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A technique using an isometric-circle interpretation of a bilinear transformation has been devel-
oped for minimizing the input VSWR of a transmission line consisting of multiple discontinuities joined
by line sections. It makes possible the determination not only of the minimum attainable input VSWR
but also of the required line lengths between the successive discontinuities. The case for N real and
equal discontinuities is particularly simple, and the necessary conditions for obtaining a perfect match
are established. Numerical examples are given.

1. Introduction

The use of a long transmission line (or waveguide) for transporting signal power from a source
to a distant load is a common practice in communication engineering. A typical example can
be found in the transmission circuit between a transmitter and its associated radiating antenna.
In such cases, even if the external circuitry is matched to the connecting line, reflections may
arise from discontinuities in the line itself due to the existence of rotary joints which enable the
antenna to scan and of connectors which join sections of line together. Input VSWR minimization
for a transmission line with multiple discontinuities presents itself as an important systems problem.

By using appropriate models for both the discontinuities and the line, an analytical expression
for the input VSWR or the corresponding reflection coefficient can be derived in a straightforward
manner. However, the resulting expression is difficult to interpret because it depends in a com-
plicated way upon the properties of the discontinuities as well as upon the spacings between
them. The fact that partial minimization achieved by moving one discontinuity at a time does
not represent an overall optimum solution further complicates the situation.

This paper attacks the problem by making use of an isometric-circle method for interpreting
a bilinear transformation. When a transmission line consists of multiple discontinuities joined
by line sections, a bilinear transform relationship can be established between the reflection co-
efficients at successive discontinuities. The technique to be presented in the following sections
enables one to determine not only the minimum attainable input VSWR under a given situation
but also the required line lengths joining the discontinuities.

2. General Formulation for Equal Discontinuities

Consider a long and perfectly terminated lossless transmission line having N equal, but arbi-
trarily spaced, shunt admittances Y. The situation is depicted in figure 1, in which Yy is the char-
acteristic admittance of the line, 6; denotes the electrical length of the line section between the
kth and the (k+ 1)th discontinuities, and I'x represents the reflection coefficient looking toward the
load at a point just to the left of the kAth discontinuity. Since input voltage standing-wave ratio
pin and input reflection coefficient I'y, are definitely related by the equation

— 1+ |rin|
Pin l_|rin|’ (1)
the problem of input VSWR minimization is equivalent to that of minimizing |I'j,|.

! Presented at the URSI Spring Meeting, National Academy of Sciences, Washington, D.C., April 15-18, 1964.
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discontinuities.

IR < 2
FiGURE 1. A4 transmission line with N equal [—)ésY r::Y [’EEY 3Y I"E; |"§E¥,

In terms of normalized admittances

_ Y
Yk = 17;, (2)

where Y} is the admittance to the left of the kth discontinuity looking toward the load, we can write

D
Fk—1+yk 3)

and

1 =Ty %%,

YA‘—]+111}~7J€72j0A'~1 Y, 4)
k=1,2,3, ..., N.
In our case, y1=y+1,
— 7
h=—rt ®

= I+ Tie %01+ 21?6‘21'9‘
2 1— F%e—zj(h (6)

and

o — [+ Tre 2%+ 21" T e—2%
S 1—T'1Txe %% (7)

It is convenient to normalize the reflection coefficients with respect to I';:

_ T
Ye=T, 8)
and to define
Br=e"%%. 9)

We have y;=1 and, from (7),

V1= (1 + 2F1)Bk'}’k SIS 1
* — F%Bk')’k =+ 1

(10)

If we write u for yi+1 and v for Bryk, we see that (10) represents a bilinear transformation between
the variables u and v with the following form:
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:a'v+ b’

c'v+d”’ (11)
where
a'=1+2I, (12)
¢ == (13)
b'=d =1. (14)

It is the purpose of this paper to make use of some of the important properties of the bilinear
transformation to minimize |yy|, and hence |I'y| and px(= pip).

