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Characteristics of waves in a two-component cold plasma are reviewed. Using the Clemmow-
Mullaly-Allis diagram, the topological types of the wave-normal surfaces are shown. A consistent
system of labeling the modes, initially given by Allis, is explained. Reversal in the polarization in
the electric field is examined, and all the modes in which the reversal occurs are specified. There is
no polarization reversal in ULF to VLF waves in the magnetosphere. The lower hybrid resonance
frequency in the magnetosphere is discussed.

The equations of motion for an electromagnetic ray are derived. Defining the action for the ray
with analogy to that for a particle in classical mechanics, the principle of least action is proved. It
is shown that if the dispersion relation is homogeneous in the wave vector and the frequency, the prin-
ciple of least action implies the principle of least time, i.e., Fermat’s principle. When the principle
of least time holds, as is the case with Alfvén compressional waves, the trajectory of ‘a ray can be
determined from a variational equation, from which the problem can be formulated in Hamiltonian
form. For the axially symmetric case, the generalized momentum conjugate to the azimuthal coordi-
nate is a constant of motion. Using this relation, “allowed” and ‘“forbidden’ regions are defined
when a set of initial conditions for the ray is given. This method is applied to a model magnetosphere
with a dipole magnetic field. It is shown that the accessibility of hydromagnetic rays originating from
the boundary of the magnetosphere to the earth is greatly limited. For a distorted magnetosphere
the canonical equations for a hydromagnetic ray are integrated by a numerical method. Typical
trajectories in the equatorial plane are shown, and the effects of the deformation of the dipole field on

the ray trajectories are discussed.

1. Introduction

Propagation characteristics of hydromagnetic waves
can be seen in a proper perspective relative to other
modes of electromagnetic waves by reviewing plasma
waves In general without imposing restrictions on
wave frequency or on plasma parameters. This ap-
proach is taken in the present paper, and for the
representation of modes we use the Clemmow-Mul-
laly-Allis diagram (abbreviated as the CMA diagram
below) of wave-normal surfaces [for details of the
CMA diagram see Clemmow and Mullaly, 1955;
Allis, 1959; Allis, Buchsbaum, and Bers, 1963, and
Stix, 1962]. In the CMA -diagram, plasma parameter
space is divided into closed volumes bounded by
resonance and cutoff surfaces, and in each of the
closed volumes the topological genera of the wave-
normal surfaces are schematically illustrated. For
the sake of simplicity a cold plasma consisting of
electrons and one species of ions is assumed in the
present paper. A brief summary of the dispersion
relation and of the topology of wave-normal surfaces
is given in sections 2.1 and 2.2.

! Paper presented at the ULF Symposium, Boulder, Colo., 17 to 20 August 1964.

For labeling modes the scheme proposed by Allis
[1959] is adopted. In this scheme, modes are labeled
“right-handed” or “left-handed” according to the
polarization for the longitudinal propagation, and
“ordinary” or “extraordinary’”’ depending on whether
the refractive index for the transverse propagation
is independent or dependent on the magnetic field.
As has been pointed out by Allis [1959] and Stix [1962],
this labeling system avoids the confusion that can
arise from the reversal of polarization at a certain
angle of the wave-normal vector relative to the mag-
netic field within some of the bounded volumes in
plasma parameter space, and also from different com-
binations of the two sets of the labels. The polariza-
tion reversal mentioned above is discussed in detail
in section 2.5. In section 2.4, a CMA diagram for
VLF to ULF waves and appropriate to the magneto-
sphere is presented, using the model magnetosphere
described in section 2.3.

In sections 3.1 to 3.3 a formulation of general ray
theory is presented without limitation on wave fre-
quency, and in sections 3.4 to 3.8 the theory is applied
to propagation of hydromagnetic waves in the magne-
tosphere. Analogy between the Hamiltonian form of
classical mechanics and geometrical electromagnetics
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is demonstrated in sections 3.2 to 3.4, and validity
of Fermat’s principle is examined in section 3.3. The
“action” is defined for a ray, and the principle of least
action is established. It is then shown that if the
dispersion relation is homogeneous in frequency
and wave vector k, the principle of least action im-
plies the principle of least time, i.e., Fermat’s prin-
ciple. This result is the same as that obtained by
Weinberg [1962] by the eikonal theory.

Formulating the ray theory in a Hamiltonian form,
it is shown in section 3.5 that when the magnetic field
and the plasma are axially symmetric the generalized
momentum conjugate to the azimuthal coordinate is a
constant of motion. Applying this result to the propa-
gation of hydromagnetic waves in a model magneto-
sphere with a dipole magnetic field, “forbidden” and
“allowed” regions for the ray are defined in the same
manner as in Stormer’s theory [1955] for a charged
particle moving in a dipole field. It will be shown
that because of the existence of a maximum in the
Alfvén velocity at an altitude of several thousand
kilometers above ground level, the accessibility of
hydromagnetic rays generated in the outer region of
the magnetosphere to the immediate vicinity of the
earth is very limited.

When the magnetic field is not axially symmetric,
the canonical equations must be integrated. In sec-
tion 3.8 we will present examples of hydromagnetic
ray trajectories on the equatorial plane which were
computed by a numerical method for a model magneto-
sphere that takes into account the distortion of the
dipole field due to the solar wind.

2. Propagation of Hydromagnetic Waves
2.1. Dispersion Relation

The dispersion relation for a two-component cold
plasma in a uniform magnetic field is given by the fol-
lowing equation [Astrém, 1950; Sitenko and Stepanov,
1957; Allis, 1959; and Stix, 1962; we follow this last
author’s representation]:

An*—Bn2+C =0, 1)

where n is the refractive index, and where 4, B, and
C are defined by:

A=S sin? 0+ P cos?

B=RL sin® 6+ PS (1+ cos? )
C=PRL

S=3(R+L)
R=1—0a/(1+Qi/w)(1 — Qe/w)
L=1—0o/01—Qi/w)(]+ Qc/w)
P=1—a

a=(m%+ 1)/ w?

e, i= electron or ion plasma frequency
Q., i=electron or ion cyclotron frequency
o= angular wave frequency

0= angle between the wave normal and
the magnetic field.

