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Characteristics of waves in a two-com ponent co ld plas ma are reviewed. Using the Clemmow­
Mullaly-Allis diagram, the topological types of the wave- normal surfaces are shown. A consiste nt 
system of labeling the modes, initially give n by Alli s, is explained. Reversal in the polarization in 
the electric field is examined, and all the modes in whic h the re versal occurs are spec ifi ed. Th ere is 
no polarization reversa l in ULF to VLF waves in the magnetos phe re. The lower hybrid resonance 
frequen cy in the magnetosp here is discussed. 

The equations of motion for an elec tromagneti c ray are derived. Defi ning the action for the ray 
with analogy to that for a parti cle in c lass ical mechani cs, the principle of least action is proved. It 
is s hown that if the dispersion relation is homogeneous in the wave vec tor and the freque ncy, the prin­
c iple of leas t action implies the principle of least time, i.e., Fermat's principle. When th e principle 
of least time holds, as is the case with Alfven compressional waves, the trajec tory of 'a ray can be 
determined from a variational eq uation , from which the proble m can be formulat ed in Hamiltonian 
form. For the axially sy mmetric case, the generali zed momentum conjugate to the azimutha l coordi­
nate is a constant of motion. Us ing thi s relation, "al lowed" a nd "forbidden" regions are defin ed 
whe n a set of initi al conditions for the ray is give n. This method is app lied to a model magnetosp here 
with a dipole magneti c field. It is shown that the accessibility of hydro magnet ic rays originating from 
the boundary of the magnetosphe re to the earth is great ly limited. For a distorted magnetosp he re 
the canonical equations for a hydromagneti c ray are integrated by a numerical method. Typi ca l 
traj ec tories in the equatorial plane are shown, and the effects of the deformation of the dipole fi e ld on 
the ray trajectories are discussed. 

1. Introduction 

Propagation characteristics of hydromagnetic waves 
can be seen in a proper perspective relative to other 
modes of electromagnetic waves by reviewing plasma 
waves in general without imposing restrictions on 
wave frequency or on plasma parameters. This ap­
proach is taken in the present paper, and for the 
representation of modes we use the Clemmow-Mul­
laly-Allis diagram (abbreviated as the CMA diagram 
below) of wave-normal surfaces [for details of the 
CMA diagram see Clemmow and Mullaly, 1955; 
Allis, 1959; Allis, Buchsbaum, and Bers, 1963, and 
Stix, 1962]. In the CMA 'diagram, plasma parameter 
space is divided into closed volumes bounded by 
resonance and cutoff surfaces, and in each of the 
closed volumes the topO'logical genera of the wave­
normal surfaces are schematically illustrated. For 
the sake of simplicity a cold plasma consisting of 
electrons and one species of ions is assumed in the 
present paper. A brief summary of the dispersion 
relation and of the topology of wave-normal surfaces 
is given in sections 2.1 and 2.2. 

I Paper vresenled at the ULF Sym posium , Boulder, Colo., 17 10 20 August 1964. 

For labeling modes the scheme proposed by Allis 
[1959] is adopted. In this scheme, modes are labeled 
"right-handed" or "left-handed" according to the 
polarization for the longitudinal propagation, and 
"ordinary" or "extraordinary" depending on whether 
the refractive index for the transverse propagation 
is independent or dependent on the magnetic field. 
As has been pointed out by Allis [1959] and Stix [1962], 
this labeling system avoids the confusion that can 
arise from the reversal of polarization at a certain 
angle of the wave-normal vector relative to the mag­
netic field within some of the bounded volumes in 
plasma parameter space, and also from different com­
binations of the two sets of the labels. The polariza­
tion reversal mentioned above is discussed in detail 
in section 2.5. In section 2.4, a CMA diagram for 
VLF to ULF waves and appropriate to the magneto­
sphere is presented, using the model magnetosphere 
described in section 2.3. 

In sections 3.1 to 3.3 a formulation of general ray 
theory is presented without limitation on wave fre­
quency, and in sections 3.4 to 3.8 the theory is applied 
to propagation of hydromagnetic waves in the magne­
tosphere. Analogy between the Hamiltonian form of 
classical mechanics and geometrical electromagnetics 
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is demonstrated in sections 3.2 to 3.4, and validity 
of Fermat's principle is examined in section 3.3. The 
"action" is defined for a ray, and the principle of least 
action is established. It is then shown that if the 
dispersion relation is homogeneous in frequency w 
and wave vector k, the principle of least action im· 
plies the principle of least time, i.e., Fermat's prin· 
ciple. This result is the same as that obtained b y 
Weinberg [1962] by the eikonal theory. 

