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A mathe matical formulation is devised for a uniformly spaced and uniformly progressively phased 
antenna array of a given number of isotropic ele ments such that the final radiation pattern is end fire 
with no large bac klobe. The pallern also has the maximum number of sidelobes of equal level, 
modifying the result of an earlier paper, eve n when the ele ment spacing is made arbitrarily small. 
The directive gain , the fir st null beamwidth , the half·power beamwidth, the current excitations, and 
the required phases for s uch an array are given in c urves as a fun ction of the ele me nt spacin g. It 
is shown that the li miting radiation characteri s ti cs whe n the ele ment spacing approaches zero can 
also be de termined in a relatively simple manne r. 

1. Introduction 

Since the publication of Dolph's paper [1946] , 
many articles dealing with the optimization between 
the beamwidth and the sidelobe level of linear antenna 
arrays have appeared in the lite rature. In summary, 
different types of mathematical formulations have 
been used by different investigators for differe nt 
arrays, depending on whether the array is broadside 
or endfire, whether the total number of elements in 
the array is odd or e ve n, and whether the element 
s pacing is greater or less than one·half wavelength 
[Dolph, 1946; Riblet, 1947; DuHamel, 1953; Pritchard , 
1955]. A unifi ed approach covering all these cases 
wa's des cribed by Ma and Cheng [1961a]. 

The proble m of maximizing the directivity of an 
array was inves tigated by Uzkov [1946]. He showed, 
by means of an orthogonal transformation in vector 
space, that the maximum directivity of an endfire 
array of n isotropic elements, as the element spacing 
approaches zero, is numerically equal to n2• Other 
techniques for improving directivities of endfire 
arrays were also proposed [Hansen and Woodyard, 
1938; Goward, 1947]. Bloch, Medhurst and Pool 
[1953] investigated similar problems by using the 
impedance relation between the array elements, but 
only a very limited calculation was given in their paper. 
Based on their method, a rather extensive calculation 
of the maximum directivity of an endfire array of half· 
wave dipoles was made later [Stearns, 1965]. Recently, 
Tai made some investigation of the optimum direc· 
tivity of uniformly spaced broadside arrays [1964] 
and the ordinary e ndfire arrays [1963] of isotropic 
sources or dipoles. The sidelobe le vel of an array was 
not considered or limited in any of these papers. 

As far as the directivity of an array with equal side· 
lobes is concerned, Reuss [1959] derived a formula 
for the Chebyshev linear broadside arrays consisting 
of infinitesimal dipoles, but hi s formula provides 
no information concerning the effect on the directivity 

when the element spacing changes. Stegen [1960] 
obtained an expression for the direc tivity in terms of 
Chebyshev polynomials, but hi s expression is valid 
only when the ele ment spacing is an integral multiple 
of a half·wavelength. A general approach for dealing 
with thi s problem outlined by Ma and Cheng [1961a] 
was based on the idea of keeping the number of side· 
lobes as great as possible and with a (desired) equal 
level e ven when the element spacing was less than one· 
half wavelength. Pertine nt num erical res ults on 
directive gains, however, were not reported there. 
More recently, while attempting to obtain some nu· 
meri cal result, it was discovered that , according to 
the procedures outlined by Ma and Cheng [1961a], 
the sidelobes in the final radiation pattern synthesized 
for an odd number of elements are not all equal in 
level, since there always is a higher sidelobe occurring 
near () = 71"/2, and that the final pattern for an eve n 
number of elements is not physically realizable (e.g., 
the "power" pattern function will become negative 
for some physical angles). It is the purpose of thi s 
paper to modify the procedures given before in such 
a way that the final pattern will have all sidelobes 
at an equal level. The modified procedures given 
in this paper will be valid for both an odd and even 
number of elements. 

2. Mathematical Formulation 

The field from a linear array of n equispaced ele­
ments as given in fi gure 1 can be mathematically 
represented by the polynomial: 

where 

n- J 
E(z) = 2: akzk, 

k=O 

z= exp (jt/J) , 

(1) 

(2) 
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FIGURE 1. A Linear array of n equi-spaced isotropic elements_ 

(3) 

and ak represents the excitation of the kth element­
In this paper ak are all real, implying that the array is 
uniform-progressively phased (a)_ It was previously 
shown [Cheng and Ma, 1960] that, by introducing a 
new variable, y, 

one can express 1 E(z) 12 , the power pattern, as a poly­
nominal of y, 

where 

1 E(z) 12 = E(z)E(z- l) 

n - l 

= 2: bm(zm+z- m)l z+ z- I=y ---,> • P(y), 
11l= O 

n- l - m 

bm = '2: aiam+i, 1 ~ m ~ (n-l), 
i = O 

(5) 

(6) 

(7) 

Since P(y) is a polynominal of (n-l)th degree with 
real coefficients, and is non-negative for all physical 
values of y in the interval [- 2, 2], it generally can 
only contain a combination of the following possible 
elementary factors: 

(i) (y+ bk) or (bk - y) with bk real and ~ 2, 
(ii) (y+ bk)2 with bk real and 1 bk 1 < 2, 

(iii) (yZ + 2bkl y+ b%l + b%2) with bkl and bk2 real. 