2.2. CMA Diagram for a Two-Component Cold
Plasma

The CMA diagram with QZ/w? as ordinate and « as
abscissa is shown in figure 1. To make the bounding
curves reasonably well separated from each other, the
ratio w of the ion mass to the electron mass is taken to
be 4 for illustrative purposes, as was done by Allis
[1959] and Stix [1962]. In figure 1 the bounding curves
are the electron cyclotron resonance (R == =), the ion
cyclotron resonance (L=z=0o0), the upper and lower
hybrid resonances (S=0), and the cutoffs (R=0,
L=0, and P=0). The curve for RL—PS=0 is also
drawn with broken lines; this curve represents neither
a cutoff nor a resonance, but it is found to be useful in
labeling the modes [Stix, 1962].

For the longitudinal propagation (6 = 0), the polariza-
tion in the electric field is circular in either a right-
handed or left-handed sense. The wave-normal sur-
faces are labeled R or L on top of each sketch accord-
ing as the polarization at 6 =0 is right-handed (n?=R)
or left-handed (n*>=L), respectively. For the trans-
verse propagation (6=1/2), wherever such propa-
gation is possible, n? for one of the two branches is
independent of the magnetic field (n?=P), and n? for
the other branch depends on the magnetic field
(n2=RL/S). The former branch is labeled with “0”’
for the ordinary mode, and the latter brar.ch with “X’
for the extraordinary mode. This system of labeling
the mode seems to be most systematic and is recom-
mended for general use to eliminate the confusion that
existed in the past.

As we shall see in section 2.7, in an approximation
for frequencies much less than the ion cyclotron fre-
quency, the wave-normal surface for the mode labeled
R and X in figure 1 becomes a sphere; that is n? is
independent of 6. For this reason Astrom [1950]
called this mode ““ordinary’”” and the other mode ‘“‘ex-
traordinary,” and Astrom’s nomenclature has been
used widely in the literature dealing with hydromag-
netic waves. However, this labeling is not consistent
with Allis’s system, as was pointed out by Allis [1959 ]
and Stix [1962]. Since the spherical wave-normal
surface in question is merely an approximation, valid
only for frequencies well below the ion cyclotron fre-
quency, Allis’s system is preferable. As is evident
in figure 1, a right-handed (or left-handed) mode at
6=0 may be either an ordinary or extraordinary mode
at 0= 3, and thus labeling the modes with only one
label, R or L, or 0 or X, is not adequate. Also, the
polarization may reverse its direction in some of the
modes, as was pointed out by Stix [1962]; this prob-
lem will be discussed in section 2.5.
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The CMA diagram for a two-component cold plasma, showing the topologi-

cal characteristics of the wave-normal surfaces.

The two modes can be distinguished by still another
labeling system. They can be labeled “fast’ or “slow”
according to the relative sizes of the wave-normal
surfaces. There can be no crossing of the wave-
normal surfaces for the two branches so that the
labeling with fast or slow mode can be made unam-
biguously.

2.3. Model Magnetosphere

In section 2.4 a CMA diagram for ULF to VLF waves
in the magnetosphere will be presented. The model
magnetosphere to be used for the CMA diagram and
also for the discussions of propagation of hydromag-
netic waves in section 3 is described below.

We approximate the earth’s magnetic field by a di-
pole field except in section 3.8 where the distortion of
the dipole field by the solar wind is taken into account.

The electron density distribution in the magneto-
sphere adopted here is based on the recent deter-
mination by Liemohn and Scarf [1964] using nose
whistlers. Among the electron density distributions
which these authors considered to give self-consistent
results, we adopt the simplest distribution; namely,
the model in which the electron density is inversely
proportional to the distance from the earth’s center.
Their results apply to the region of the magnetosphere
from approximately 3 to 5 earth-radii. We assume
that this inverse cube law for the electron density
holds in regions below and above these altitudes. To
be precise, we assume that the electron density varies
as No(a/r)? on the equatorial plane from 15,000 km
geocentric distance to the boundary of the magneto-
sphere, which is taken to be at 10a; here a is the radius
of the earth and N, is taken to be 1.41 X 10? electrons/
cm3 [Liemohn and Scarf, 1964].

For altitudes below the bottom limit of the above
distribution (15,000 km geocentric distance), we base
our model on that given by Dessler, Francis, and
Parker [1960], but to ensure continuity of the elec-
tron density an appropriate smoothing was made.
In so doing, the region below 15,000 km was divided
into two regions and in each region the electron den-
sity was expressed in a power series. At the boundary
between the two regions and at 15,000 km geocentric
distance, the electron density and its first derivative
with respect to radial distance were made continuous.
The density was expressed analytically for the con-
venience of the numerical calculations required later
in the ray treatment.

Figure 2 shows the electron density distribution
constructed in the manner described above and used
throughout this paper. This distribution given in
figure 2 refers to that in the equatorial plane, and we
assume that the electron density is a function of radial
distance alone.

2.4. CMA Diagram for ULF to VLF Waves in the
Magnetosphere

Having obtained in section 2.2 the whole view of the
CMA diagram for an idealized plasma in which the
ion-to-electron mass ratio is taken to be 4, we now ask
what regions in the plasma parameter plane are rele-
vant to propagation of ULF to VLF waves in the mag-
netosphere. We will now take the actual value for
the ratio of the hydrogen-ion mass to the electron
mass.

In section 2.2 we took « and 2/w? as coordinates,
but the conditions that are of interest to us now make
it more convenient to use m./w as abscissa and Q¢/w

as ordinate. A CMA diagram for ULF to VLF with
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FIGURE 2. The electron density distribution in the model magneto-
sphere used in this paper.
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FIGURE 3. The CMA diagram for ULF and VLF waves in the model
magnetosphere.

these coordinate axes is shown in figure 3. The dia-
gram can be used in two ways. If the frequency w is
specified, the change in the plasma parameters with
distance from the earth’s center (for instance, on the
equatorial plane) can be represented by a curve along
which the radial distance is marked. Alternatively,
if a position in the magnetosphere is specified, a
continuous change in the wave frequency at that posi-
tion can be represented by a continuous curve in the
CMA diagram. For the sake of convenience we take
the former representation. In figure 3, curves are

drawn for frequencies from 0.01 Hz to 10 kHz. Since
the plasma parameter variations with radial distance
are the same for all frequencies, curves for different
frequencies can be obtained from one of them by
merely displacing it parallel to a fixed straight line.
Since the magnetic field varies with latitude, the
curves drawn in figure 3 for the equatorial plane will
be changed at higher latitudes, but the changes are
only slight because of the logarithmic scale in the
diagram, and the general features which are discussed
below will not be altered appreciably.

