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A recent study by R. L. Liboff of electromagnetic wave propagation in plasmas with a specific
type of two-dimensional applied magnetic field is continued in this paper. The plasma is assumed to
be of uniform density in general, and a ‘‘spoke-wheel”” magnetic field is considered which varies as the
inverse radius. Perturbation series are obtained for the first Fourier component of the electric field
for several limiting cases. Both the separate cases of a radial and a circular magnetic field are con-
sidered in the present work, the former in greater detail, and collisions are included. By suitable
nondimensionalization, two parameters arise naturally in the present analysis, thus affording a more
general solution which should be particularly useful in subsequent applications.

1. Introduction

In the present paper we shall extend the investigation initiated by Liboff [1964] of the cold
plasma waves that may propagate in a specific type of two-dimensional magnetic field. A back-
ground discussion of this problem is given by Liboff. Both the separate cases of a radial and a
circular magnetic field are considered in the present extension, the former in greater detail, and
collisions are included. The four physical variables of the problem (electron density, collision
frequency, magnetic field strength, and geometry) are included in two parameters which arise in
the present analysis, in which perturbation series are generated for the electric field. The limiting
cases are suggested naturally on this basis, and quadratures are obtained for the first-order terms
in the perturbation parameter. The general form of the parameters results in a systematic solu-
tion which should be useful in subsequent applications.

2. Analysis

2.1. Equations

A collision term has been added to the matrix A in Liboff’s formulation, and the governing
equations were nondimensionalized in a convenient form to facilitate perturbation solutions (refer-
ence can be made to the detailed presentation [Gold, 1964] for specific intermediate equations and
results). Assuming solutions of the form

Edp. 0)=3 Euslple=#? (a=p. 0, 2),
B=o (1)

we obtain the following generalized governing equations for the electric field E:
(* iBIpAIpE s+ Eos — (2= iB)E )= (norof{[1— A(U? — Y2)|E,g + AY,Y4Ees — iAUYoE 5},  (2a)
Efgs+ Fl) Egs —# Eop— (& iBlp)E s+ (EiBIpYEr
=— (noro)*{AY:YeEs+[1 — AU2— Y2)|Eos+iAUY,Es},  (2b)

1 . . .
Epto B % Es=— (noro)[idUYsEys — iAUY Eqg+ (1 — AU E ), 20)

*Present position: Manager, Aerospace Physics Department, Space Systems Division, Hughes Aircraft Co., El Segundo, Calif.
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where the radial dimension has been nondimensionalized by some reference length ry, i.e., p=r/ro,
and the prime denotes a derivative with respect to p. The following notations are employed:
A=X/UU?—-Y?, V’=Y:+Y; U=1—iw/w, X=Ne*legmw?, and Y=eB)/mw, where o is the
angular wave frequency, w. the collision frequency, no=2m/Ao the free space wave propagation
constant, Ay the free space wavelength, € the free space dielectric constant, and N, e, and m are
the number density, charge, and mass of the electron, respectively. We shall consider only the
zeroth mode in the present analysis, and delete the subscript 8= 0 for convenience. The govern-
ing equations for the two explicit cases of interest; namely, case 1: Yy=0, and case 2: Y, =0,
follow immediately from equations (2).

2.2. Solution of Case 1

The E, field is completely uncoupled from Ej, . in this case and is nontrivial only for w.=0,
X=1,i.e., when the signal frequency is equal to the plasma frequency. The remaining two coupled
equations define Ey and E.. Introducing Y=a/p, these become,

_ Mp(pEs—iNE.) _Mp(pE: +iNEy)
LIEO_TZ_NZ—’ LoEz—‘W—G, (3a, b)
where,
S 2
L= dp? +p dp + [(noro PZ] ’

4)
M = (noro)?X|U, N=alU.

The four nondimensional constants of the problem, namely, X, w¢/w, ro/\o, and a combine to give
two parameters M and N which must be ordered in the present expansion solution of (3).

CASE la: |N|> 1, i.e., |a| > |U] = [1+ (wc/w)?] /2.

Let us assume that the plasma region is annular, ri < r=<r,, and choose the reference length
ro=rs so that ri/r <p <1. The function (p*—N?)~! can then be expanded in inverse powers of
N, and solutions for the zero mode components obtained in the form

E(p)=3 EMp)N-".
n=0

It is now necessary to order M relative to N systematically.
@ M| = 0(|N2)).
The solution for E™ degenerates into a null series.
(i) |[M]=0(N]).