Formulating the ray theory in a Hamiltonian form , 
it is shown in section 3.5 that when th e magnetic field 
and the plasma are axially symmetric the generalized 
momentum conjugate to the azimuthal coordinate is a 
constant of motion. Applying this result to the propa· 
gation of hydro magne tic waves in a model magneto· 
sphere with a dipole magnetic field, "forb.idden" and 
"allowed" regions for the ray are defined III the same 
manner as in Stormer's theory [1955] for a charged 
particle moving in a dipole field. It w~ll be ~hown 
that because of the existence of a maxImum III the 
Alfven velocity at an altitude of several thou sand 
kilometers above ground level, the accessibility of 
hydro magnetic rays generated in the outer region of 
the magnetosphere to the immediate vic inity of the 
earth is very Ii mited. 

When the magnetic field is not axially symmetric, 
the canonical equations must be integrated. In sec­
tion 3.8 we will present examples of hydro magnetic 
ray trajectories on the equatorial plane which were 
computed by a numerical method for a model magneto­
sphere that takes into account the distortion of the 
dipole field due to the solar wind. 

2. Propagation of Hydromagnetic Waves 

2.1. Dispersion Relation 

The dispersion relation for a two-component cold 
plasma in a uniform magnetic field is given by the fol­
lowing equation [Astrom, 1950; Sitenko and Stepanov , 
1957; Allis, 1959; and Stix, 1962; we follow this las t 
author's representationJ: 

An4 - Bn2 +C = 0, (1 ) 

where n is the refractive index, and where A, B, and 
C are de fined by: 

A = S sin2 () + P cos2 () 

B = RL sin2 () + PS (1 + cos2 ()) 

C=PRL 

S= t (R+L) 

R = 1- a/(l" + Di/w)(l - De/w) 

L = 1- a/(l- D;/w)(l + De/w) 

P=l-a 

1Te, i. = electron or ion plasma frequency 

De, i. = electron or ion cyclotron frequency 

w = angular wave frequency 

() = a ngle between the wave normal and 
the magnetic field . 

2.2 . CMA Diagram for a Two-Component Cold 
Plasma 

The CMA diagram with DVw2 as ordinate and a as 
abscissa is shown in figure 1. To make the bounding 
curves reasonably well separated from each other, the 
ratio J.t of the ion mass to the electron mass is taken ~o 
be 4 for illustrative purposes, as was done by AllIS 
[1959] and Stix [1962]. In figure 1 the bounding cur~es 
are the electron cyclotron resonance (R =± 00), the IOn 
cyclotron resonance (L = ± 00), the upper and lower 
hybrid resonances (S = 0), and the cutoffs (R = 0, 
L = 0, and P = 0). The curve for RL - PS = 0 is also 
drawn with broken lines; this curve represents neither 
a cutoff nor a resonance, but it is found to be useful in 
labeling the modes [Stix, 1962]. 

For the longitudinal propagation CO = 0), the polariza­
tion in the electric field is circular in either a right · 
handed or left-handed sense. The wave-normal sur· 
faces are labeled R or L on top of each sketch accorg. . 
ing as the polarization at 0 = 0 is right-handed (n2 = R ) 
or left-handed (n2 = L), respectively. For the trans · 
verse propagation (0 = 1T/2), wherever such propa­
gation is possible, n2 for one of the two branches is 
independent of the magnetic field (n2 = P), and n2 fo r 
the other branch depends on the magnetic field 
(n2 = RL/S). The former branc h is labeled with "0" 
for the ordinary mode , and the latte r bral,ch with "X" 
for the extraordinary mode. This system of labeling 
the mode seems to be most systematic and is recom· 
mended for ge neral use to eliminate the confusion that 
existed in the past. 