In particular, for arrays producing the maximum pos­
sible number (n - 1) of physical nulls in the visible 
range - 2 ~ y ~ 2, the only factors that can appear 
in P(y) are (y+ 2) and (y+ bk)2 with 1 bkl < 2. There­
fore, depending on whether n is odd or even, P(y) for 
such an array must be: 

n - l -r 
Po(Y) = n (y+ bk)2 

k=1 
for odd n, (8) 

n- 2 
- 2 

Pe(y) = (y+ 2) n (y+ bk)2 for even n, (9) 
k=1 

where all bk are real, distinct, and I bkl < 2. In (8) 
and (9), we have assumed that y= 2 is the location of 
the main beam. The corresponding array poly­
nominals are, respectively, 

and 

n - } 

2 

Eo(Z) = n (l + bkz + Z2) 
k=1 

n - 2 
2 

for odd n, (10) 

Ee(z) = (1 + Z) n (1 + bkz + Z2) for even n_ (11) 
k=1 

The excitation coefficients ak in (1) can then be de­
termined by expanding (10) or (11). 

With this preliminary analysis given, the general 
procedure of synthesizing an array having the maxi· 
mum number of nulls can now be summarized as fol· 
lows: (i) to determine bk for (8) or (9) according to a I 

specification, and (ii) to determine the required ex· 
citation coefficients using (10) or (11). 

3. Directivity of Endfire Arrays With Equal 
Sidelobes 

For arrays having all the sidelohes equal in level, 
the locations of nulls (y = - bk ) and sidelobes (y = Yl) 
are related in a special manner, where 

2 > ( - bl) > YI > ( - b2) > Y2> . . . 

> YIl -3 > (- bl/- I) > (- 2) for odd n, (12) 
2 2 

and 

2 > ( - bl ) > YI >. . . > YIl - 2 > ( - 2) for even n. (13) 
2 

The parameters bk in (8) or (9), the corresponding 
excitation coefficients ak in (1), and the location of 
sidelobes can be uniquely determined once a desired 
sidelobe level relative to the main beam or a desired 
first null location (- bl ) is specified. The detailed 
derivations and procedures are omitted here, but can 
be found elsewhere [Ma and Cheng, 1961b]. 

After a power polynomial P(y) is determined, the 
directivity or the directive gain of an endfire array 
with equal sidelobes can be calculated according to 
the conventional definition [Silver, 1949]: 

(¥-d)P(Yll) 

G= Wo ' (14) 
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where 

-'- ---- --------

() = O. If a smaller d is chosen, some portion of Po(Y) 
in the left-hand side of figure 2a will be invisible. It 

WO=J.Yb P(y) dy, 
Ya V4-,r 

with the limits given by 

Yb = 2 cos IjJb = 2 cos (- 2; d + ex) when () = 1T 

(15) is clear that there exists an element spacing d* < ~ 
for the ordinary endfire array such that the whole 

visible region will be ended at y* = 2 cos (- 4; d*) 

and that the final pattern will have a sidelobe at () = 1T 
(16) 

Ya=2 cos ljJa=2 cos e:: d+ex) when (}=o. 

Note that the polynominal P(y) can always be rear­
ranged in terms of (4 -,r) such that the exact expres­
sion for Wo (and hence for G) will be obtained by 
integrating (15) term by term. 

4. A Transformation When d< >- /2 
To keep the discussion more specific, let us consider 

the Po(Y) given in (8). The whole pattern for d = ~ 
(or 2; d= 1T) is plotted as in figure 2a when the ordi­

nary end fire condition, - ex = 2; d = 1T, is used. Note 

that, in this case, there always is a large backlobe at 
() = 1T having the same magnitude as the main lobe at 
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'2TT ' ( 2TT Q (y') Ijr= Td+a, y =2eos Td+aJ -------- 0 

Power pattern of an array with equaL sideLobes (odd n). 
2" (a) Ordinary e ndfire,-a=T d = 1T', 

(b) Optimum endfi re, d < d* < ~ . a =+= 0, - 0 =+= '€f d. 

having the same level as the other sidelobes. In 
this case, no modification for improving both the di-
rectivity and the beamwidth is possible if the sidelobe 
level remains unchanged. This actually is the case 
considered before by Rhodes [1953]. 

