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Propagation of electromagnetic waves in an inhomogeneous magneto-ionic medium has been dis-
cussed with special reference to ionospheric propagation. This involves the study of two coupled
linear second-order differential equations with coefficients having one essential and more than one
regular singularity. The problem has been tackled in two stages, divided into parts I and II of this
paper.

In part I, dealing with the transverse propagation in a parabolic electron layer, the wave equation
belonging to a class higher than the confluent hypergeometric or Mathieu equations has been investi-
gated. In part II, dealing with the oblique propagation, the effect of the coupling function for the above
class of equations has been studied, and relevant asymptotic solutions for the coupled equations
derived.

Mathematical expressions for the physical observables in ionospheric investigations have been
derived from the solutions of the wave equations inside a parabolic electron layer.

1. Introduction

A partially ionized medium traversed by a steady magnetic field is termed a magneto-ionic
medium; the ionosphere is such a medium, in which the electron density is a function of the vertical
height. It can be shown from the Maxwell-Lorentz equations that the propagation of electromag-
netic (em) waves inside such a medium is controlled by the equation
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where mks units and symbols (see appendix) have been used.

The standard pulse technique method used for the study of ionospheric propagation furnishes
information about the following observables:

(a) The interval 7 taken by the pulse to travel from the ground to the ion layer and back.

(b) The fraction R? of energy (reflection coefficient) reflected back by the ion layer.

(c) The state of polarization of the downcoming wave as determined by the ratio R of the polari-
zation ellipse and the tilt angle W of the major axis with respect to the local magnetic meridian.

Any method developed for the study of magneto-ionic propagation of em waves must succeed
in furnishing mathematical expressions in terms of the known parameters for these observables
from the solutions of (1).

The ray optics of Appleton [1927] and Hartree [1929] form a special solution of (1) with the
assumptions:

(i) Ey

(i) N=N,, a constant.
The observed values of 7 are utilized in the ray optics for ascertaining the electron density N as

=2mif, where fis the frequency of the incident wave, and

a function of the equivalent height P’ = }cr, a distance which light would have covered in an in-
terval of 7/2. For frequencies less than the plasma frequency of the electron layer, the reflection
coeflicient R? as computed by the ray optics is unity for a friction-free layer. Any divergence from
this theoretical value is interpreted as due to frictional absorption, and appropriate values of the
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collision frequency v are affixed accordingly. Thus two out of the four observables are utilized
for predicting the values of N and v. The state of polarization as deduced by the ray optics is
determined by the lowermost stratum with vanishingly small electron density. This prediction of
the ray optics is contrary to actual experience.

The basic difficulties in the study of (1) are:

(a) Magneto-ionic anisotropy being of the cyclotonic class, separate wave equations describing
the propagation of differently polarized waves cannot be set up unless N=N, (ray optics), or
wu X k =0(longitudinal propagation) or wy - k=0 (transverse propagation), k being the propagation
vector.

(b) Magneto-ionic propagation in inhomogeneous media is described by equations of a class
higher than those studied in other branches of mathematical physics.

The successive stages in the development of the general solution of (1) where the assumptions
of the ray optics are not tenable can be arranged as follows:

(i) Removal of the partial time derivatives in (1) by applying Laplace-transform with respect
to time and expressing the nonhomogeneous terms arising therefrom in terms of the prescribed
initial conditions. Though the plasma frequency VNe?me, of the electron layer and the gyro-
frequency |ewoHe/m| of the electrons around the terrestrial magnetic field H, are of the same
order as the frequencies of the incident waves, it can be shown that noncoherent scattering is not
significant for the order of values of NV, v, and wy inside the ionosphere. Hence the partial time
derivatives in (1) can be replaced by the factor iw = 2i7 f without introducing any significant error.

(i1) A two-dimensional Laplace-transform with respect to the space-variables normal to VN
(on the assumption that VN XV v=0) will reduce (1) into a pair of second-order ordinary linear
differential equations, each containing two components of the electric vector (or its transform, if
% is not replaced by iw) normal to VN. For vertical propagation of plane em waves this step is
superfluous. In this latter case the equations controlling the propagation can be written as

PLat [K\ (. — iQLOE,] =0,
@
d;fzy +[Kx2)Ey +iQL()E-]=0,

where z is the vertical height and the functional dependence of K;(z), K»(z), and L(z) depends on the
forms of N(z) and v(2).