As we shall see in section 2.7, in an approximation 
for frequencies much less than the ion cyclotron fre­
quency, the wave-normal surface for the mode ~abele.d 
R and X in figure 1 becomes a sphere; that IS n2 IS 
independent of (). For thi s reason Astrom [1950J 
called this mode " ordinary" and the other mode "ex­
traordinary," and Astrom's nomenclature has been 
used widely in the literature dealing with hydromag­
netic waves. However, this labeling is not consisten t 
with Allis ' s system, as was pointed out by Allis [1959J 
and Stix [1962J. Since the spherical wave·normal 
surface in question is merely an approximation, valid 
only for frequencies well below the ion cyclotron fre­
quency, Allis' s system is preferable_ As is evident 
in figure 1, a right·handed (or left-handed) mode at 
0=0 may be either an ordinary or extraordinary mode 
at () = t1T, and thus labeling the modes with only one 
label, R or L, or 0 or X, is not adequate. Also, the 
polarization may reverse its direc tion in some of the 
modes, as was pointed out by Stix [1962J ; this prob­
lem will be discussed in section 2. 5. 
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FIGURE 1. The CMA diagram for a two -component cold plasma, showing th e topologi­
cal characteristics of the wave-normal swJaces. 

The two modes can be di stinguished by still ano ther 
labeling system. They can be labeled "fast" or "slow" 
according to the relative sizes of the wave-normal 
surfaces. There can be no cross ing of the wave­
normal surfaces for the two branc hes so that the 
labeling with fast or slow mode can be made unam­
biguously. 

2.3. Model Magnetosphere 

In section 2.4 a CMA diagram for ULF to VLF waves 
in the magnetosph ere will be presented. The model 
magnetosphere to be used for the CMA diagram and 
also for the discussions of propagation of hydromag­
netic waves in sec tion 3 is described below. 

We approximate the earth' s magne ti c fi eld by a di­
pole field except in section 3.8 where the distortion of 
the dipole field by the solar wind is taken into account. 

The electron density distribution in the magneto­
sphere adopted here is based on the recent deter­
mination by Lie mohn and Scarf [1964] using nose 
whistlers. Among the electron density distributions 
which these authors considered to give self-consistent 
results, we adopt the simplest distribution; namely, 
the model in which the electron density is inversely 
proportional to the distance from the earth's center. 
Their results apply to the region of the magnetosphere 
from approximately 3 to 5 earth-radii. We assume 
that thi s inverse cube law for the electron density 
holds in regions below and above these altitudes. To 
be precise, we assume that the electron density varies 
as No(a/r)3 on the equatorial plane from 15,000 km 
geocentric di stance to the boundary of the magneto­
sphere, which is taken to be at lOa; here a is the radius 
of the earth and No is taken to be 1.41 X 104 electrons/ 
cm3 [Liemohn and Scarf, 1964]. 

For altitudes below the bottom limit of the above 
distribution (15,000 km geocen tri c distance), we base 
our model on that given by Dessler, Francis, and 
Parker [1960] , but to ensure co ntinuity of the elec­
tron de nsity an appropriate smoothing was made. 
In so doing, the region below 15,000 km was divided 
into two regions and in each region the electron den­
sity was expressed in a power series. At the boundary 
between the two regions and at 15,000 km geocen tric 
distance , the electron de nsity and its first derivative 
with respect to radial di s tance were made continuous . 
The de nsity was expressed analytically for th e con­
venience of the nume'rical calculations required later 
in the ray treatment. 

Figure 2 shows the electron density distribution 
constructed in the manner described above and used 
throughout this paper. This distribution given in 
figure 2 refers to that in the equatorial plane, and we 
assume that the electron density is a function of radial 
distance alone. 

2.4. CMA Diagram for ULF to VLF Waves in the 
Magnetosphere 

Having obtained in section 2.2 the whole view of the 
CMA diagram for an idealized plasma in which the 
ion-to-electron mass ratio is taken to be 4, we now ask 
what regions in the plasma parameter plane are rele­
vant to propagation of ULF to VLF waves in the mag­
netosphere . We will now take the actual value for 
the ratio of the hydrogen-ion mass to the electron 
mass. 

In sec tion 2.2 we took a and DUW2 as coordinates, 
but the co nditions that are of interest Lo us now make 
it more convenient to use 1Te/W as abscissa and De/w 
as ordinate. A CMA diagram for ULF to VLF with 
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FIGURE 2. The electron density distribution in the model magneto· 
sphere used in this paper. 
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FIGURE 3. The CMA diagram f or ULF and VLF waves in the model 
magnetosphere . 