Since |M/N| is of order one, the zeroth order equations remain coupled. In particular, to
ON-1):

M M,
LEY _Tp EO=0, LEO+ _N£ E0=0; 5)
iM Mp? iM Mo?
LEY— —Nﬁ EV=— T” EW,  LEO+ —N” Ep=— —A‘; EO. ©)

A single fourth-order linear equation can be obtained from (5) and, for example, a power series
solution derived. Alternatively, power series solutions can be obtained directly from the system
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(5) and (6). Since the procedure is substantially different than the method of solution used in each
of the remaining cases, we will not carry out the details at this time.

(i) | M| =
The zeroth and first-order equations are
BlE};O)(f) =0, BOE(ZO)(f) =0; (7

M¢ iME
BEV=L"S_Fo  BEO=— EV,
&6 (noro)® ~ # °Ez (noro)? 8)

where the change of independent variable, £ = nonop, introduces the Bessel operator of order n
and argument &,

_d 1d _ (,_n)
B”_d§2+§d§+(1 52) €
Hence,
E® = c1Jo(&)+ c2Yo(é) = Po(§), (10a)
EY = cy)1(&)+ caY(é) = Py(é). (10b)

The solution of (8) and (10) may be obtained using a procedure similar to the one used by Liboff
[1964]. The particular solutions for EV are derived by means of the substitutions, E{V(¢) = €.P,,
E%”(§)=50F1, where F0=C;J0+C4Y() and p] =C1J1+02Y1. Thus,

—iM s d¢

. Z(noro)”f ditcs §P2+c°’ (11a)
Mg
S 4(noro)? f§P2+cs ()

The solutions for the corresponding homogeneous equations can be absorbed into the zeroth order
“solutions, and one obtains, to order N-1,

E.=Po+N-'Pe,, Eo=P,+N-'Pie, (12)

where € is given by (11). Note that in order to satisfy boundary conditions in general two arbi-
trary constants are required in both the zeroth and first-order solutions; the constants for the latter
are included in the expressions for €.

The extension of this solution to include |M| < O(|N-!|) can be readily deduced from the pre-
ceding results.

CAsE 1b: |N| <1, ie., la| < |U|=[14+ (wc/w)2]¥2.

Let ro=ry in this case so that 1 <p <nry/r;. The function (p*—N?)~! can now be expanded
in ascending powers of N, and solutions for the zero mode components obtained in the form

E(p)= E E®)( (p)N".

It is necessary, once again, to order M relative to V.
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@ [M]=0(N-1]).

The solution for E® degenerates into a null series.

i) |M|=0().
BiEP()=0,  BoEV()=0; (13)
M M
' — ©) (1) — (0)
B.E} F— CE BoE nonoa§E0 ) (14)

where, a=(1—X/U)'? is the index of refraction with no magnetic field, and the Bessel operator
involves the argument {=neroap. Proceeding as before, one obtains, to order V:

E.)=Po+NPs., Eo{)=P,+NPie, (15)

_ —iM dr
_2,707-“& ln €+Csf€P?)+C6,

& _Znoroa f g_P%d“C’f Pt (16)
i) M| =
BE@®=0,  BEVE)=0; a7
BEY=FOBY,  BoB= 7t EW. a8
(noro)? N(noro)?

The particular solutions of (18) can now be assumed to be of the form, E{Vy=¢. ¢E'”, and one
obtains:

E(&)=E®(1 + Ne), (19)
where EO= Py(£), EP = Py(¢),
and
“TN Ijl‘olro)z gdli J epees | ke
N(n0r0)2 f £pP J ¢Pde+cr f ep o 20)

It should be pointed out that a variable electron density could be included in the present
quadratures, for example (or in the preceding solutions by similar manipulations), in the following
manner. Let x(¢)=X(€)/Xm be the normalized radially varying electron density, where X,, is the
maximum value of X in the plasma (hence, x <1). A new constant parameter M; can then be
defined in place of M, namely, M= M, x, where M= (nor¢)’Xw/U. The above solution for €, would
then become:

dé
N(noro f fg P2dé +cs §P2+CG (21)

The extension of case 1b to include |M| < 0(|NV?|) can be readily deduced from the preceding
results.
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CASE 1c: [N|=0(1), i.e., |a| = 0(|U]) = 0V + (wdw)?).

Since (p*— N?)~! can no longer be expanded, we are left with the single parameter M in (3).
Qi) |M|>1.

An expansion in inverse powers of M would result in a degenerate null series for the electric

field.
(i) |M|=0(1).