First we observe that for waves with frequencies
below about 1 Hz, two modes are possible. One has
a wave-normal surface topologically equivalent to a
sphere; its electric field has right-handed circular
polarization at §=0, and the mode is “extraordinary”
at §= 3r; this mode is the ‘““fast” mode. The “slow”
mode has a wave-normal surface topologically equiva-
lent to a dumbbell-shaped lemniscoid, and its electric

field has left-handed circular polarization at 6=0.

In the hydromagnetic approximation the former mode
corresponds to Alfvén compressional wave and the
latter to Alfvén shear wave. It is the latter mode
that Alfvén [1942] originally derived by treating
plasma as a conducting fluid.

In the frequency range from approximately 1 Hz to
100 Hz, the ion cyclotron resonance takes place at
some altitude, and above this altitude only the fast
mode can propagate. (We are concerned here only
with altitudes above several hundred kilometers above
ground level.)

For each frequency in the range from several tens
of hertz to several kilohertz, the lower hybrid reso-
nance (at = 3w, and S=0) is encountered at a certain
altitude, and above that altitude the wave-normal
surface is transformed to a dumbbell-shaped lemnis-
coid; propagation across the magnetic field becomes
impossible. The mode prevailing at frequencies
above the lower hybrid resonance frequency is the
so-called “‘whistler” mode. Between the ion cyclo-
tron frequency and the lower hybrid resonance fre-
quency the propagation is not strongly guided along
the magnetic field as in the whistler mode. This is
due to the presence of ions, as was first pointed out
by Hines [1957].

As we go to still higher frequencies we reach the
electron cyclotron resonance, and the whistler mode
also becomes impossible. If we cross the cutoff L=0
from right to left in figure 3, we have one or two modes,
according as the frequency is above or below the elec-
tron cyclotron resonance.

2.5. Polarization Reversal

In this section we examine polarization at 6 not
equal to zero. In section 2.2 we already mentioned
the possibility of reversal of polarization. Stix [1962]
showed that for one of the branches the polarization
of the electric field is reversed at 6, satisfying the
relation

sin? §=PJS. )
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Clearly, for this reversal of polarization to take place
for real 6, P and S must be of the same sign and
|P/S| < 1. Even if these conditions are both satisfied,
the reversal may occur in an evanescent branch. Thus
it is worthwhile examining the problem in detail.

From the condition that P and S are of the same
sign we can eliminate about one-half of the bounded
areas in the CMA diagram. By the second condition;
namely, that |P/S| <1, part of the remaining areas
are futher eliminated. In figure 4, areas where polari-
zation reversal cannot occur are shaded; signs of P
and S are indicated by a small symbol + or —. The
coordinates in figure 4 are the same as in figure 1,
and the ion-to-electron mass ratio u is again taken to
be 4; this is just for schematical representation, and our
discussion below applies to the case in which w is
the actual ion-to-electron mass ratio. The horizontal
line at Q2/w?= u? corresponds to = w?, i.e., the ion
cyclotron resonance. Another horizontal line at
O%/w?=pu?—u+1 plays an important role in the fol-
lowing discussions. This comes about from the fact
that P—S has the factor Q2/w?— (u>—w+1) in the
numerator. For w>1, u?>u?—pu+1>1. It can
be shown that u?— w+1 is the ordinate ((22/w?) for the
intersection of P=0 and S=0, and that the curve
RL—PS=0 intersects the Q2/w? axis at pu?—pu+1.
From figure 4 it is already clear that the reversal can
never occur in the magnetosphere in waves with fre-
quencies below the ion cyclotron frequency.

Next we examine in which branch the polarization
reversal takes place, if it does at all, without limiting
ourselves to the conditions of our immediate interest.
By examining the polarization of the electric field it
can be shown that if the polarization reversal occurs,
it does so in one of the branches of n? in the following
expression:

n®=(B + F)/(24),
where
F2=(RL— PS)? sin* 6+ P%R—L)? cos? 6.

It is found that if RL-+PS—2S? is negative, the
reversal occurs in the branch coming from the posi-
tive sign in the above equation, and that if RL+ PS—
282 is positive, the reversal occurs in the other branch.

It is, therefore, instructive to locate the solution to
the equation

RL+ PS—282=0. (4)

The left-hand side of (4) can be written as follows:

RIZEIRSESDS2

=— an?(p — 6321 — 22) a0 — {202 — (1 + @) + 2} 2*
+{ut— 1+ a)ud+3p2 — (1+ a)u + 1}a2

—pH{(1—2au*—(1—-3au+1-2a}], (5)
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FIGURE 4. Areas in the plasma parameter plane in which the
polarization reversal can occur at 0 satisfying (2).

where x=0/w.
The expression on the right-hand side of (5) can also
be written as

— o (u® — 2%) (1 — 2?2 [(a? — u?)
{2 —(u2—p+D}x2— 1)+ ap{(x2— w?

(*—=1)+2u(n— 1)2}].

Though the latter expression is convenient to deter-
mine « when x? is given, we will use (5) to obtain the
solution to (4). From (5) we see that x22=0 is a solu-
tion of (4), which, however, is of no interest to us.

We now examine the solution of the equation that
is obtained by equating the content of the square brack-
ets in (5) to zero. Since the equation so obtained is
cubic in 22, we can determine the number of real roots
by examining the discriminant. This method is help-
ful in locating the solutions.

For a >> u and x2 not very much greater in order
of magnitude than u, x® becomes independent of «,
and ‘we have two positive roots:

x?= p¥(1 —2/u), or 2u,

thus giving two positive roots for x
x= (1 —2/w)'2, or (2u)!/2.

Numerically, these are approximately 1835.50 and
60.64, respectively. There are three positive real
roots for positive « less than 0.175. Between 0.175
and 5.835 there is only one negative real root. For
a greater than 5.835 there are two positive real roots
and one negative real root. (The numbers quoted
are accurate to =0.005.)
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The curves representing (4) are schematically shown
in figure 5; the sign for RL + PS — 252 is also indicated
for areas separated by the curves.

We now combine the results in figures 4 and 5. In
so doing we observe that the intersection of R=o
and L=0 is at a=2(1—1/p)<2. We see that all
the unshaded areas in figure 4 where the polarization
reversal can occur are in the regions where RL+ PS
— 282 is negative. Thus the reversal occurs in the
branch resulting from the plus sign in (3).