these coordinate axes is shown in figure 3. The dia· 
gram can be used in two ways. If the frequency w is 
specified, the change in the plasma parameters with 
distance from the earth's center (for instance, on the 
equatorial plane) can be represented by a curve along 
which the radial distance is marked. Alternatively, 
if a position in the magnetosphere is specified, a 
continuous change in the wave frequency at that posi­
tion can be represented by a continuous curve in the 
CMA diagram. For the sake of convenience we take 
the former representation. In figure 3, curves are 

drawn for frequencies from 0.01 Hz to 10 kHz. Since 
the plasma parameter variations with radial distance 
are the same for all frequencies , curves for different 
frequencies can be obtained from one of them by 
merely displacing it parallel to a fixed straight line. 
Since the magnetic field varies with latitude, the 
curves drawn in figure 3 for the equatorial plane will 
be changed at higher latitudes, but the changes are 
only slight because of the logarithmic scale in the 
diagram, and the general features whic h are discussed 
below will not be altered appreciably. 

First we observe that for waves with frequencies 
below about 1 Hz, two modes are possible. One has 
a wave-normal surface topologically equivalent to a 
sphere; its electric field has right·handed circular 
polarization at (J = 0, and the mode is "extraordinary" 
at (J = hr; this mode is the "fast" mode. The "slow" 
mode has a wave-normal surface topologically equiva­
lent to a dumbbell-shaped lemniscoid, and its electric 

. field has left-handed circular polarization at (J = O. 
In the hydro magnetic approximation the former mode 
corresponds to Alfvl'm compressional wave and the 
latter to Alfven shear wave. It is the latter mode 
that Alfven [1942] originally derived by treating 
plasma as a conducting fluid . 

In the frequency range from approximately 1 Hz to 
100 Hz, the ion cyclotron resonance takes place at 
some altitude, and above this altitude only the fast 
mode can propagate. (Weare concerned here only 
with altitudes above several hundred kilometers above 
ground level.) 

For each frequency in the range from several tens 
of hertz to several kilohertz, the lower hybrid reso­
nance (at (J = hr, and S = 0) is encountered at a certain 
altitude, and above that altitude the wave-normal 
surface is transformed to a dumbbell-shaped lemnis­
coid; propagation across the magnetic field becomes 
impossible. The mode prevailing at frequencies 
above the lower hybrid resonance frequency is the 
so-called "whistler" mode. Between the ion cyclo­
tron frequency and the lower hybrid resonance fre­
quency the propagation is not strongly guided along 
the magnetic field as in the whistler mode. This is 
due to the presence of ions , as was first pointed out 
by Hines [1957]. 

As we go to still higher frequencies we reach the 
electron cyclotron resonance, and the whistler mode 
also becomes impossible. If we cross the cutoff L = 0 
from right to left in figure 3, we have one or two modes, 
according as the frequency is above or below the elec­
tron cyclotron resonance. 

2.5. Polarization Reversal 

In this section We examine polarization at (J not 
equal to zero. In section 2.2 we already mentioned 
the possibility of reversal of polarization. Stix [1962] 
showed that for one of the branches the polarization 
of the electric field is reversed at (J, satisfying the 
relation 

sin2 ()=P/S. (2) 
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Clearly, for this reversal of polarization to tak.e place 
for real 0, P a nd S must be of the same sIgn and 
I P/SI ~ 1. Even if these conditions are both satisfi ed , 
the re versal may occur in an evanescent bran c h. Thu s 
it is worthwhile examining the problem in detail. 

From the condition that P and S are of the same 
sign we can eliminate about one-half of the bounded 
areas in the CMA diagram. By the second condition; 
namely, that IP/SI ~ 1, part of the remaining area.s 
are futher eliminated. In figure 4, areas where polan­
zation reversal cannot occur are shaded; signs of P 
and 5 are indicated by a small symbol + or - . The 
coordinates in figure 4 are the same as in figure 1, 
and the ion-to-electron mass ratio p., is again taken to 
be 4; this is just for schematical representation, and our 
discussion below applies to the case in which p., is 
the actual ion-to-electron mass ratio. The horizontal 
line at nUw2 = p.,2 corresponds to n~ = w2, i.e., the ion 
cyclotron resonance. Another horizontal line at 
n Uw2 = p.,2 - p., + 1 plays an important role in the fol­
lowing discussions. This comes about from the fact 
that P - S has the factor n V w2 - (p.,2 - p., + 1) in the 
numerator. For p., > 1, p.,2 > p.,2-p.,+I > 1. It can 
be shown that f..L2 - p., + 1 is the ordinate (nVw2) for the 
intersec tion of P = 0 and S = 0, and that the c urve 
RL - PS = 0 inte rsects the n V w2 axis at p.,2 - p., + 1. 
From figure 4 it is already clear that the reversal can 
never occur in the magnetosphere in waves with fre­
quencies below the ion cyclotron frequency. 