3. Properties of Bilinear Transformation

Some of the more important properties of a bilinear transformation will be reviewed here in
preparation for their application to the problem at hand [Ford, 1929; Guillemin, 1951]. First of
all, in order to have a one-to-one correspondence between all points in the u- and v-planes, we
require that

a'd —b'c’=01+T1)2#0, (15)
which is equivalent to demanding that I'; &= — 1. This requirement is always satisfied in practice

since no short circuit is to be connected across the line. In order to achieve invariance of lengths
in a certain neighborhood, we divide the a’, &', ¢', d’ coefficients by (1+1T';) and rewrite (11) as

_avt+b
vt d (16)
where
_ a' _ =k 2F1
@ 1+ 1+T1 a7
¢’ g
F S (1)
b d 1
b_d_1+l‘,_1+rl_1+rl (19)
Now we have the so-called normalization condition for the bilinear transformation:
ad—bc=1. (20)
Equation (16) can be rearranged to express v as a function of u as follows:
y— du—2b )
—cuta (21)

Three invariant properties are of importance:
(i) Fixed points of transformation. These are points for which u=v can be determined from
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either (16) or (21). We have
1
un=wn=gc| (a=d+Viardr—4 | @
and

uﬁ=vﬂ=21—c[(a——d)— (a+d)2—4] (23)

(i1) Invariance of the cross-ratio of four points. If we define the cross-ratio of four points,
u1, Uz, us, and uy in the u-plane as

(w1 — us) (U2 — uq)

Uiy, Uslls) = ;
( 1U2 3 4) (ul _ u4) (u2 _ u3) (24')
then it is easy to prove by direct substitution that
(u1us2, usws) = (v1v2, V3V4). (25)

(iii) Invariance of lengths—isometric circles. Isometric circles are the circles which repre-
sent the complete loci of points, in the neighborhood of which lengths and areas are unaltered in
magnitude by a bilinear transformation. They are determined by setting | du/dv|=1 and | dv/du|
=1. Two relations are obtained:

lcv+d|=1 (26)
and

lcu—al|=1. (27)

Equation (26) represents the isometric circle of the direct transformation, C,, having its center at
Ou=—-"=75" (28)
1

and (27) specifies the isometric circle of the inverse transformation, C,, with its center at

_a__ 1
0,="= F?(Hzr]). (29)

1

Both isometric circles have the same radius

Rol_

el

1
T (30)
04T

The invariance of the cross-ratio and the fact that the cross-ratio of four points on a circle is
a positive real number establish the property that circles transform into circles. Further, the
two fixed points of the present transformation are found to coalesce to one point, since a+d=2.
Thus,

(1)

This property signifies that the transformation is parabolic and that the isometric circles C4 and
C; are tangent to each other at the fixed point.
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4. Two.Methods of Representation

There are two methods for representing a bilinear transformation graphically. The con-
ventional method is to rearrange (16) as

u=-—+ A
¢ v+£i
c
which, in view of (20), reduces to
1
=2 (32)
¢ v+é
c

The bilinear transformation can then be interpreted as a combination of four operations in the
complex plane:

(1) a translation, v — v+‘_j;
(2) an inversion, v+z—> 1/|c|? U+E :

(3) a rotation, 1/|c|? (v+§)—>— 1/c? <v+g>; and

(4) another translation, — 1/c? <v+ —g) - %— 1/¢ <y+ g) =u.

A second, completely equivalent representation, known as the isometric-circle method [Ford,
1929; Bolinder, 1957], is possible for transforming a point v to the corresponding point z and vice
versa. This method interprets the bilinear transformation as a combination of three steps as
follows:

(1) an inversion with respect to the isometric circle Cy;

(2) a reflection with respect to the symmetry line of the two isometric circles Cy and Ci; and

(3) a rotation around the center, O;, of C; through an angle — 2 arg (a+ d).
A proof of the validity of the isometric-circle method of representation for the general case is
contained in the appendix. The remainder of this paper will demonstrate the technique of apply-
ing the isometric-circle method to the problem of input VSWR minimization for a transmission
line with multiple discontinuities.

5. Minimization of Input VSWR for Two Equal Discontinuities

We now consider the case for two equal discontinuities. Here I';,=1", and it is desired to
minimize | 2| or |y2|. From (10), we have

_(1+2ly)Bi+1
T g1 (33)

which subsequently converts into the bilinear form of (16) with « substituted for . and v for B:(y;=1).
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FIGURE 2. [Isometric-circle construction for a
transmission line with two equal discontinuities.

The isometric-circle method can be used directly to determine, for a given I';: (i) the minimum
obtainable input VSWR, (pi,)m; and (ii) the required electrical line length 6; between the two dis-
continuities in order to achieve (pj,)m.

Since the locus of v= ;=% for different values of 6; is a unit circle centered at the origin,
we proceed as follows (see fig. 2):

(1) Draw a circle of unit radius (locus of v) at the origin.

(2) Draw the two isometric circles Cq and C; with equal radius R = 1/|c| = |(1 4 T'1)/T?| at centers
04=1/T% and O;=— (1 +2I"))/T2 respectively, and draw the symmetry line (common tangent) L — L.

(3) Invert the unit circle with respect to Cq to get the v, circle.

(4) Reflect the v;-circle about line L—L to get the locus of u(=vy:=1%/T}).