We reach the conclusion that there is no polariza-
tion reversal in the nonevanescent modes to the right
of the vertical line « =1, and that for a less than 1
the polarization reversal occurs in the L-X mode for
®?><? and in the R-0 or R-X mode for Q¥1—1/u
+1/p?) < w? < Q2.

The modes in which the polarization reversal oc-
curs are indicated in figure 6, which summarizes the

discussions given above. We conclude that for ULF
to VLF waves in the magnetosphere, the polarization
reversal at 6 satisfying (2) does not occur.

2.6. Lower Hybrid Resonance

For propagation across the magnetic field, i.e., for
0= 3, there is a resonance at S=0. As is indicated
in figures 1 and 3, there are two such resonances,
and the one at the lower frequency is called the lower
hybrid resonance and the other the upper hybrid
resonance.

Approximate expressions for the two hybrid reso-
nance frequencies can be obtained by ignoring terms
of order u=! compared with unity in the dispersion re-
lation for 6= 3mr. Stix [1962] gives for the lower
hybrid resonance frequency wrs,

Vw2, =1/ Q2+ 7))+ 1/QQ., )

and for the upper hybrid resonance frequency wyu,

()

In the frequency range we are concerned with here
and for the plasma parameters appropriate to the
magnetosphere, the lower hybrid resonance frequency
can be approximated with good accuracy by the geo-
metric mean of the ion and electron cyclotron
frequencies:

2 —
o, =02+ 7.

oLr = (Qide)'2. ®

A clear physical picture for this resonance has been
given by Auer, Hurwitz, and Miller [1958].

The lower hybrid resonance frequency at different
distances from the earth’s center is given in table 1
for the model magnetosphere used in this paper.

TABLE 1. The lower hybrid resonance frequency fiy at various
distances from the center of the earth
r fLH
km H:z
10,000 5,260
15,000 1,560
20,000 657
25,000 337
30,000 195
35,000 123
40,000 82
45,000 58
50,000 42
55,000 32
60,000 24

2.7. Hydromagnetic Approximation

When the wave frequency w is well below the ion
cyclotron frequency ()i, the quantities R and L are
simplified, and both R and L can be approximated by
1+, where y=4mpc?/B3; here p=nim;+ neme, i.e.,
the plasma density. With this approximation for R
and L the dielectric tensor becomes diagonal. The
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component K, of the dielectric tensor perpendicular
to the magnetic field then takes the well-known form

[ Spitzer, 1956],
K =1+v.

If « is large, as is the case with ULF waves in the
magnetosphere, P can be approximated by —a. With
these approximations for R, L, and P, the dispersion
relation is simplified and readily factored, giving the
following two modes. One of these modes gives

nt=1+-, 9)

and the other
n? cos2 0=1+v. (10)
In the first mode, n? is independent of 6. For this

reason Astrom [1950] called this mode “ordinary”
mode, and the second “extraordinary” mode. How-
ever, a closer examination shows that the first mode
corresponds to the branch labeled R-X in figure 3
and the second to that labeled L. Hence the exact
expression for n? for the first mode depends on the
magnetic field for §= 7. The problem of labeling
the modes has already been discussed in section 2.2.

By studying the ion velocity, the mode correspond-
ing to (9) can be shown to represent compressional
wave, and the other mode (10) shear wave. From a
comparison of phase velocity for these two modes, one
finds that the compressional mode is the fast mode
and that the shear mode is the slow mode.

From the continuity of the wave-normal surface we
see that the Alfvén compressional mode (or the fast
hydromagnetic mode) and the whistler mode belong
to the same family. The Alfvén shear mode (or the
slow hydromagnetic mode) disappears at the ion
cyclotron frequency.

When y>>1, the phase velocities for the com-
pressional and shear modes reduce to V4 and V4 cos 0,

respectively, where V4= Bo/V 4mp, which is the Alfvén
velocity. The condition that y >>1 is equivalent to
the condition that V4/c << 1. These approximations
for the phase velocities can be readily obtained by a
fluid-dynamical treatment of plasma with infinite con-
ductivity and by neglecting displacement current.

3. Ray Theory
3.1. Introduction

So far we have reviewed the wave modes in a cold
plasma by studying the wave-normal surfaces. The
basis for the study was the dispersion relation. We
now investigate propagation of hydromagnetic waves
from a somewhat different angle by constructing a ray
theory. As the plane wave theory described in the
preceding discussions has limitations in its applica-
tion, the ray theory developed below is valid only under
certain conditions. However, just as the general
discussions of wave modes are useful in understanding

the propagation of waves, the theoretical study of the
behavior of rays is helpful in understanding some of
the electromagnetic phenomena occurring in the mag-
netosphere.

Although the theoretical discussions in sections 3.2
and 3.3 are of general nature, the theory is applied
in sections 3.4 to 3.8 to propagation of hydromagnetic
waves in the magnetosphere.

3.2. Equations of Motion of a Ray

The basis of the theory is that the ray propagates
with group velocity. Hines [1951] and Auer, Hurwitz,
and Miller [1958] have shown that the constructive
interference maximum of a wave packet moves with
group velocity. We also assume that the waves con-
stituting the wave packet propagate in the same mode
throughout its motion in the anisotropic medium.
Coupling between different modes is assumed not to
take place.

Denoting the position of a ray by r and the group
velocity by vy, we write the equation of motion for the
ray as follows:

r=vy,

(11

where the dot signifies differentiation with time ¢.
The group velocity v, is given by

vy = dw/ok. (12)

The wave frequency w and the wave vector k are re-
lated by the dispersion relation, which we write

Dk, w, r, t)=0. (13)

We introduce a parameter 7 along the path of the
ray. Then, using (12) and (13), the equation of motion
(11) can be written in the following form:

dr/dr L aD/ok
dt/dr aD/dw

(14)

From our assumption D is constant along the tra-
jectory, and hence we have

esD=(592 dk |

) oD dw , 0D dr
ok dr

dw dr EE

aD dt\
+WE) =0. (15)

For (15) to hold for any 7 the content of the paren-
theses must be zero. We group the four terms in the
parentheses in (15) as follows:

(22
ok dr

(16)

dD dr dDdow D dt\
E'E)*(EZEJ“EE;)’O'

If each of the two factors in (16) is zero, the required
condition (15) is satisfied. Equations (14) and (16)
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are satisfied by the following set of equations:

dr/dr=9D[ok 17)
dk/dT=—0D|or (18)
dt/dr=—9D[ow (19)
dw/dr= 0D/t (20)

If D is independent of time, the last equation (20)
states that w is conserved along the ray trajectory.
The third equation (19) gives the relation between
time ¢ and parameter 7.