Next we examine in which branch the polarization 
reversal takes place, if it does at all, without limiting 
ourselves to the conditions of our immediate interest. 
By examining the polarization of the electric fi eld it 
can be shown that if the polarization reversal occurs , 
it does so in one of the branc hes of n2 in the following 
expression: 

n2 = (B ± F)/(2A), (3) 

where 

P=(RL-P5)2 sin4 O+PZ(R-L)2 cos2 0_ 

It is found that if RL + P5 - 2S2 is negative, the 
reversal occurs in the branch coming from the posi­
tive sign in the above equation, and that if RL + PS -
252 is positive, the reversal occurs in the other branch. 

It is, therefore , instructive to locate the solution to 
the equation 

-_._---, 

FIGURE 4. Areas in the plasma parameter plane in which the 
polarization reversal can occur at (j satisfying (2). 

where 

The expression on the ri ght-hand side of (5) can also 
be written as 

- O:X2(p.,2 - x2)- 2(1- X2)-2 [(X2 _ p.,2) 

{X2 - (p.,2 - p., + 1)} (x2 -1) + o:p.,{ (XL p.,2) 

(x2 -1) + 2p.,(p., - 1)2} ]. 

Though the latter expression is conve nie nt to deter­
mine 0: when x2 is given, we will use (5) to obtain the 
solution to (4). From (5) we see that x2 = 0 is a, solu­
tion of (4), which, however, is of no interest to us . 

We now examine the solution of the equation that 
is obtained by equating the content of the square brack­
ets in (5) to zero. Since the equation so obtained is 
cubic in X2, we can determine the number of real roots 
by examining the discriminant. This method is help­
ful in locating the solutions. 

For 0:» p., and x2 not very much greater in order 
of magnitude than p." x 2 becomes independent of 0:, 
and we have two positive roots: 

x2 = p.,2(1- 2/ p.,), or 2p." 

RL+PS-2S2 =0. (4) thus giving two positive roots for x 

The left-hand side of (4) can be written as follows: 

RL+PS-2S2 

= - O:X2(p.,2 - x2)-2(1-X2)- 2[X6 - {2p.,2 - (1 + o:)p., + 2} X4 

+ {p.,4 - (1 + 0:)p.,3 + 3p.,2 - (1 + o:)p., + l}x2 

- p.,2{(1- 20:)p.,2_(1-30:)p.,+ 1-20:}]' (5) 

Numerically, these are approximately 1835.50 and 
60.64, respectively. There are three positive real 
roots for positive 0: less than 0.175. Be tween 0.175 
and 5.835 there is only one negative real root. For 
0: greater than 5.835 there are two positive real roots 
and one negative real root. (The numbers quoted 
are accurate to ± 0.005 .) 
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discussions given above. We conclude that for ULF 
to VLF waves in the magnetosphere, the polarization 
reversal a t e satisfying (2) does not occur. 

2.6. Lower Hybrid Resonance 

For propagation across the magne tic field, i.e., for 
e = 17r, there is a resonance at 5 = O. As is indicated 
in figures I and 3, there are two such resonances, 
and the one at the lower frequency is called the lower 
hybrid resonance and the other the upper hybrid 
resonance . 

5.835 

Approximate expressions for the two hybrid reso­
nance frequencies can be obtained by ignoring terms 
of order 11-- 1 compared with unity in the dispersion re­

a lation for e = t7T. Stix [1962J gives for the lower 
hybrid resonance freq uency WLH, 

FIGURE 5. Illustrating the solutions to RL + PS - 2S2 = O. 

L 

Ox 

FIGURE 6. The modes in which polarization reversal occurs at Ii 
satisfying (2). 

The curves representing (4) are schematically shown 
in figure 5; the sign for RL + P5 - 252 is also indicated 
for areas separated by the curves. 

We now combine the results in figures 4 and 5. In 
so doing we observe that the intersection of R = 00 

and L = 0 is at ex = 2(1 - 1/11-) < 2. We see that all 
the unshaded areas in figure 4 where the polarization 
reversal can occur are in the regions where RL + P5 
- 252 is negative . Thus the reversal occurs in the 
branch resulting from the plus sign in (3) . 