(i) The pair of equations in (2), for given forms of N(z) and v(z), can be studied by one of the
following methods:

(a) Conversions into canonical form and application of the standard technique for the study of
a system of equations [Ince, 1956].

(b) Application of perturbation methods to (2) or to equations derived from (2) and satisfied
by suitable linear combinations of E; and E),.

(c) Elimination of one of the dependent variables by raising the order of differentiation and
studying the resulting fourth-order differential equation involving one dependent variable.

If utilized properly and interpreted correctly, all the above methods will lead to identical
results within a certain degree of accuracy. However, the coefficient functions Kj(z), Ka(z) and
L(z) are so complicated that even for the simplest types of electron layers, the solutions of (2)
cannot be expressed in closed forms in terms of functions whose properties have already been
studied. Fortunately, expressions for the physical observables 7, R2, #, and ¥ can be derived
from the asymptotic solutions of (2). These solutions for |z|— can always be expressed as

E, ~exp [i{wt+¢lq}]+Rq exp [i{wt+d>2q}],

£ 3%1q exp [i{wt+é,,+,,}] +9?2qRq exp [i{wt+ b, + dlzq}], 3)
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where the suffix g refers to the gth magneto-ionic component, while R, *%141, 2 Prg, 20 @A Wy 5,
are real quantities expressed in terms of the layer parameters, pulsatance w= 27 f of the incident
wave, and the geomagnetic characteristics of the place of observation.

For each mode of propagation, the observables 7, R2, %, and V¥ are related to the above asymp-
totic solution as

2972
T=(¢1g ~ ¢ag)lw, RZZ[R(I]Z, %2«%1(1, tan 2V =1—_% sin djlq, 4)
7,

where WV is the tilt angle of the polarization ellipse traced out by the magnetic vector of the reflected
echo.

For the transverse propagation the coupling coefficient QL(z) in (2) vanishes for any type of
electron layer and separate equations describing the propagation of two linearly polarized waves
can be set up. The transverse mode with the electric vector parallel to H, is generally termed as
the ordinary or o-mode, while the other termed as extraordinary or e-mode. For the longitudinal
modes Ki(z) = K.(z)= K(z) for any type of electron layer, and (2) reduces to

d?

These equations describe the propagation of two circularly polarized magneto-ionic components.

The effect of the steady magnetic field He on the propagation of the transverse o-mode or either
of the longitudinal modes is nil or trivial. Hence these degenerate cases of propagation belong
rather to the ionic than to the magneto-ionic class. lonic propagation in linear, parabolic, and
exponential electron layers has been studied by Epstein [1930; Hartree, 1931; Wilkes, 1940; Ryd-
beck, 1942; Wait, 1962], and others. Solutions of the wave equations for these cases can be ex-
pressed in terms of the functions of the confluent hypergeometric group, viz, Bessel or Weber
functions.

The only remaining mode of these degenerate cases is the transverse e-mode whose propaga-
tion is characteristically influenced by the magnetic field H.. The propagation of this mode for
the type of electron layers mentioned above is described by equations having, besides the essential
singularity at infinity, more than one regular singularity in the finite region. This mode represents
the simplest type of proper magneto-ionic propagation and has not been studied by any worker as
yet. In part I of this paper the propagation of this transverse e-mode for a parabolic electron layer
has been investigated in detail, and theoretical expressions for the relevant observables, viz, 7
and R?, have been derived in terms of the layer parameters.

As regards the general propagation with VN #+ 0, wy Xk # 0, wy - k # 0, the functions K;(z),
Ks(z), and L(z) in (2) are characterized by the presence of poles at the roots of the equation

e* ZU(z)[U2(z)—w2]
M= —a ©

meow?

where U(z) = 1—%)and yi=wy - klw.

Hence the solutions of (2) have regular singularities at the roots of (6), which for v =0 occur within
the layer unless w << wy and the layer is very sharp. Behavior of the solutions of (2) depends
on the number, location, and indices of these singularities. Any method developed for the study
of the problem must preserve these basic features of the solutions of (2).