The above set of equations clearly indicates an
analogy between the ray theory and classical me-
chanics. The wave vector k and the frequency w of
a ray play the roles of the momentum and the energy
of a particle, respectively. However, this analogy
does not enable us to formulate the ray theory in Hamil-
tonian form. This is because the motion of a ray
corresponds to that of a particle of zero mass, and
hence it is expected that the Lagrangian for the ray
is identically zero. In the conclusion of section 3.3
we will show that the Lagrangian indeed vanishes.

However, when Fermat’s principle is valid the prob-
lem can be formulated in Hamiltonian form. Hence
we now examine under what conditions Fermat’s
principle is consistent with our formulation.

3.3. Fermat's Principle

Weinberg [1962] showed that when the eikonal is
stationary, the principle of least time, i.e., Fermat’s
principle, holds if the dispersion relation is homo-
geneous in k and w. Here we derive the same condi-
tion by pursuing the formulation in section 3.2.

In classical mechanics the principle of least action
holds when the Hamiltonian is conserved. We limit
ourselves to the case when the frequency w is con-
served along the path, that is, D is conserved along
the path.

We first define the action 4 for the ray by the integral

&
AZJ k-rdt (21)
51

where the dot means, as before, differentiation with ¢.

Next, we calculate the variation A4, where the
A-variation differs from the &-variation appearing in
virtual displacement; in the latter, time is kept un-
changed, whereas in the former the process involves a
change dt [see, e.g., Goldstein, 1951]. For any func-
tion f of r and ¢, the A-variation of f'is

Af=dr (% 4 f‘;—i)

=&f+fAt. 22)

In particular,

Ar=8r+ iAt. 23)
Applying the A-variation to (21) we have
t Lot
Ad= f " a(k - B)de+ k- rAt|t2 24)
1 1

The first integral can be calculated in the following
way:

% . b ; ty .
f ok r) dt=f 8k'rdt+f k- érdt
ty t t

t2

t2 t2 .
=f Sk-i'dt—f k- drdt+ k- or
ty t

t

t2

t2 .
=f Ok -r—k-dr)dt—k-rAt
t

t

Here we used the fact that the order of the 8- and dot-
operation can be interchanged, and partial integra-
tion was performed on the second integral on the
right-hand side of the first line. To obtain the last
result we used (23) and the condition that Ar=0 at
the end points.

Thus (24) reduces to

t2 .
A=f 8k - r—k - dr)dt.
t

Using (11), (12), (17), (18), and (19), the integrand can
be transformed as follows:

8k - i—k - Sr=—(3D/d)-! (8k-%+6r-g—f)

=—(dD/dw)~18D
=0.
Thus we have proved that
A4 =0.
Namely, in our system the principle of least action
holds if the action is defined by (21). Having proved
this principle we go back to the expression for A4
given in (24). If
k - r=constant # 0, (25)
then (24) reduces to
A(tz —t1)=0

which implies the principle of least time, or Fermat’s
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principle. The condition (25) can be rewritten as

follows:
—(k - aD/0k)/(3D]/dw) = constant. (26)
A sufficient condition for (26) to hold is that D is

homogeneous in k arid w, because if D is homogeneous
in k and o, i.e., if

D(ak, aw)=aD(k, w),

Euler’s homogeneity equation becomes

k-Q-Fw @=

RO =

27)

Thus the constant in (26) takes the value of w.
The homogeneity equation (27) can be transformed
into the form

Kk oor S0 _o@
Vo' k| k|

which implies the equality of the phase velocity and
the component of the group velocity in the direction
of the former.

It is pointed out here that the action (21) is the same
as the eikonal S in Weinberg’s formulation, and that
the principle of least action derived here is equivalent
to the principle of stationary S in Weinberg’s eikonal
theory.

For the Alfvén compressional mode the dispersion
relation is homogeneous in k and w, and hence Fer-
mat’s principle holds. As a matter of fact, for this
mode the group velocity is equal to the phase velocity.
However, for the shear mode the dispersion relation
is not homogeneous in the components of k, and thus
Fermat’s principle does not hold. As has been noted
by Weinberg [1962], the application of Fermat’s prin-
ciple by Francis, Green, and Dessler [1959] is justified.

In concluding this section a remark is made on the
Lagrangian. In classical mechanics the Lagrangian
L is related to the Hamiltonian by

L=p-i—H

where p is the momentum.
If we define the Lagrangian for the ray by

L=k r—ow

then from (25) our Lagrangian is identically zero, con-
firming our expectation expressed in section 3.2.
Thus the ray theory cannot be constructed in Hamil-
tonian form using the Lagrangian defined above.

3.4. Ray Theory for Modes With Isotropic Phase
Velocity

In this and in the following sections we discuss the
case in which the phase velocity is isotropic. We
specifically study propagation of a hydromagnetic

ray. For the Alfvén compressional mode the group
velocity is the same as the phase velocity. Hence
we simply refer to these velocities by the single term
the Alfvén velocity.

Fermat’s principle states that the motion of a ray
from a point P; to another point P, is such that the

P2
variation of the line integralf ds/V for fixed P, and
Py

P, is zero, i.e.,

5 f " dsV(r, 0. 6)=0 (28)
Py

where V(r, 6, ¢) is the Alfvén velocity, using a spherical
coordinate system (r, 6, ¢). When we refer to the
magnetosphere the origin of the spherical coordinate
system is taken to coincide with the earth’s center.
In the preceding sections § was the angle which k
makes with the magnetic field, but in the rest of the
paper 0 is the polar angle.
We write (28) in the form:

. fﬂ (24 1262+ r2¢* sin? 9)!/2
4 V(ra 0’ d))

dt=0 (29)

where t; and ¢, are the times when the ray is at P,
and P,, and where the dot means differentiation with
respect to time ¢.

Equation (29) is formally the same as the variation
equation expressing Hamilton’s principle for a system
whose Lagrangian is equal to the integrand in (29).
Thus we take the integrand of (29) as the Lagrangian
of our system, and define the generalized momenta
conjugate to r, 6, ¢ by

pe=0Llogr  (k=1,2,3)
where it is understood that the subscript k& refers to
r, 0, ¢ components and that gx(k=1, 2, 3) represents
r, 0, ¢, respectively.
The Hamiltonian H of the system is

H=Y prgr—L
k

=V, 0, $2[p}+ pYr* +py(r* sin® )] — 1.