We reach the conclusion that there is no polariza­
tion reversal in the nonevanescent modes to the right 
of the vertical line ex = 1, and that for ex less than 1 
the polarization reversal occurs in the L-X mode for 
w2 < Of and in the R-O or R-X mode for 01(1-1/11-
+ 1/11-2) < w2 < O~. 

The modes in which the polarization reversal oc­
curs are indicated in figure 6, which summarizes the 

(6) 

and for the upper hybrid resonance frequency W UH, 

(7) 

In the frequency range we are concerned with here 
and for the plasma parameters appropriate to the 
magnetosphere, the lower hybrid resonance frequency 
can be approximated with good accuracy by the geo­
metric mean of the ion and electron cyclotron 
freque ncies: 

(8) 

A clear physical picture for this resonance has been 
given by Auer, Hurwitz, and Miller [1958]. 

The lower hybrid resonance frequency at different 
distances from the earth's center is given in table 1 
for the model magnetosphere used in this paper. 

TABLE 1. The lower hybrid resonance frequency fLH at various 
distances from the center of the earth 

ILl! 

km Hz 
10,000 5,260 
15,000 1,560 
20,000 657 
25,000 337 
30,000 195 

35,000 123 
4<),000 82 
45,000 58 
50,000 42 
55,000 32 

60,000 24 

2.7. Hydromagnetic Approximation 

When the wave frequency W is well below the ion 
cyclotron frequency Oi, the quantities Rand L are 
simplified, and both Rand L can be approximated by 
l+y, where y=47Tpc2/Bo; here p=nimi+neme, i.e. , 
the plasma density. With this approximation for R 
and L the dielectric tensor becomes diagonal. The 
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component K.L of the dielec tric tensor perpendicular 
to the magnetic field then takes the well-known form 
[Spitzer, 1956], 

K.L= I+y . 

If lX is large, as is the case with ULF waves in the 
magnetosphere, P can be approximated by - lX. With 
these approximations for R, L, and P, the dispersion 
relation is simplified and readily factored, giving the 
following two modes. One of these modes gives 

n2 = 1 +,}" (9) 

and the other 

n2 cos2 e = 1 + y. (10) 

In the first mode, n2 is independ ent of e. For thi s 
reason As trom [1950] called this mode "ordinary" 
mode, and the second "extraordinary" mode. How­
e ver , a closer examination shows that the first mode 
corresponds to the branch labeled R-X in fi gure 3 
and the second to that labeled L. Hence the exac t 
express ion for n 2 for the first mode de pe nds on the 
magne tic field for e = l7r. The problem of labeli ng 
the modes has already been di scussed in section 2.2. 

By studying the ion velocity, the mode correspond­
ing to (9) can be show n to represent compressional 
wave, and the other mode (10) shear wave. From a 
comparison of phase velocity [or these two modes, one 
finds that the compressional mode is the fas t mode 
and that the shear mode is the slow mode. 

From the continuity of the wave-normal surface we 
see that the Alfven co mpressional mode (or the fast 
hydromagnetic mode) and the whi stle r mode belong 
to the same family. The Alfven shear mode (or the 
slow hydromagneti c mode) disappears at the ion 
cyclotron frequen cy. 

When l' > > 1, the phase veloc ities for the com­
pressional and shear modes reduce to VA and VA cos e, 
respectively, where VA = Bo/v' 41rp , which is the Alfven 
velocity . The condition that 1' » 1 is equivale nt to 
the condition that VA/c « 1. These approximations 
for the phase velocities can be readily obtained by a 
fluid-dynamical treatment of plasma with infinite con­
ductivity and by neglecting displace ment current. 

3. Ray Theory 

3.1. Introduction 

So far we have re viewed the wave modes in a cold 
plasma by studying the wave-normal surfaces. The 
basis for the study was the dispersion relation. We 
now inves tigate propagation of hydromagnetic waves 
from a somewhat diffe rent angle by cons tructing a ray 
theory. As the plane wave theory described in the 
preceding discu ssions has limitations in its applica­
tion, the ray theory developed below is valid only under 
certain conditions. However, just as the ge neral 
discussions of wave modes are useful in understanding 

the propagation of waves, the theoretical study of the 
behavior of rays is helpful in unders tanding some of 
the electromagnetic phenomena occurring in the mag­
ne tosphere. 