All the physical properties of inhomogeneous magneto-ionic media are cyclotonic dyads.
Hence the matrices representing them cannot be diagonalized with all real elements. In other
words, linear combinations of the type [E:+ip(z)E,] or [aEy+ biH,~+ a:E,+ b:H )] obeying sep-
arate (decoupled) wave equations do not exist for inhomogeneous magneto-ionic media.
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Forsterling [1942], Rydbeck [1950], and lately Clemmow and Heading [1954], tried to deter-
mine suitable linear combinations of the horizontal components of the field vectors for which the
coupling function would remain small throughout the layer to justify the application of perturbation
methods. It can be shown that the coupling functions of these equations satisfied by the specific
linear combinations suggested by these workers have precisely the same number and types of
poles as L(z) in (2) has. If it were not so, the solutions of the derived equations would differ radi-
cally from those of the original Maxwell-Lorentz equations.

A second-order linear differential equation is basically equivalent to a pair of coupled first-
order equations: moreover, irrespective of the nature of the coefficient functions, a first-order
equation can always be expressed in closed integral form, while a second-order equation cannot
be so easily integrated unless the coefficients are elementary functions of the independent variable.
Hence the methods adopted by these workers amount, at least in principle to, the evaluation of
the solutions, in closed forms, for any linear differential equation.

Besides the above-mentioned attempts and the recently developed methods of numerical
integration [Budden, 1955; Barron and Budden, 1959], this complicated problem has not, as yet,
been tackled by any worker. In part Il of this paper the pair of equations (2) for a parabolic
electron layer has been investigated, and theoretical expressions for the four observables mentioned
earlier have been evaluated from the relevant asymptotic solutions.

2. Wave Equations for the Transverse Modes

Consider the propagation of a continuous train of em waves of frequency f= w/27 in a magneto-

ionic medium with the following assumptions:
(i) The propagation is along the vertical z-axis:

(ii) The steady magnetic field H, is along the x-axis;
(iii) Noncoherent scattering is absent;

(iv) Collision damping v is independent of z; and

(v) The electron-density N(z) is of the form

2
N(Z):Nm (l_%> f«)r—Zstl, (7)

=0 for z2 > [2.

It can be shown that (1), under the above set of conditions, reduces to

&PE. |, a’+ b? _
—d'ZT-f‘KZ |:Z2— D) ]E;—O, (8)
&Ey ., [(z2 =a)(F= b2)] .
dz? +K (ZZ_Z%)) E!I_Ov (9)
where
K2=4m*h3[14, h2=1/(1—iZ)\3, Z=vlw,
Am =gwﬂ, the wavelength in vacuum corresponding to the maximum plasma-frequency of the layer,
2
w;=eNﬂ o} =[woeHe/m]>.  ¢=3.10° m/s,
mey

@=(1—h+hh), b=(1—hi—hhy)l?, 2=(1—hi+hd),

w*(1—i2) B2 w?
0

h2= =
P (1—iZ)e?,

2
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Equation (8) describe the transverse o-mode for parabolic layers. The magnetic field H.
has no effect on this mode. This equation has been discussed in details by Rydbeck [1942].

Equation (9) describing the transverse e-mode represents the simplest type of magneto-ionic
propagation in a parabolic layer. It is characterized by the pair of regular singularities at z= = z,.
The nature of propagation for —zy < z < z, (the magneto-ionic core) is entirely different from that
in the regions z2 >z} (fringes of the layer). Evidently (9) reduces to (8) for ox=0. For * ~ w?
*+ w?, solutions of (9) near z— —[ (bottom of the layer) can be represented accurately by the asymp-

totic forms.

3. Solutions of the Wave Equation

A quadratic transformation of the independent variable in (9) results in an equation having
one elementary singluarity (exponent difference %) at the origin, one regular singularity at z2 and
an essential one of grade 1 at ©». Equation (9), or the one transformed as indicated above, belongs
to a class higher than the confluent hypergeometric equations (Whittaker, Weber, and Bessel
equations) which accommodate one regular and one essential singularity, or the Mathieu class
having besides the essential one, a pair of elementary singularities.