(5) From figure 2 it is a simple matter to determine the minimum magnitude of s, |ys|m. From
[v2|m, |T2lm=|T1| |v2|m, and (pin)m can be found:

_ 14 [Tofm,
e (34

(6) The required line length (6:)m can be obtained from (33) by substituting (ys2)m for y.:

— e~ 200))y = (Yo)m—1
(B1)m= e~ % T+ 2T+ T2y (35)

Since a+d=2 in our case, no rotation is needed (¢ =0 in (53) and in fig. 6) after reflection about
the symmetry line L — L, and the point (81)» on the v-circle can be very simply determined graph-
ically as shown. With (8:1)n and (61)m, the solution of the problem is complete.

The question may be asked whether it is possible to get a perfect match (y2=0 or p;, = 1) with
two equal discontinuities. From (33) we see that this occurs only when

1
1+2ry (36)

Bl — e—2j91 —_——

which requires

1 o
1+ 20 ’ (37)
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Equation (37) limits the values of I'y for perfect match to lie on a circle of radius 1/2 centered at
—1/2 in the complex plane. Hence, we are able to predict, for example, that a perfect match is
unattainable for two equal discontinuities with I'y=—1/2+;3/4; but, if I';=—1/2+;1/2, a perfect
match can be obtained and the required 6, readily determined from (36).

6. Three or More Equal Discontinuities
When there are three equal discontinuities, it is necessary to analyze not only (33) but also

_ (1+2T')Baya+1
s = F?Bz‘h +1 (38)

and input VSWR minimization can be effected by repeated application of the bilinear transforma-
tion. In order to avoid confusion and clutter, it is advantageous to consider each transformation
as a mapping from one plane onto another. Thus, points on the unit circle in the B;-plane are first
mapped into a circle in the y.-plane, and points on the Byy.-circle, centered at the origin of the

vs-plane, are then mapped into another circle in the y;z-plane.
The transformation of the unit circle in the B;-plane into a 7y».-circle has been illustrated in

figure 2 for the two-discontinuity case. The product Byy. will be a family of concentric circles at
the origin in the y,-plane as shown in figure 3(a), the radii of the circles being dependent upon the
value of |y2|. A second application of the isometric-circle method of bilinear transformation will
transform the family of concentric Bays-circles into a family of ysz-circles as shown in either figure
3(b) or figure 3(c). From (10), we note that the origin of the ys-plane transforms into the (1, j0)
point of the ys-plane. Because of the conformal nature of the transformation, the transformed
family of y3-circles will not intersect and will be nested about the (1, jO) point. The smallest circle
Ba(y2)m in the ys-plane transforms to the smallest circle in the vy;-plane and the largest circle Ba(y2)u
transforms to the largest.

The situation in figure 3(b) indicates that a perfect match is not possible because the largest
of the y;-circles does not encompass or pass through the origin. The value of |ys|m, which yields
the minimum |I'3|, or (pijn)m, can be readily determined from the figure. It is noted that, in order
to minimize |vys|, it is necessary to make |y»| maximum. With (y3)n and (y2)y determined, inverse
transformations will give the required electrical line lengths 6; and 6, between discontinuities.

Figure 3(c) shows a case where a perfect match is possible. The largest y;-circle now encloses
the origin; hence one member of the family of yz-circles does pass through it, satisfying the con-
dition for a perfect match.

In general, it would be desirable if it could be predicted, by a simple computation without the
elaborate transformation procedure, whether a perfect match is attainable with three discontinu-
ities for a given I';. As will be shown in a later section, the range of values of I';, for which a per-
fect match can be made, can be determined without difficulty when I'; is real; but, when I'; is com-
plex, the analytical relation between |yz|y and |T';| is too complicated to be of use.

When there are more than three discontinuities, the same technique can be applied. Here,
a family of circles at the origin extending from Bi(yx)m to Bk(yx)u in the yi-plane transforms to a

% —plane

FIGURE 3. VSWR minimization for line with

three equal discontinuities: RN

0

(a) Bryz-circles in y,-plane N>
(b) ys-circles when a perfect match is not possible 05
() ys-circle when a perfect match is possible.

LAM

(b)
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family of nested circles enclosing the (1, jO) point in the yxii-plane. If the magnitude relation

1

sl =5 (39)

can be satisfied, then it is possible to make yy=0, and a perfect match can be achieved with NV
discontinuities. If a perfect match is not attainable, then |yy|» determines (p;p)m, and the required
electrical line lengths Oy_1, Ov—2, . . ., 62 and 6; can be found from (yw)m, (Yyv-1, - - -, (¥3)ur,
and (yz2)u, respectively, by successive inverse transformations.