Although the theore ti cal discussions in sections 3.2 
and 3.3 are of general nature, the theory is applied 
in sections 3.4 to 3.8 to propagation of hydromagnetic 
waves in the magnetosphere. 

3.2. Equations of Motion of a Ray 

The basis of the theory is that the ray propagates 
with group velocity. Hines [1951] and Auer, Hurwitz, 
and Miller [1958] have shown that the constructive 
interference maximum of a wave pac ket moves with 
group velocity. We also assume that the waves con­
stituting the wave packet propagate in the same mode 
throughout its motion in the anisotropic medium . 
Coupling between different modes is assumed not to 
take place. 

Denoting the position of a ray by r and the group 
velocity by Vg, we write the equati on of motion for the 
ray as follows : 

(11) 

where the dot s ignifies differen tiation wi th ti me t. 
The group velocity Vg is given by 

Vy = aw/ak. (12) 

The wave frequen cy wand the wave vec tor k are re­
lated by the dispersion relation , whic h we wri te 

D(k, w , r , t) = O. (13) 

W e introduce a parameter T alon g the path of the 
ray. Then, using (12) and (13), the equation of motion 
(11) can be written in the followi ng form: 

dr/dT aD/ak 
dt /dT =- aD/aw· (14) 

From our assumption D is constant along the tra­
jectory, and hence we have 

For (15) to hold for any T the content of the pare n­
theses must be zero. W e group the four te rms in the 
parentheses in (15) as follows : 

If each of the two fac tors in (16) is zero, the required 
condition (15) is satisfied. Equations (14) and (16) 
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are satisfied by the following set of equations: 

dr/dT= aD/ak 

dk/dT=- aD/ar 

dt/dT=-aD/aw 

dw/dT=aD/at 

(17) 

(18) 

(19) 

(20) 

If D is independent of time, the last equation (20) 
states that w is conserved along the ray trajectory. 
The third equation (19) gives the relation between 
time t and parameter T. 

The above set of equations clearly indicates an 
analogy between the ray theory and classical me­
chanics. The wave vector k and the frequency w of 
a ray play the roles of the momentum and the energy 
of a particle, respectively. However, this analogy 
does not enable us to formulate the ray theory in Hamil­
tonian form. This is because the motion of a ray 
corresponds to that of a particle of zero mass, and 
hence it is expected that the Lagrangian for the ray 
is identically zero. In the conclusion of section 3.3 
we will show that the Lagrangian indeed vanishes. 

However, when Fermat's principle is valid the prob­
lem can be formulated in Hamiltonian form. Hence 
we now examine under what conditions Fermat's 
principle is consistent with our formulation. 

3.3. Fermat's Principle 

Weinberg [1962] showed that when the eikonal is 
stationary, the principle of least time, i.e., Fermat's 
principle, holds if the dispersion relation is homo­
geneous in k and w. Here we derive the same condi­
tion by pursuing the formulation in section 3.2. 

In classical mechanics the principle of least action 
holds when the Hamiltonian is conserved. We limit 
ourselves to the case when the frequency w is con­
served along the path, that is, D is conserved along 
the path. 

We first define the action A for the ray by the integral 

(21) 

where the dot means, as before, differentiation with t. 
Next, we calculate the variation ilA, where the 

il-variation differs from the S-variation appearing in 
virtual displacement; in the latter, time is kept un­
changed. whereas in the former the process involves a 
change dt [see, e.g., Goldstein, 1951]. For any func­
tion / of rand t, the il-variation of / is 

il/= dT (a/ + jdt) 
aT dT 

In particular, 

Applying the il-variation to (21) we have 

ilA = Jt2 8(k . j-)dt + k . i-iltl t2 
t 1 t l 

(23) 

(24) 

The first integral can be calculated in the following 
way: 

f t2 ft' . It2 = Sk . i-dt - k . Srdt + k . Sr 
tl i1 tl 

ft2 ' 112 = (Sk· r-k' Sr)dt-k· rilt . 
tl t. 

Here we used the fact that the order of the S- and dot­
operation can be interchanged, and partial integra­
tion was performed on the second integral on the 
right-hand side of the first line. To obtain the last 
result we used (23) and the condition that ilr = 0 at 
the end points. 

Thus (24) reduces to 

ft2 . 
A= (8k·j--k·Sr)dt. 

t, 

Using (11), (12), (17), (18), and (19), the integrand can 
be transformed as follows: 

Sk· i--k· Sr=-(aD/a w)- 1 Sk·-+Sr·-( aD aD) 
ak ar 

=- (aD/aw)-ISD 

=0. 

