Q¢] and exp [— 3 V1+Q €] represent respectively the upgoing and downcoming com-
ponents of the o-mode while exp [ 3V1—Q ¢] and exp [— 3V 1 —Q &] represent those components
of the e-mode.

The four observables, viz, R, the ratio of amplitude of the downcoming to that of the upgoing
wave, ¢, their relative phase difference, %, the ratio of the axes of the polarization ellipse of the
downcoming wave, and W, the tilt of the major axis of that ellipse are related to these solutions as

et e %%'e‘m‘f 2= for the o-mode, (7a)
o PllFll(g)_ \T——Qf
—_Plenz(f) e . for the e-mode, (7b)
HRe—iv = %ﬁjz L for the downcoming o-mode, (8a)
= M for the downcoming e-mode, (8b)
PiiFii | 2=
and W= 1 tan' [2% sin ¢/(1 —A?)]. 8c)

Evaluations of these solutions in (6a) and expressions in (7, 8) complete the study of the general
magneto-ionic propagation in a parabolic ion layer. Before passing on to the evaluations of the
expressions for the observables, the following salient features of the propagation as predicted by
the above analysis need to be stressed:

(i) There are only two modes of propagation characterized by the indices n, ,==* 3 V1+Q

and m, =% % V1—Q, with the two signs of each mode giving the waves traveling in opposite
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directions for that mode. This result holds for any type of functional dependence of N and v with
z. Hence the presence of a third echo (triple-splitting observed in polar latitudes) is ruled out
from the general magneto-ionic propagation.

(i1) The complex polarization ratio Ze~ for the upgoing wave of either mode is not the same
as that of the downcoming wave of the same mode. If it were so, suitable linear combinations of
the dependent variables would give two decoupled second-order wave equations.

(iti) The sharing of the energy between the two modes is controlled by the parameters of the
problem and the propagation angle. This gives rise to a new observable.

3. Expressions for the Observables

The nature of the analytic solutions being known, a method based on the basic characteristics
of (3) and their solutions (6a) will now be developed for the evaluations of the expressions for the
observables.

Writing iE,=p(z)E, in (3) and eliminating E, and iE, from the pair of equations by raising
the order of differentiation, it can be shown that p(z) satisfies the equation,

2pp""" —3p""? +4p""[p(Ki — K2) + QL(1 — p?)]
—2p"3K1— K> —4pQL]—2p'[p(K{ — K3) + QL'(1 — p?)]
—[(Ki = K3)p + QL(1—p»)]*=0, )

where the dashes represent the derivatives with respect to z.
Corresponding to each solution p; of (9), the components £, and E, of the electric vector sat-
isfy the first-order equations

%+ [p}’— {(k1 — Ka)p; + QL —p?)}] E.—0, (10)
z 2p;

and

dE,  [pj— {(Ki —K2)p;+QL(1 — sz)} _ 2p1{ _

Sy ; E,=0.
dz 2p; pi

Replacing iE, by pE, the first of the equations in (3) can be written as

&2E;
dz?

+[Ki—pQL] E.=0. (11)

Since for parabolic layers, solutions of (3) are symmetrical about z=0 and have an essential
singularity of grade 2 at % together with a pair of regular singularities at z2=22, the expression
(Ki—QpL) in the above equation must fulfill the following conditions:

(1) It must be symmetric about z=0;

(i) It must not contain powers of z higher than the second;

(iii) It must not have any pole other than those at z2=2z3.

From the expressions of K; and L, it follows immediately that p(z) must be of the form

P(Z):q+2(zz—fnzy' (12)

Substituting (12) in (9) and equating the coefficients of different powers of z2 and (22— 22)
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to zero, it can be shown that

12
q==+1,  Bi=hshsl? sin? 02 cos §= (“"‘;") -12< sin” ) (13)

w?, 2 cos 6

w8412 V=

_4Q—iZ) 3 <8cwm> 1
7 whihZsin2 0 \ wil ) sinZ 0

and for all values of n> 2, B8,’s are single-valued.

Since for each root of ¢, there are two roots of B> and for each pair of values of ¢ and B, all
the other B,’s are single-valued, (9) has four and only four distinct solutions. Corresponding to
each solution of (9), a pair of solutions for £, and E, can be evaluated from (10). The two roots
of g characterize the two distinct modes of propagation, while for any of these modes, the two roots
of B2 specify the upgoing and downcoming waves belonging to this mode. The method outlined
here is exact and not approximate, though it is not applicable for values of the parameters A3 and
6 which make the series (12) divergent. For ionospheric propagation the method is applicable
to all latitudes excepting a small belt of 5° around the equator.

The complex phase factor Re i between the upgoing and downcoming waves at the bottom
of the layer depends on the asymptotic solutions of (11). For such solutions the series (12) can
be approximated to p ~ g+ B1/(z2—z2), the errors thus introduced being not more than those in-
herent in all asymptotic expansions. This approximation, however, ignores the subtle difference
between the polarization ratios of the upgoing and downcoming waves.