Then the canonical equations can readily be formed.
Stegelmann and von Kenschitzki [1964] proceeded
to integrate the canonical equations numerically.

3.5. Axially Symmetric Case: Allowed and
Forbidden Regions for a Ray

It is obvious that if the Alfvén velocity is independent
of ¢, the Hamiltonian does not contain ¢ explicitly;
thus, ¢ is a cyclic coordinate. It follows that the
conjugate momentum pg is a constant of motion.
From the definition of pgs, we immediately obtain the
equation

(rzq.S sin? 6)/V(r, 6)>= constant. (30)
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This equation, of course, is the canonical equation
for ¢ with ps constant.

Since ¢="Vdp/ds, where s is path length along the
trajectory, (30) can be written as follows:

(R2[V)dd|ds = « (31)
where
R=rsin 6 (32)
and where « is a constant.
We define an angle x by the equation
Rd¢/ds =sin x (33)

so that x is the angle between the tangent to the ray
in the direction of its motion and the meridian plane.
As can be seen in (33) the sign of x is taken such that
X is positive when ¢ increases as the ray advances.
Figure 7 illustrates the angle x.

Using x, (31) reduces to

(R/V) sin x=qar. (34)

For rays belonging to «, (34) gives the angle x as a
function of r and 6.

Since —1 < sin x <1, we have the relation

—1<aV/R<1 (35)

Thus, given the value of «, (35) defines the “allowed”
region for the rays belonging to @. Areas outside the
allowed region are forbidden to these rays.

L PROJECTION ONTO
MERIDIAN PLANE

MERIDIAN -
PLANE

FiGURE 7. Illustrating the angle x.

The constant « can be taken as the initial condition
specified by ro, 6o, and xo:

(8 4= (R()/Vo) Sil’l X() (36)

where Ry and V, are the values of R and V at r,, 0.

It should be noted that the angle xo does not specify
the initial direction of a ray completely, except in the
equatorial plane. To specify the initial direction of a
ray completely one more angle is needed (sec. 3.8);
however, we only need xo for the time being.

When the initial conditions ro, 6y, and xo are given,
the allowed and forbidden regions can be mapped
out using (35) without integrating the equations of
motion.

The problem is formally identical with that in
Stormer’s work on the motion of a charged particle
in a dipole magnetic field [Stormer, 1955]. In Stor-
mer’s problem the Hamiltonian for the particle does
not contain ¢ explicitly.

The meaning of (33) becomes more explicit if we
limit ourselves to rays confined in the equatorial plane.
The Alfvén velocity ¥ is now a function of r alone, and
X is the angle which the tangent to the ray trajectory
makes with the radial direction. Let x be measured
positively from the inward radial direction toward
the direction of increasing ¢ (which is taken to be
eastward) and let x vary from — 7 to 7; thus rays with
— 3w < x < 37 are inbound and those with |x| > i#
are outbound, and when x== 37, a ray is tangent to
the circle of radius r.

The angle x at r is related to its initial value x, at
the point source at ry by

sin x = (ro/r) (V[Vo) sin Xo.

If V(r) is a maximum at r=r,, and is a monotonically
decreasing function of r with increasing r, then for
ro>r1>ry, the inequality |x| > |xo| always holds.
This simply implies the obvious result that the ray is
bent away from the region of high Alfvén velocity.

The Alfvén velocity is a maximum at several thou-
sand kilometers altitude and decreases both above
and below this level [Dessler, 1958]. The Alfvén
velocity increases again near the F, peak, but we are
not concerned here with the propagation of hydro-
magnetic waves in the ionosphere. We only consider
the ray trajectories above 600 km altitude.

It is of interest to find the critical initial angle xo, ¢
at which an inbound ray from a point source at a great
distance is reflected away from the earth at the region
(r=rm) of the Alfvén velocity maximum. This critical
initial angle can be determined by

Isin Xo, | = (rm/ro) (Vo/Vm)

where V, is the value of V" at .

For a rough estimate, taking ro=60,000 km, rpn
=10,000 km, and Vo=400 km/sec, Vn= 2,000 km/sec,
we obtain |sin xo, ¢/ =1/30, and hence |xo,¢| is about
1.9°. There are uncertainties in the distribution of
Alfvén velocity in the magnetosphere, but xo, ¢ is not
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likely to be changed greatly as more accurate infor-
mation on the Alfvén velocity distribution becomes
available.

3.6. Further Remark on Ray Tracing in the
Equatorial Plane

In 3.5, time ¢ was used for the variable in the varia-
tion equation. However, any one of the three coordi-
nates can be used as the variable in place of ¢.

If we choose ¢ as the variable, and if we confine
ourselves to the equatorial plane, the integrand L in
the variation equation reduces to

L(r, r')=(r"2+r*"2[V(r)

where the prime represents differentiation with re-
spect to ¢.

Considering this function as the Lagrangian, La-
grange’s equation of motion is

Ly 0
dp \or') or

This is the equation used by Francis, Green and
Dessler [1959].

Denoting the momentum conjugate to r by p, the
Hamiltonian for the system is given by

H=pr'—L
where
p=2adL/or'.

It is understood that H is expressed as a function of
r and p. Then the Hamiltonian does not contain ¢

explicitly. Thus the Hamiltonian is a constant of
motion. We immediately arrive at the equation:
L
r' — — L= constant.
ar

This is the equation which Francis, Green, and Dessler
[1959] derived mathematically and used for their cal-
culation of the transit time for the ray, and which
Dessler, Francis, and Parker [1960] used for their

two dimensional ray tracing.

3.7. Hydromagnetic Rays in the Magnetosphere:
Axially Symmetric Case

Using the method described in section 3.5, we will
now investigate the accessibility of hydromagnetic
rays originating from the magnetospheric boundary
to the vicinity of the earth. We use the same model
magnetosphere as the one presented in section 2.3;
for the magnetic field we approximate the geomag-
netic field by a centered dipole.

As was shown in section 3.5, when the position
(ro, 6o) of the point source and the initial value of x

771-025 O-65-8

of the ray are specified, we can determine the allowed
and forbidden regions by (35) and (36).

We place the point source at the distance of 10
earth-radii from the earth’s center, i.e., ro=10a, where
a is the earth’s radius, and we determine allowed and
forbidded regions for 6,=30° 60°, and 90°; the last
value of 6 places the source on the equatorial plane.