Example 1. Consider the case of three equal discontinuities:

Y= 47 =y3=$= 0674'/7_7°
0

It is desired to determine the electrical lengths 6; and 6; required to effect a perfect match.
From (5) we compute

T'; =0.300 /240°=—0.150 — j0.260
and
1+2I''=0.700—,0.520=0.872 /| — 36.6°.

For a perfect match, we require

=—1—=1.15.

1
0.872

lvel = ’ 1+F2r;
The unit circle in the B;-plane is mapped into a y,-circle as shown in figure 4, either by converting

three points or by isometric-circle construction. Two points exist on the circle at which |y.| =1.15;
hence a perfect match can be obtained with three discontinuities in two ways. We have

v2=1.15 €/42:6°  or y, =1.15 e 7458,

In order to make

1
Sl T

or

e~ M2 yy=1.15 i(36:6°-180%)

we determine two values of 6; by the following relation:

0, =% (180° — 36.6°+ arg s),

from which we find 6:=93.0° or 48.8°. Substitution of =1 and rearrangement of (10) gives

. —1
= p—2j0 =¢___
TP T E
from which we obtain 6; =114.6° or 34.4°.

With these values of 6;and 0; we can effect a perfect match at the input (p;,=1). As a result
of this solution, the problem of 3n (n=1, 2, . . .) discontinuities has also been solved.
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% - plane

FIGURE 4. Construction in the vyy-plane for a case Q» {1,10)
. . o . ’
of three equal discontinuities. P

114 % tAM

7. N Equal, Real Discontinuities

We consider now the general case of NV equal, real discontinuities. Because of the way in
which yr and I'x are defined, y; will be real and positive and I'; will be real and negative. Both
isometric circles Cq and C; are now symmetric about the real axis; the point (Bxyx)y = (yx)u trans-
forms into (yx+1)u, and the point (Bxyr)m =— (yi)u transforms into (yr+1)m. With these speciali-
zations, it is now possible to tabulate (yx)y and (yx)m values for a general I'y (see table 1).

TaBLE 1.
k| (Bryn = (yi)m (Yr+1)m (Bryr)m=—(yr)u (V+1)m
2 2l
! ! =7 - T+
\ 2 3 2 (1450
1-T, 1-2I, 1-T, Il =IPha Al
=% 4 W=l
N=2| I=v=3r, |1=(v—2r,
N1 __N-1 _ (N—2+BN—4T,
1-(N—2)T, 1-(N=2I'1+N—-DI?

Table 1 contains all the information necessary to evaluate (p;,)m for the case of N equal, real
discontinuities. When a perfect match is possible, (yx)m becomes negative or zero for a certain k.
From the table we observe that a perfect match is not possible with two equal and real discontinu-
ities, since (y2)m is always positive for negative I'1. With three discontinuities, however, a perfect
match could be achieved if the value of I'; lies within the range: —1/5<T; <0. In general, for ¥
real and equal discontinuities, a perfect match is possible if

N—2
- (?ﬂ) <[ =<0, (40)
which is the same as requiring
N—2
oY= <m> Yo. (41)
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as N—> =, (40) and (41) become approximately

<=0 (42)

and
osY=<Y, (42a)

When a perfect match is not possible, the minimum obtainable input VSWR after N discon-
tinuities will be

1+ |Tu(ywml| 1+@4N— S)I‘f
Pindm =TI (y)ml ~ T— 20N —2)Ts — @N—3)I2 (43)
The electrical line lengths between the discontinuities should be 8x=7 for k=1,2,. . ., N—2,

and Oy_; =/2. All discontinuities except the one nearest to the input are effectively put in parallel
which are then reflected through a quarter-wavelength section and added to Y. Since Y would
already be too large to satisfy (41) for a perfect match, this arrangement would reflect a minimum
additional conductance at Yy, hence yielding a minimum input VSWR.

8. Input VSWR Minimization for Unequal Discontinuities
When the discontinuities across a line are unequal, VSWR minimization depends upon the:
order in which they appear. Referring to figure 5, if we call the first discontinuity Y, the second

oY, . . ., and the kth a,Y, where the a;’s may be complex (a;=1), we may write, from (4),

_ == r};f]e*zjek%l +
Ve T Ty @i T " (44)

Also,

=&___ a2+(1+F1+a2F1),81
VT 04T =l — 26, (45)

and, in general,

- :FkH: ak+1+(1+r1+ak+1rl)3k’)’k
YT AT — e D) — i D2Biye e

It is obvious that (46) represents a bilinear transformation between the two variables yx:: and
(Bryr) and can be put in the form of (11). Furthermore, we find that a'd’ —b'c’ =(1+I'1)?, which
is exactly the same as (15) for the equal-discontinuity case. Hence, input VSWR minimization
for unequal discontinuities can follow the same techniques which have been developed previously
for equal discontinuities. Because of the changing a’, b’, ¢’, d' values, however, no prediction

_—— l‘ek*‘ e I‘-el—-

S . .3 s S, .S
r%‘nY S;"-Yr:?‘xY =Y |'>:EY l”:;Yo FIGURE 5. A transmission line with unequal dis-
|

continuities.