Substituting this asymptotic form of p(z) in (11) and simplifying, it can be shown that the gen-
eral type of magneto-ionic propagation (excluding a small region around 6= 7/2) is characterized
by the wave equation

&E, Mﬁi (4A/K2) .
g +K§[2—m+(zz—_z—%’ﬂ E.=0, E,=—ipk., (14)
where
K:=dmh2/(1—qQ)l*, q==1
M,= i’i"lz [1 — h2+ qhshy cos 0— 2’(’12 j":of ] - i,

K2l*hZ sin® 6 )
ANg=—L—"—— [hg(l + sin® 0) — ghzhs cos 6 —hZ+

To21-09

Equation (14) being similar to the transverse e-mode wave equation discussed in part I, the
same procedure may be used for evaluating the phase factor Re~i. Carrying out the simplifica-
tions and neglecting terms of the order of A2 and smaller, it can be shown that

1— (ﬁ_i_w%l sin? 0) (1_ gwy cos g)

2 2
m WO @

(i) 1 (=) 1= ]
o) " T=2) 1 N ’ G2
w
& 1_& | 4 _1 1— g @ cos 6] 32
X5 2) o (7 ¢, (15b)
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where Efz is the reflection coefficient of the g-mode for a friction-free layer, X, is its total absorption
in the layer and 74 is the observed time delay in the CRO screen. The o-mode is g=+1, while
the e-mode is g=—1. Variations of f;, x,/(gv/2), and y,/g with w/@wm for §=150°, 135°, and 120°
have been plotted in figures 1, 2, and 3. The o-modes are shown by solid curves, and the e-modes
by dotted curves. The two modes exchange their roles when 0 is replaced by (6 — 7/2).

4. Polarization of the Downcoming Waves

The electromagnetic (em) waves inside a magneto-ionic medium are not transverse with respect
to the electric vector; hence, it has become customary to study the polarization of the waves with
respect to the magnetic vector, which for vertical propagation is always confined to the horizontal
plane. Since E - H=0 even for an inhomogeneous magneto-ionic medium,

Ho/H,=—E,JE.=ip=%e'3 ™" (16)

where p is given by (12) and (13). Equation (16) shows that the vector whose components are H,
and H, traces an ellipse in the xy-plane, the ratio of the major to the minor axes being given by %,
whereas the inclination W (tilt angle) of the major axis to the magnetic meridian (xz-plane) is given by

24 sin s

tan 2V = 1= 77 .

(17)

While evaluating the expression for the complex phase factor Re i®, retention of terms up
to B1/(z2—z3) in (12) is sufficient to predict results within the limits of experimental accuracy. In
the polarization studies, however, terms up to B:/(z2—z3)* need be retained.

Bi B . .
+———= gives the dominant term as
25 @Ay

Integration of (10) when p=g¢q+

a0 exp [go2]

E. v cry R (18)
i g=— K0 | 2003 — ap—E1 + 22 .

Since z is measured from the tip of the layer, the downcoming wave is given by that root of
B2 for which Im go<0. Hence the limiting polarization p, for the downcoming wave is given by

. 1 /1 4 :
et g | (1o )y YOO+ 40) 2

Separating the real and imaginary parts of (19) and neglecting terms containing v%/w? or ov/w,
it can be shown that

Ry~ (q + ywe +2_1q y2w2C) +terms of the order of A%, (20)

s Zywdl + yodl + 4y2)/q] _ w2y?o

v, 7, 72 V- tan) 1)

¥ = wnlw, yL=1y cos 0, yr=1 sin 6, w.=sin? 6/2 cos 6.

The expression for #,, the ratio of the axes of the polarization ellipse, is the same as that
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deduced by the ray optics, where electron density is assumed to be constant. Expression (21)
for the tilt angle ¥ contains two terms, Wy, < v, the collision frequency, and Waq = o, i.e. 1/(I\n).

The second term, which depends on the characteristics [ and wy, of the layer, is absent in the
equivalent expression deduced from the ray optics. For ionospheric layers, the second term s,
is greater than the first term Wy, i.e., for these layers the effect of the nonhomogenity on the tilt
angle W is more pronounced than the effect of the collision frequency v on it. If ¥, and V¥, rep-
resent the tilt angles for the o- and e-modes respectively, then

wnw  2c
Son¥e w}) lcos6 g

Experimental results on these tilt angles can thus be used to predict the value of /, the half-width
of the layer.