No parameter is available for obtaining expansion solutions to (3). It should be remarked,
however, that only |M| and | N| were specified in the discussion of cases la and 1b. Thus the
quantities |a/U| and |(noro)?2X/U| or |(nere)2X/a| were specified. However, the actual magnitudes
of noro, a, X, and |U| were restricted only insofar as they affect these ratios. By further speci-
fying these parameters, the solutions in cases la and 1b can be simplified, say, in evaluating the
quadratures. Limited solutions can also be obtained in the present case on the same basis. For
example, let us now nondimensionalize the radial dimension by the free space wave propagation
constant so that x=ner. In place of (3), one obtains the following system of equations:

_ Mx(xEy—iNE;)

Mx(xE.+ iNEy)
B.Ey= 2 e

B()E:.’ = x2 _ Nz

(22)
where Y=a/x,
and M=X/|U, N=a/U. (23)

Hence, by restricting the analysis to sufficiently large value of Ay (for fixed r; and r), so that
x << 1, expansion solutions in powers of x could be generated. Similarly, for sufficiently small
value of N\, x >> 1, and expansion solutions in inverse powers of x could be obtained.

(i) |M| <1, i.e., (noro)?X <[1+(wc/w)*]'2.
Assuming solutions in the form

E(p): i E‘"’(p)M”, (24)

n=0

eq (3) reduce to

M :
I8 {2 EgM” }= = L5 S (Ep —iNEWM",

(25)

M .

which can be solved, provided that ri/r: < p < 1, i.e., by selecting ro=r» for the reference length.

General recursion relations can be obtained in this case (n=0, 1,2, 3,. . .):
LEQ=0, LE®O=0, (26a)
g POBETINEE) e pRPNEY
To order M, therefore,
E@©) = EY(1+ Me), @27)
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where
EO=Pig),  EP=P(. £=norop.

and

1 fﬁ §2Po(§P0+in0r0NP1)
&£P;

de
(moro)? (o 2T f Tl

dé+cq ;—é+cs. (28)

l fﬁJ'szl(fPl—inoroNPo)
(noro)® ) €P? &2 —(noroN)?

A variable electron density could be included in the manner outlined at the end of the discussion
of case 1b (iii).

2.3. Solution of Case 2

In this case Ej is completely uncoupled from E, and E and is independent of the applied mag-
netic field By. Indeed, the following exact solution is immediately apparent:

Eo=c1J1(8) + cY1(0) = Py(0), (29)

where {=norop(1 —X/U)'2.  Since the reduced eq (2a) is algebraic, the equations for E, and E.

. b .
can be uncoupled. Assuming Y=;, one obtains

(iX/aU)Np _ Mp?
Erz—__pZ—N2 Ez, L()Ez(p)_pz_]v2 Ez, (303, b)
- b X\1/2
M=(moroPX(U,  N=CF' "Z(l_ﬁ> ' (31)

The problem reduces to the solution of (30b) for E, in terms of the two explicit parameters,
M and N. E, can then be obtained immediately from (30a). An approach similar to the one em-
ployed in case 1 can be adopted in order to solve (30b), although this is not the only possible pro-
cedure. We will limit our analysis of this problem to the following brief consideration.

The right-hand side of (30b) can be neglected if |Mp?/p? — N?| < 1. This condition is satisfied
if |M| <1, ry is selected such that p <1 and the possibility of N being real with N = p is excluded.
In this case (30b) becomes:

_ M]fszz
B()Ez(f) (n0r0)2(§_—2 _ n(z)]zQNzy

and a series solution in powers of M; can be obtained. A variable electron density has been in-
cluded as outlined at the end of the discussion of case 1b (iii). It follows that:

EA§)=EP(1+ M), EP=Py¢), (32)

1 (d¢é [ ExP3 @
(noro)? fP% fz_(noroN)zd§+C:;f§P(2)+C4'

The corresponding solution for E; is given by (30a).
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3. Conclusions

The introductory analysis has been completed on a class of electromagnetic waves which
will propagate through a cold plasma in which is imbedded a specific type of cylindrical magnetic
field. The plasma is assumed to be of uniform density and collision frequency, and a so-called
“spoke-wheel” magnetic field is applied which is both anisotropic and inhomogeneous (varying
as the inverse radius). Perturbation series were obtained for the first Fourier component of the
electric field by systematically ordering the two parameters of the problem. The results are given
in quadrature form and exhibit the correct limiting character in the lowest order expressions.
Similar studies of guided electromagnetic waves through cylindrical plasmas with imbedded B.
fields (constant) have been made [Liboff, 1964]. The electric field components are uncoupled
in these cases, whereas in the present analysis a cylindrical magnetic field is applied and the
electric field components are severely coupled.

It remains to fit these solutions to specific geometries. The most physically relevant of these
is the class of annular geometries referred to in the text. The formulation and solution of a mean-
ingful boundary value problem based on the present results would enable one to evaluate quan-
titatively the effect of a variable magnetic field on propagation as a function of the several physical
parameters of the problem.
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