Typical diagrams showing the allowed and forbidden
regions are presented in figure 8. In the figure, for-
bidden regions are indicated by patches and the open
areas represent allowed regions. The patched circle
in the center represents the earth and the position of
the point source can be at any of the four arrows on
the great circle whose radius is ten times that of the
earth. All the diagrams are symmetric with respect
to the equator, and the three dimensional allowed (or
forbidden) region can be obtained by rotating each
diagram about the vertical axis through the center,
namely, the dipole axis.

For very small values of xo (well below 1°, say), that
is when the initial direction of the ray deviates from
the meridian plane only by a small angle, the ray can
reach the earth’s vicinity except directly above the
poles. As xo increases, the two forbidden regions
around the axis, one in each hemisphere, become
larger and extend to lower latitudes near the altitude
of the Alfvén velocity maximum. When xo reaches
some critical value, the tips of the northern and
southern forbidden regions touch each other on the
equatorial plane. There is an allowed region between
the ionosphere and the altitude at which the two for-
bidden regions join on the equatorial plane, but this
inner allowed region is not accessible to the ray com-
ing from outside.

When xo exceeds a certain value a little greater than
the critical value, the earth is completely immersed
in a forbidden region and the outer allowed region
is more and more pushed outward, and finally, as
Xo tends to 90° the inner surface of the outer allowed
region approaches some limiting surface which inter-
sects the large sphere (of radius ro) at 6=6, and
0=m—0,. When 6, is 90°, the allowed region for
Xxo=90° degenerates to a circle of radius ry on the
equatorial plane.

The critical value of xo becomes smaller as 6y in-
creases; for 0,=30° 60° and 90°, the critical xo is
3.3%, 1.4°, and 0.9°, respectively. In figure 8 the dia-
grams for these critical circumstances are included.
For xo=10°, 30°, 60°, and 90° the forbidden regions
are indicated in one diagram for each 6,.

We conclude that the earth and its immediate vi-
cinity are remarkably well protected from the hydro-
magnetic rays generated in the outer regions of the
magnetosphere. This feature has been shown by
Stegelmann and von Kenschitzki [1964] with their
results from numerical ray tracing.

3.8. Hydromagnetic Rays in the Distorted
Magnetosphere: Axially Asymmetric Case

The magnetosphere is contained in a cavity in the
streaming solar plasma [Cahill and Amazeen, 1963;
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FIGURE 8. Allowed and forbidden regions for a hydromagnetic ray in the magneto-
sphere with a dipole field.

Ness et al., 1964]. A number of workers have at- These equations are not completely independent.
tempted to theoretically determine the shape of the The Hamiltonian of the system is identically zero,
boundary of the magnetosphere [for reference, see a and we have

review paper by Beard, 1964]. In this section we only

briefly discuss the effect of the distortion of the mag- p2+p3lr*+p¥(r2sin2 6)=1/V2. (38)
netosphere on the propagation of hydromagnetic !
waves. Using (38) one of the variables can be eliminated from

In the absence of symmetry we have to write down the set of equations (37). But it is found convenient
the equations of motion and solve them by some nu- o use (38) as a check in the numerical ray tracing
merical method. For the sake of convenience we calculation.

multiply the Hamiltonian given in section 3.4 by the We define the direction of the tangent to the ray
factor ;. With this Hamiltonian the canonical equa- trajectory at a point P by two angles x and n. The
tions are angle x is the same as that defined in the preceding
. section, and 7 is the angle which the tangent to the
r="Vp, projection of the trajectory onto the meridian plane

. makes with the radial direction, namely
6= V2p(9/r2

? sin x = (d¢/ds)r sin 0
& =V?pe/(r? sin? 6)

] cos m=— (dr/ds) sec x.
pr=—Q1/V)aV|or+ (V*[r®) (p§ + p3/sin* 6)

We denote the initial values of x and m at (ro, 6o, ¢o)

pe=—(1/V)aV |80+ (V*|r*)p} cos 6/sin® 6 by Xxo and mo, respectively. The initial values of the
. momenta can be written in terms of ro, 6o, $o, X0, Mo,
DPo=—" (]-/V)BV/ad)' (37) and V(ro, 00, d)o).
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For the deformed geomagnetic field we take the
model proposed by Mead [1964]. For the dipole field
we take gf=—0.31 gauss, and for the additional field
due to the deformation we take

g)=—0.2515/r} gauss

gt =0.1215/r} gauss

where g's are well-known Gauss coefficients in the
spherical harmonic expansion of the magnetic field,
and where r; is the distance, measured in earth-radii,
from the earth’s center to the boundary of the mag-
netosphere at the subsolar point. Here rp is taken to
be 10 earth-radii.

A computer program has been developed to integrate
the equations of motion (37) with ro, 69, ¢bo, X0, and Mo
as the initial conditions. For integration the Runge-
Kutta method was used. In this paper, trajectories
on the equatorial plane alone are discussed.

Figure 9 shows typical examples of the trajectories
in the equatorial plane. The position of the point
source is placed at 10 earth-radii regardless of the
longitude. This assumption is made because the
location of the magnetospheric boundary is not well
known on the dark side of the magnetosphere, and
because with a fixed ro we can compare trajectories
starting from sources at different longitudes more
directly. Here longitude, ¢, is measured eastward
from the midnight meridian; in figure 9 the midnight
meridian is towards the left and the longitude increases
counterclockwise.

20
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130 gz 4
Nees T0

20 40 60 80 ' 100 M5 _\ 125 12 5 90 80 60 40 20 SUN
Xo * 120 i Xo<0°
7
10,7 99.25 s
100 105.25 90

& uo.25"5 25 ®
60, - 60

00 Xo*0° 40
%0
A 20

FIGURE 9. [llustrating ray trajectories in the equatorial plane in

the distorted magnetosphere.

In the lower half of figure 9, trajectories starting at
bo=10°, 45°, 135°, and 180°, all with xo=0 (i.e., rays
directed initially towards the origin) are shown. In
the upper half, trajectories with their initial position
at ¢o=90° with xo=0°, 1°, 3°, 4°, 5°, 6°, and 7° are
drawn.

The effect of the distortion of the magnetosphere
on the ray trajectories can be described by saying
that hydromagnetic rays tend to be “blown” towards
the direction away from the sun. This is because
the magnetic field is more compressed on the sunlit
side of the magnetosphere than on its dark side, thus
increasing the Alfvén velocity in the region facing the
sun.