For d < d*, some of the sidelobes will also be in­
visible, then only the visible portion of the pattern 
would be expanded into the region O.s; () .s; 1T, making 
the beamwidth wider than the case when d=d*. In 
order to make improvement under this circumstance, 

an optimum endfire condition ex =l= - 2; d, together 

with a linear transformation of variables such as 

(17) 

is devised such that the final pattern still remains 
much as it formerly did up to y=y*. The parameters 
kl' k2 in (17), and ex can be determined by the follow­
ing conditions: 

y' = 2 cos (2; d+ ex) when y= 2 (() = 0), 

(- 21T ) y' =2 cos -A- d+ex when y=y* (() = 1T) , (18) 

y'=2 when y=-2. 

The first condition of (18) maps both the magnitude and 
location of the main lobe, the second condition assures 
that the maximum possible number of sidelobes at 
equal level be kept and that the large backlobe be 
avoided, and the third condition maps the sidelobe 
(an odd n) or the null (an even n) originally at y=-2 
to y' = 2. The transformation (17) with the conditions 
given in (18) is shown in figure 2b. From this figure 
one can see that, for d < d*, the transformation (17) 
always squeezes the whole pattern up to y* into the 
visible region and, therefore, helps to shift the pat­
tern toward the main lobe, making the beamwidth 
narrower and the directivity higher. For this reason 
the transformed array is called the optimum endfire 
array. Solving (18), one obtains 

ex 
tan-

2 
2-Y2+y* 1Td 
----==== tan -
2+Y2+y* A ' 

k =- sin2 (~+ 1Tr£\ < 0 
I 2 A) ' (19) 
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where y* can be easily determined by the following 
simple relation: 

n - 1 
y* = 2(1- b(II+ I)/4), for n odd and -2- odd; 

y* = 2(1 + y(n - I) /4), for n odd and n; 1 even, (20) 

or 

y* = 2 + YI - b(n-2)/2 for even n . 

The phase Q' and the parameters kl and k2 required 
to produce an optimum endfire array can be calculated 
from (19) once a d < d* is chosen. From the first 
equation of (19) it can be concluded that Q' is always 
located somewhere in the first quadrant in order to 
make a pattern of an endfire array optimum when 
d< d*. Note that (19) also holds true when d=d* 

d . ld ' 2'lT d'" 0 Th b an Yle s Q'''='lT--;: + >. ere seems to e a 

phase di scontinuity of ('IT) as compared with the phase 
required by the ordinary endfire condition. This ex tra 
phase of '1T is actually taken care of by the fact that 
kl = - 1 and k2 = 0 for the case of d = d*. Of course, 
thi s apparent di screpancy can be removed if one tri es 
to map y= - 2 onto y' = - 2 , re placing the third con· 
dition in (18). While thi s altern ative transformation 
see ms more natural , as far as the Ii miting case d ~ d* 
is concerned , it will c reate a little mathematical diffi· 
c ulty in dealing with the limiting case to the othe r e nd 
(d~ 0) , as compared to what we have done [see (30) 
through (32)] by using the present approach. In any 
case, these two approaches yield the same array de · 
pending on whe ther one lik es to have the final exc ita­
tion coe ffi cients ak alternating signs (as is clearly 
shown in fi g. 6) or to have the sign reversal absorbed 
in Q' if using the alterna tive transformation s ugges ted 
above. As pointed out before, it is not necessary to 
make further modifi cation in phases for the endfire 
arrays with equal sidelobes whe n d= d* (considered by 
Rhodes [1953]) because the ordinary endfire condition 
for phase still holds for that parti c ular situation. Also , 
since thi s pape r is to primarily deal with cases when 
d < d*, the aforementioned two alternative approaches 
would not make any differe nce as far as the presenta­
tion is concerned. 

The optimization discussed above specifically for 
Po(Y) applies as well to Pe(y) given in (9). 