T | |
Rl'-‘ I-i‘n rl‘wl rll( ré I-[‘ Q’O
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on perfect match conditions is possible. The procedure would in general be more involved, as
the nesting point would now change its location on each application of the bilinear transformation.
Example 2. Consider the case of three real, unequal discontinuities;

y1=2, Yo =3, and y; =25,
which means that a;=3/2 and a3 =5/2. It is desired to minimize |I3] or pj,.

From (5), we compute I'y=—1/2. Substitution of the values of as, a3, and I'; in (44) and (45)
results in two equations:

L 12—2g
Y27 10—38,

and
YT 14— 58yys

Mapping of the points 8;=+1 and B =—1 yields the points (y2)» = 10/7 and (y2), = 14/13 respec-
tively. A second mapping of the Bay,-circle into a ys-circle transforms the point (B2y2)m=—(y2)u
into the point for (y;3),=50/37. Thus, we have

| l‘3|m = ]rl(’)’:;)m| =25/37

and

S o P P
(pin)m - ] — |r3lm —5 6”

for 6= and #:=m/2. The minimum obtainable input VSWR will be different if the order of
v1, ¥z, and y3 is changed. For instance, if, instead of in the 2-3-5 order, the three discontinuities

are connected in the 5-3—-2 order, we find (pjp)m =2 L

A

9. Conclusion

We have shown that input VSWR minimization for a transmission line with multiple discon-
tinuities joined by line sections can be achieved by using the isometric-circle method for inter-
preting a bilinear transformation. The basic technique can be applied in a repeated fashion to
the general case of a line with NV unequal, complex-admittance discontinuities. It enables us to
determine not only the minimum attainable input VSWR but also the required line lengths between
the successive discontinuities. If the /N discontinuities are real and equal, it is possible to predict
the range of the reflection coefficient I'y of the individual discontinuities for which a perfect match
would be obtainable. A general expression for the minimum input VSWR has also been found
when Ty falls outside of the specified range, making a perfect match impossible to obtain.

10. Appendix. Isometric-Circle Method of Representing Bilinear Transformation

Let us rewrite the bilinear transformation in (32) as

a 1

u—=—==———" (47)
¢ c? <v+é>
c

774-625 O-65—6 1281



FIGURE 6. Isometric representation of bilinear
transformation.

Two relations are implied by (47): a magnitude relation and an angle relation. The magnitude
relation is

a 1

u——|=
= e

(48)

v+c-l|
c

Noting from (28) and (29) that —d/c and a/c are respectively the locations of the centers Oq and O;
of the isometric circles Cq and C;, we see from (48) that the distance between O; and u should be
equal to the distance between Oy and the point obtained by inverting v with respect to C4 which
has a radius R=1/|c|. This magnitude relation is satisfied by the construction in figure 6:

Oa1 = Ow:= Ou. (49)
In figure 6, Cq and C; are the two isometric circles, L — L is the symmetry line, v is the inversion

point of v with respect to Cq4, and v; is the reflection point of v; about L— L.
That the angle relation implied in (47),

C

e e

=m+ arg [

B o0
& <v aF g)

is satisfied by the construction in figure 6 can be more easily seen by rewriting (50) in the following

form:
a\ at+d\®> 1 1
arg (u—;)—w—i—arg[( Cd> ( ]

v+4> (a+d)?
c

=7+ Q2a—B—2¢), 61
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where

a=arg (a:d) (52)
B=arg (v ar g) (53)
¢ =arg (a+d). (54)

In figure 6, the angle which the line O;u makes with the horizontal is seen to be m — (8 — a — a) — 2¢,
which is the same as the right-hand side of (51).

The above has demonstrated that a point v can be transformed to the point u in accordance
with (47) by (1) inverting v in isometric circle Cq (v—=>v1), (2) reflecting v; with respect to symmetry
line L—L (vi—>v2), and (3) rotating v, about O; in a clockwise direction by an angle 2¢ (v.—> u), as
shown in figure 6.
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