5. Conclusions

The propagation of em waves in a magneto-ionic medium with a parabolic electron distribu-
tion has been discussed in detail, and expressions for the observables have been derived. The
coupled wave equations for the general station do not give rise to any third echo as expected by
Rydbeck [1950].! For other types of layers, or with collision damping as a function of the vertical
height, the nature of the solutions will be different from those given in the text of the paper, though
the basic predictions will not be affected to any marked extent. Expressions for the reflection
coefficient and the ratio of the axes of the polarization ellipse agree, within limits of experimental
errors, with those deduced from the ray optics. The equivalent height-frequency curve for a
parabolic layer as deduced from the ray method would be an ellipse. It is not so from the wave
optical standpoint. Similarly, the expressions for the tilt angle, as deduced by the two methods,
differ radically from each other. The sharing of the energy between the two modes on entering
the layer is, as discussed in the body of the paper, determined by the characteristics of the station.
This method of evaluating the asymptotic solutions, and thereby the expressions for the observ-
ables, can be utilized for any other type of electron layer as well.

6. Appendix: List of Symbols and Abbreviations

| Te) 16 BT 61 103 - P PP E, H.
Permittivity of fTe€€ SPaCe.....coviniiiieit it e e e €.
Permeability of free Space.........c.coot ittt e o
Steady magnetic fleld.........ooiiiiii e H.
CoOlliSION FT@QUENICY .. e ettt ettt e e e e e e e e et et e e e e e e e e e aeaa e v
Val@tsy @ HE N ooos0000 000 000 6000600000006a65000000606600660 06660 8065006669060 0BOBIBEBAGITOIABAGIVACOTIAS c
Charge and mass of €leCtrONS. ... .o.oi it e e e,m
EleCtron demSIty .. . e ettt et e ettt N
Maximum electron denSity. ... .o.ouiue i ettt e N
Half-width of the Jayer........oooi it e e e l
Propagation angle..........o..uiiiiii e e e e 0

W IEEE® OHD AE Eooooos00000 a0 0a000600060050000606060606aGAEA0HIIEEO00I0EA0A0EA0BEA0 HOGEOAE0I000AIH SO b
Vertical height of the bottom of the layer.................. i, hy
Observed time delay on the CRO screen......... ..o, Ty 705\ Te
Reflections coefficient for friction-free layer..............c.ooiiiiiiii I_{Z, I—{f), R§
Total absorption by the layer...........oooooiii i Xa» X0» Xe
Ratio of the axes of the polarization ellipse..................cooiiiiiiiiiiiiiiii . Ry

Tilt angle of the polarization €llipSe........c..ooiiiiiiiiii i e e v,

10. E. H. Rydbeck (1950), Natl. Acad. Sci. (India) 4, 329.
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Abbreviations:
W= elLOHe»/m,

y=wu|w, yr=1 sin 6, yL=1y cos 0,
%, = Npe?/meg Z=v|w, we=sin? 6/2 cos 6, Q=hs cos 0/h,
= 472c%( A,
hi= /(1 — iZ)\3, h2=(1—iZ)w?* w?, F=vh/(1 —iZ)w3,
(22 —a?) (22— b?) =) (E=(8) F=aNE=P)
K=Kz 2 =C e =0y N 2 ISR C o/ SR o)\ cam C. UL\ Cxtil
1 @—2) K;=K @-2 L=K? @—2
h2 2
K2=4m%h3/(1 _02)14, z%'—[ h2+ 3 sin 0] e, - Om L
— Q2 w c’
2 2
at=(1— KR, ag=[1—hg+W+hzh3 o 0+02C4ﬂ] e,

2 2 2
p=(—hghpr, b= |1-hg+ Sl N S A ?| 2,

K .
M1,2=%(af_2+b?‘2—z(2,), M——%[a%+lz_z(z)]’

K2 K2
Al.227(20_012‘2)(7-(2)—17%,2)» AZT(Zo_al) “12)-

fziKZZ, f():lKZ(z), 2[.L=M1+M2,

m,2=%3 VI+0Q, 7)3.4:‘_*‘.1_,m, aj:(1+2{‘:)>,
j

3 D ff
Mq:lf—qlz [1—h§+qh2h3 cos 0——h3 = 0]—1

20—4Q)| 4
K24 2 c1n2 3
p=Rih e b [h§(1+sinz 0)— qhohs cos 0— b3+ 220> 0 9]-
21— 09 s

Ki=4mht/(1—qQ)I*,

f _[1=(o?/w} + o} sin? 0/w})][1 — qwn cos /o]
! VI1 — qwu cos /o]

J’ng[l —f§+]i2q In (%)]/\/[T— quwu cos Olw],
X, = (8v/2) [( f") In (7) - 1]/[1 — qwn cos Olw]P2,

go=—K=’-Q[2q(z(,— 2)— '8‘ 2;13'?2],
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_4Q—iZ)»e
o=———

hifd sint g (ocml @i Dfsin® 6,

P mSP
B1= haohsl? sin? 6/2 cos 0:<wwH) [? sin2 6

Y
w2 ) 2 cos 0

Bzzﬁ—%[{é_li%?}g;om}

‘I’1q=—Zywc[1 4 % a+ 4},%)]/%‘1,
Vag=—byold+ 2V —yD L+ ay)l%,

. 1
%q=[q+ywc+2—qy2wg].
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