From (17) one has 

(21) 

Substituting (21) into (8) and (9), the power polynomial 
becomes , respectively, 

n- I -y 

Qo(y') = k1(n- 1) I1 (y' + b~)2 for odd n, 
k = 1 

(22) 

n- 2 
2-

Qe(Y' ) = k1(n- I)(y' - 2) I1 (y' + b~)2 

where 

k= 1 

n-2 
2 -

= I k1(n-!) 1(2 - y') I1 (y' + b~,)2 for even n, 
k=1 (23) 

(24) 

Note that the second form of (23) is due to the fact 
that kl < 0, see (19), and k1(n- 1) < 0 for an even n. 
It is then clear from this second form that Qe(y') ~ 0 
for - 2 :%; y' :%; 2, as it should be for a realizable power 
polynomial. Based on (22) and (23), the correspond­
ing array polynomial becom es, respectively, 

11- 1 
2 -

E~(z) = Vk1(n- l ) I1 (1 + b{.z + Z2) for odd n, 
k = 1 

n- 2 (25) 
2 -

E'(z) = vi k1(n- l)1 (1 - z) I1 (1 + b~z+ Z2) for e ven n. 
k=1 

(26) 

A new set of exc itation coefficients required for synthe· 
sizing the optimum endfire array can be de termined 
by expanding (25) or (26). 

The directivity G', the first null beamwidth (201) , 

and the half-power beamwidth (20,,) can be calculated 
respectively from 

(27) 

(28) 

and 

y;, = 2 cos (2; d cos 0" + Q'), (29) 

where 

W' = lYb Q(y') d' 
o V y, 

Y(j 4-y'2 

y~=2 cos (_2; d+Q'), 

y~=2 cos C; d+ Q'), 

and y;' is determined by 
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FI GURE 3. Directivities for optimum endfire arrays with equal 
sidelobes (- 20 dB). 

Numerical res ults for n = 3 through n = 7 and for 
a sidelobe le vel 20 dB down from the main lobe , ob­
tained by using these formulas are given in figu~es 
3, 4, 5, 6, and 7. For comparison, the c.orrespondIng 
direc tivities for various d , if the ordInary endfire 

2w . hi. condition - 0'=- d IS used throug out, are a so In-
A 

cluded in figure 3 as the dashed curves. The points 
mark ed with * on these dashed curves are those 
when d = d*. 

From figure 2b, it is seen that the smaller the d, 
the narrower will the beam width become, and the 
higher will the directivity be. In fact, the limiting 
radiation charac teristics for n = 3, 4, and 5 when 
d ~ 0 has also been obtained by taking th e appropriate 
limiti~g process. Specifically, the equations in (19) 
have been re placed by (30) through (32), when d ~ 0, 

a 2 - v'2+Y* wd 

2 2+Y2+y* A' 
(30) 

16 r----r--,---,--,---,- ,---,-,----,-, 

16 

14 ~ __ _ 

10 

n ~ 3 

4L--L~ __ ~~~~-L~L-~~~ 
o 0.5 1T 

21T d 
A 

FIG URE 4 . Directivities in dB for optimum endjire arrays with equal 
sidelobes (- 20 dB). 

(31) 

(32) 

where 

0' wd 4 wd x= -+-- - --. 
2 A 2+Y2+y* A 

(33) 

The number of terms to be carried for k, and k2 in 
(31) and (32) is determined by n, the total number of 
elements in the array. 

5. Conclusion 

A new way of calculating the directivity of a uni­
formly spaced end fire array with equal ~idelob es, 
when the element spacing is made arbitranly small, 
has been formulated. Numerical r esults on direc­
tivities, beamwidths, c urrent excitations, and phases 
for a typical end fire array have bee.n presented ( ~gs: 3 
through 7). The limiting radiatIOn characten s tIcs 
for n = 3, 4, and 5 when the element spacing ap­
proaches zero have also been included. An exte nded 
table for n = 3 through n = 30 with the sidelobe level 
varying from 10 dB through 50 dB below the main 
lobe is being prepared as an NBS monograph to .be 
published soon. The inves tigation has been carned 
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FIGURE 5. Beamwidths in degrees for optimum end fire arrays with 
equal sidelobes (- 20 dB). 

out only on a theoretical basis. The actual designing 
of this type of so·called supergain array is perhaps 
far more difficult in view of increased current magni· 
tudes [Yaru, 1951], mutual couplings between ele­
ments, high ohmic losses, low efficiency, low effective 
radiation resistances [Wilmotte, 1948], critical me­
chanical tolerances, narrow bandwidth, and increased 
stored energy [Taylor, 1948]_ 

The author thanks H. V. Cottony for his comments 
and for calling attention to some references, and A. C. 
Stewart for reading the manuscript. 
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FIGURE 6. Excitation coefficients for optimum endfire arrays with 
equal sidelobes ('- 20 dB) 
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