Changing the variables from z to ¢ = (1 —2z%/z2) and from E(z) to F(¢{)=e K== - [, (z), (9) can
be written as

60— G+ |~ e+ (60— 3) ¢ | o+ e — AP =0, (10)

where
&o= iKz§=2imh\(1 — h + A3,

1K 1 imhy
= —[2 2__ 2 =
M 1 [a*+b*—22 YR

‘ |
1= k=2l =

79

K
A= (&3~ a?) (@5 —b?) =—nh2h3(h3— h).

Consider the integral

f( (n—&M0(m)dn, (11)
where 6(n) obeys the equation
A1 =)L (10)+ {— g2 + (Eo— by — MYm¥6] — Amio =0
dn m( n)dn(n )+ {—€m* + (Eo— 2 — M}nM0 | — AnMH=0. (11a)

Solutions of (11a) can be written as
0(m)=mn Y1 —n) M-112e—néf (),

MM = —&)+A
M—1

0i(n)=1 - m + higher powers of 1,

MM— %)+ A

=L

(1 —m) + higher powers of (1 —m).

1289



Since the series 6;(n) is analytic throughout the finite range of m, the behavior of 6(n) near the
singularities 0, 1, and « are as follows:

6(n)—>m M as n—0,
= (L—m) ¥ as = 1,
— e ™0 as ) —> ©.
Integral (11) satisfies (10), provided the contour C is so chosen that the bilinear concomitant of
(m— &M and 6(n) vanishes at the extremities of C. From the above behavior of 6(7) near its singu-

larities, contours may be selected for different ranges of ¢ such that (11) identically satisfies (10)
(see table 1).

TABLE 1. Contours for different ranges of & so that (11) identically
satisfies (10)
Range Contour C Solution

O0< R =1, (i) n=1tom=cx, R& >0 Fi(¢)
z2S|z8|: (il)) n=0ton=—x, R&r <0 Fy(&)
Magneto-ionic (ili) n=0ton=¢ Fy(&)
core (iv) n=&ton=1 Fy&)

—o < R£=<0, (v) n=1to m=, Reé&y>0 F5(&)=F(&)
22 Ak (vi) n=€&ton=—x, R& <0 Fq(é)
Magneto-ionic (vii) =& ton=0 F:(¢)
fringe. (viii) n=0ton=1 Fy(&)

The general solution inside the core can be expressed by selecting the contour C as consisting
of a line from =0 to n=¢, a semicircle around n=¢, and a line from n=¢ to n=1. Carrying
out the integrations along the different branches of C and introducing the time factor e, the gen-
eral solution inside the magneto-ionic core can be expressed in terms of the original variable as

Eyz; t)=fi (l—z—;) exp [i{wt— %zﬁ} }+Pf2 <;Z;) exp [i {wt+é—<z2} ],

0

where fi(1 —2z2/z5)= E an(l—22/25)"+1,

0

(12)

Flalz) =" balalzoP1,
0

or (%—M
P-_——
Val(1— M)

ap=by=1, -exp [—i{27M + Kz2}],

= (A+%—§0) / 2, bi=[A—(M+DE)BI),
(n+1) (n+2)an+2—[n2—n (go——‘;f>+/\+%—§o] an+1+(M—n)a,=0,
(n+1) <n+g) bn+z—[n2—n (go—g)+A+%—go] Buss — EoM+n+ 1)bp=0.

The right-hand side of (12) represents two wavy disturbances of complex amplitude ratio P,
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moving in opposite directions with complex phase factors (—Kz?/2—i In f1) and (Kz*/2—1i In f5),
respectively. For very long waves such that o < wp, the location of the singularity at z% with v =0
is outside the physical layer of half-width [. Hence for such waves, the composite disturbance

at the bottom of the layer z=—1 can be expressed as
o(— 1 .
E (—1L t)= [1 +% exp (LKlZ):I EY—1; ), (13)

where EY(—1; t) is the state of the wave incident on the layer. If

_io, _JA(=1) exp iKI?)
Ree e =P

where R, and ¢, are real quantities, the physical observables are related to the above variables as:
R. is the amplitude of the downcoming wave at z=—1[, relative to that of the upgoing wave at that
point = R.e e, where R, is the reflection coefficient for a collision free layer, and x. is the total
absorption in the layer due to collisional damping. If 7. be the time delay observed on the CRO
screen and A, the height of the bottom layer from the transmitter-receiver,

2 e
c (0]

Te

’

where ¢=3.10% m/sec. Hence solution (12) of (9) furnishes information about all the obsérvabies
of the transverse e-mode, those of the o-mode being derivable from these results of putting wy=0.