However, the results presented in this section should
be interpreted with caution. Although the distortion
of the geomagnetic field is taken into account, possible
changes in the plasma density distribution associated
with the distortion are not considered here. Appre-
ciable asymmetry may be introduced in the plasma
density, but no observational data are available as
yet that indicate such an effect.

The magnetic field configuration on the dark side
of the magnetosphere has also not as yet been estab-
lished. Since the trajectories are sensitive to large
scale magnetic field patterns, the actual trajectories
in the magnetosphere may be different from those
shown in this paper. Our purpose is to demonstrate
qualitative characteristics of ray trajectories in the
magnetosphere. However, for the model used in this
section the calculations are made as accurately as
possible within the practical limitations.

It is observed in figure 9 that if the point source is
not in the meridian containing the sun (i.e., ¢y=0°
or 180°), the ray directed initially towards the origin
does not reach the earth. For the ray to reach the
earth it must start with xo slightly greater than 0.
If xo becomes too large, the ray is bent back at the
region of Alfvén velocity maximum. This circum-
stance is shown for ¢ =90° in the upper half of figure
9. At this ¢, rays with xo=23.0° and less are “blown”
towards the back of the magnetosphere. At xo be-
tween 3.0° and 3.2° the ray begins to penetrate into
the immediate vicinity of the earth, and this condition
prevails till xo reaches a value a little less than 6.5°.
Beyond this latter angle the ray is again reflected away
from the earth at the region of Alfvén velocity
rhaximum.

In figure 9 the time in seconds is indicated along
the trajectories. It is of interest to compare the tran-
sit time from ry to some altitude near the earth for the
trajectory in the midnight meridian with the corre-
sponding transit time for the trajectory in the noon
meridain. In figure 9 the altitude of the point marked
95 sec in the noon meridian and the altitude of the
point marked 129 sec in the midnight meridian differ
only by 45 km. The mean of the two altitudes is 1,363
km above the earth’s surface. Thus the difference
in the transit time from 10 earth-radii to this altitude
is about 34 sec. However, as has already been men-
tioned, caution should be exercised in applying this
result to any actual events that occur in the magneto-
sphere.
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In concluding the discussions of the ray theory
the following remarks are made. The hydromagnetic
approximation is based on the condition that o < ();.
Thus for the most part of the magnetosphere this ap-
proximation is good below 10 Hz (fig. 3). There is
another limitation to the ray theory, namely, that the
wavelength be short compared with the dimension
under consideration. We put this condition in the
form > V/L, where L is the typical scale length.
If we take L to be the smallest value of the radius of
curvature for the ray trajectories, then the minimum
frequency may be set at about 1 Hz. Thus, roughly
speaking, the ray theory is applicable to propagation
of hydromagnetic waves of frequencies about 1 to 10
Hz.

A more extensive study of the ray trajectories in
the magnetosphere and their physical implications
will be reported later. For instance, the efficiency of
energy transfer from solar winds to the ionosphere
via hydromagnetic waves is considerably reduced by
the limited accessibility of the hydromagnetic waves
to the immediate vicinity of the earth.

A theoretical study of geometrical hydromagnetics
based on a classical hydromagnetic fluid has been
made by Bazer and Hurley [1963]; their paper includes
comprehensive reference to the literature on the
sybject.

4. Conclusions

We reviewed the possible modes of waves in a two-
component cold plasma using the Clemmow-Mullaly-
Allis diagram. A systematic method of labeling the
modes was explained.

The modes relevant to propagation of ULF to VLF
waves in the regions of plasma parameter space re-
presenting the conditions in the magnetosphere were
reviewed. For frequencies below the ion cyclotron
frequency there are two modes: the fast mode with
right-handed circular polarization for propagation
along the magnetic field and with phase velocity de-
pendent on the magnetic field for propagation across
it, and the slow mode with left-handed circular polar-
ization for propagation along the magnetic field.
Waves in the latter mode do not propagate across the
magnetic field. Above the ion cyclotron frequency,
only the fast mode represents propagating wave, and
above the lower hybrid resonance frequency this mode
becomes the guided whistler mode.

Reversal of polarization in the electric field that
could take place at a certain direction of phase propa-
gation with reference to the direction of the magnetic
field was discussed. We concluded that there is no
such reversal in polarization in ULF to VLF waves in
the magnetosphere.

The hydromagnetic approximation was examined
and its relation to the more exact treatment was
indicated.

In this paper we only discussed propagation of waves
in a collisionless plasma. When the thermal motions
of electrons and ions are included, the waves found in
a cold plasma are modified. The modifications are

often only slight, but in a hot plasma new modes are
introduced which have no counterpart in a cold plasma.
There are two such modes in a relatively low-frequency
range. They are ion acoustic waves and electrostatic
ion cyclotron waves. These waves were not discussed
in this paper; the reader is referred to discussions on
these waves made, for instance, by Spitzer [1956],
Bernstein [1958], and Stix [1962].

In the latter half of this paper, we changed the line
of approach, and formulated a ray theory. The equa-
tions of motion of a ray were derived from a simple
postulate that a ray moves with the group velocity.
The action of the ray was defined with analogy to classi-
cal mechanics, and the principle of least action was
proved. It was shown that the principle of least
action takes the form of the principle of least time when
the dispersion relation is homogeneous in the wave
vector k and the frequency w.

For the case in which the wave-normal surface is
spherical, a ray theory was formulated in Hamiltonian
form. In the axially symmetric case the generalized
momentum conjugate to the azimuthal coordinate
becomes a constant of motion. Using this relation,
allowed and forbidden regions were defined for a hy-
dromagnetic ray in the magnetosphere with the
magnetic field approximated by that of a dipole. It
was shown that a ray originating from the magneto-
spheric boundary can reach the ionosphere only if
the deviation of the initial direction of the ray from the
meridian plane is small.

When the distortion of the geomagnetic field due
to solar wind is taken into account, the ray trajectories
in the magnetosphere are appreciably altered from
those in a dipole field.

In spite of the limitations in its application the hy-
dromagnetic ray theory for the magnetosphere should
provide a guide towards a more complete understand-
ing of propagation of hydromagnetic waves in the
magnetosphere.

I thank W. F. Cahill for his valuable suggestions on
the numerical calculations in this paper. I am in-
debted to W. H. Mish, Mrs. S. J. Hendricks, and
Mrs. P. J. Connor for their helpful assistance in
preparing the computer programs and performing
the calculation.
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