4. Asymptotic Solutions

For waves used in normal radio cammunications, wy < @ ~ w, and hence |z3|//*— 0. Solu-
tions of (9) for these frequency bands are given by the asymptotic behavior of E, (z; t). In this
region of frequencies consider the integral

f e "0 v(n) dn, (14)
.
where
1— )—‘@+[§ 2—(§ +—7> +(M+2)] ﬂ+[2§ —(.f +A+§>] v=0 14
n n dnz 07 0Ty n dn o7 0 2 : (14a)
Solutions of (14a) can be expressed as

v(n) =~ (1 —m)M-1/2 €m0 N yum?
0

with =1,
A
=" and

1
m+2)(n+1—M) yps2+ [(n+ 1) <n+§—§o)+ /\] Yn+1— néoyn=0.

Integral (14) will satisfy (10) if the contour C is properly chosen. Since the real axis in the
n-plane is the cut plane of the integral in (14), the solution for the sector 0 < arg (—&¢) < 7 will be
different from the solution in the sector 7 < arg (— &) < 2. For (—&of)=|£oéei® and R.M <0,
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the contour C may be chosen to consist of

(a) a line Cy, joining =0 to n=—|r|e o,

(b) a line C,, joining n=—|r|e~* to n=1—|r|e~i, and

(c) a loop Cj, in the positive direction round =1 starting and ending at n=1— |y|e~i.
As |y| = o, the contribution from C. will vanish, and the solution of (10) for ¢ = — can be ex-
pressed as

P*la

o= [ 7 ekt aom | S gt -y, |
0

ia

(1+) )
- f e mtof(1— n)M_l/z[Z 71‘““‘”6"0%77"]‘17) .
1 0

—oe

For |¢]| > 1, the asymptotic solution can be obtained by putting n = (1:1/£€) in the first integral and
1 —n=(—uz/éoé) in the second. If further, (1/£0€) is written as ei™/(— &y€) for 0 < a < and as
e im)(— &o€) for m < o < 27, the form of the solution as z— — [ can be expressed as

Ey&) ~T=M) - (=&Y - Vi—€o) - exp - [V2€of]

21

F T (TEO TV €od) exp - [ Vabof],

s MM—1) ... M—n+1)
e A Z n! (&é)" - ot
— b)) = & . MEHM—Y) ... M+i—n+]
HE&p=1+ 2D T @D B
and zanx"l = i—yn[xn(l_x)M_l/Z . 6150],
0

3Bt = i yal(1 = x)1=1-M - 120,
0

Introducing the time factor e’ and passing on to the original variables, the form of the dis-
turbance as z— — [ for wy < @ ~ wm can be expressed as

E(z; t) ~ fs(z)exp - [i{wt = E;E H + fu(z)exp - [i{wt+ % H s

where
 2m[iK(@2— )] M [_ (K| = A—iMGM— fo)}]
f(2) ]‘(—M+%> exp |—1 { 9 +aM K(z2—23) ’
o . _ . [Kzg —_A—i/W(iM—fo)
fuz) ~ T(— M) [iK(z2—z5)]™ exp [z { 5 +aM T K- }] 5
iM=M+1/4.

Since z < 0 near the bottom of the layer, the first term represents the upgoing (incident) wave
while the other represents the downcoming or reflected wave. Hence if £%(—[; ) represents the
state of the incident wave at z=—1[, the composite disturbance at that point can be written as

Ey—1; )= [1+ Roe-"%e] EY(—L; 1), (15)
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where

Ree~%e = |fi(z) exp (iKz2)/fs(2)|z=—1- (15a)

For the o-mode, given by (8), similar expressions can be deduced from above by letting wz — 0.
If R% and R2 be the reflection coefficients of the two modes in the absence of collisional damp-

ing, it can be shown that

c Ry 1_,_, o

7_‘_lwmln [——l—ﬁﬁ]_ﬂ)_l ok’ (16a)
e [ R )_,_,_o ok
mlwn e [1—R§:|_fe_l w? W% (16b)

Here R2 and 173 are unity throughout the whole range of frequencies except at the critically penetrating
bands (w? = w? for o-mode and w? = w? — ? for the e-mode), where they suddenly fall to half the

}/‘lalue. Variations of the left-hand expressions in (16a) and (16b) with hg=w&m have been shown in
gure 1.
The total absorptions x, and x, for the two modes are given by

n (Ro/Ro) and X(,: In (EP/R,,).

Separating the right-hand side of (15a) into real and imaginary parts and retaining only the dominant

terms, it can be shown that
_hl, _
T H st (7)1 (172)
{ _fe
2

i )]

L.
c

Figure 2 shows the variations of xo and x. with hs = w/wn (for v=0).
If 7o and 7. be the observed time-delays between the first reflected waves of the two modes

and the ground pulse it can be shown that

2 o _fo, (4 ]_E
To c +g [1 92 D) In 0> ® » (183)

2h L Lo (4
re~"Ltg [1—%—% In (7)]*% (18b)

where hy=height of the bottom of the layer. Variations of the function y= ,'r—@+% with

with h2=w1 (for »=0) for the two modes have been shown in figure 3.

m
-20 -20) 5-00) 5:00
0= nfe
- le} hy = Wy 0110 4-00) 400
o } _1\
4 il I =
< SN 5 N4
[ 5 < 0=nf2 X hs = Cyfupm=0+10
< B3 X h3 = Wyfu, = 010 i h
100| 100 = ¢/ch,
04 04 9=(8/ch,)
- L > -30 95 100 *90 95 7°00
‘90 92 94 '9596 98 1-00 “90 92 94'95% 98 100 wwm —> @ wm
w/wm > wfwm—»
FIGURE 1. Reflection coefficient as a function of FIGURE 2. Absorption coefficient as a function of

frequency. [frequency.

1283



100 1-00 9 4
z e~
o e ol
P - de
} 700t } o0
~e
5 o= /e = o= , )
hy = @ fum=010 hy = Wufan = 010 FIGURE 3. Time-delay as a function of frequency.
20 g= t/chy 20| § = tfchs
=90 35 *00 *90 *95 1-00
©fom =™ w/wm, ——

Expressions (16a) to (18b) furnish informations about all the quantities observed in the radio
exploration of the ionosphere. Though the above analysis has been carried out only for a para-
bolic layer, the method can be extended to any other type of electron layer.

5. Appendix. List of Symbols and Abbreviations

Electric vector of the Wave..........cooiiiiiiii e E (x, v, z; t).
Permittivity of fTe€ SPaCe......o.o ottt ittt et e €o-
Permeability of free Space.........coooiiiiiiii it s o
Steady magnetic field...... ... H..
ColliSION fTEQUENCY ... . u ottt et ettt et et e e et e e et e e a e e e aeeneneeanas V.
Electronic mass and charge............oooiiiiiiii i e m, e.
Frequency of the traveling wave................ocooiiiiii i, f=w/2.
Velocity of Tight... ..o e c.
Electron density........coouuiiiit it it e e e N.
Maximum electron density..........o..ouuouuinuiiiii e Nm.
Half-width of the layer...... ... e L.

Height of the bottom of the layer......... ... e, he.
Reflection coeffiCIents. .. .. .o viuiin ittt e e e R?), Rﬁ
Total @abSOrption..........ooiiiii it e e e Xo> Xe-
Observed time delay on the CRO screen.............coooiiiiiiiiiiiiiiii e To, Te-
Ratio of the axes of the polarization ellipse..............cccoiiiiiiiiiiiiiiiiiiiieee, XK.

Tilt of the polarization €llipSe.......... ..ot e, v,
Abbreviations:

W}, = Nne?[meo, A =27/ wm, o= |emoHe/m|,

=l K2=4w%y#=C%ﬁwa—ﬁzL

2=P2/(1—iZ)\2,, h3= (1 —iZ)w?*/wh, hi= k/(1 —iZ)wh,

@=(1—h3+hoh)l2,  B=(1—hi—hhy)l2,  2=(1—h2+hd)l2,

=L7T_h_1 _h2_ 2_12'-_1
M 2 (1—hZ h3) 1 M 1

A=—n2h2h2 (h2— h2),

Eo=1Kz2, g=1I/ch, (for v=0),

9 oy
f=l=05,  f=l-5—0
w (0]

m m m
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