Thus we have proved that f-

ilA =0. 

Namely, in our system the principle of least action 
holds if the action is defined by (21). Having proved 
this principle we go back to the expression for ilA 
given in (24). If 

k· r=constant ¥- 0, (25) 

then (24) reduces to 

=S/+/ilt. (22) which implies the principle of least time, or Fermat's 
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principle. The condition (25) can be rewritten as 
follows: 

- (k . aD/ak)/(aD/aw) = constant. (26) 

A sufficient condition for (26) to hold is that D is 
homogeneous in k arid w, because jf D is homogeneous 
in k and w, i.e., if 

D(ak, aw) = a"D(k, w), 

Euler's homogeneity equation becomes 

k. aD +w aD =nD=O. 
ak aw 

(27) 

T-hus the constant in (26) takes the value of w. 
The homogeneity equation (27) can be transformed 

into the form 

k 
v .-= 1 or 

9 w 
aw w 

al kl Ikf 
which implies the equality of the phase velocity and 
the component of the group velocity in the direction 
of the former. 

It is pointed out here that the action (21) is the same 
as the eikonal S in Weinberg's formulation, and that 
the principle of least action derived here is equivalent 
to the principle of stationary S in Weinberg's eikonal 
theory. 

For the Alfven compressional mode the dispersion 
relation is homogeneous in k and w, and hence Fer­
mat's principle holds . As a matter of fact, for this 
mode the group velocity is equal to the phase velocity. 
However, for the shear mode the dispersion relation 
is not homogeneous in the components of k, and thus 
Fermat's principle does not hold. As has been noted 
by Weinberg [1962], the application of Fermat's prin­
ciple by Francis, Green, and Dessler [1959] is justified. 

In concluding this section a remark is made on the 
Lagrangian. In classical mechanics the Lagrangian 
L is related to the Hamiltonian by 

L=p' j--H 

where p is the mom utum. 
If we define the Lagrangian for the ray by 

L=k·j.-w 

then from (25) our Lagrangian is identically zero, con­
firming our expectation expressed in section 3.2. 
Thus the ray theory cannot be constructed in Hamil­
tonian form using the Lagrangian defined above. 

3.4. Ray Theory for Modes With Isotropic Phase 
Velocity 

ray. For the Alfven compressional mode the group 
velocity is the same as the phase velocity. Hence 
we simply re fer to these velocities by the single term 
the Alfven velocity. 

Fermat's principle s tates that the motion of a ray 
from a point PI to another point P2 is such that the 

l P2 

variation of the line integral ds /V for fixed PI and 
P, 

P2 is zero , i.e., 

JP2 

[) ds/V(r,(},cp)=O 
P, 

(28) 

where VCr, (}, cp) is the Alfven velocity, using a spherical 
coordinate system (r, (}, cp). When we refer to the 
magnetosphere the origin of the spherical coordinate 
system is taken to coincide with the earth's center. 
In the preceding sections (J was the angle which k 
makes with the magnetic field, but in the rest of the 
paper (J is the polar angle. 

We write (28) in the form: 

[) dt=O J 12 (r + r2(}2 + rcp2 sin2 (})l /2 
I, VCr, (J, cp) 

(29) 

where tl and t2 are the times when the ray is at PI 
and P2 , and where the dot means differentiation with 
respect to time t. 

Equation (29) is formally the same as the variation 
equation expressing .Hamilton's principle for a system 
whose Lagrangian is equal to the integrand in (29). 
Thus we take the integrand of (29) as the Lagrangian 
of our system, and define the generalized momenta 
conjugate to r, (} , cp by 

(k= 1, 2, 3) 

where it is understood that the subscript k refers to 
r, (J, cp components and that qk(k = 1, 2, 3) represents 
r, (}, cp , respectively. 

The Hamiltonian H of the system is 

= V(r, (J , cp)2 [p~'+ p7J r + p~(r sin2 (})] - 1. 

then the canonical equations can readily be formed. 
Stegelmann and von Kenschitzki [1964] proceeded 
to integrate the canonical equations numerically. 

3.5. Axially Symmetric Case: Allowed and 
Forbidden Regions for a Ray 

It is obvious that if the Alfve n velocity is independent 
of cp, the Hamiltonian does not contain cp explicitly; 
thus, cp is a cyclic coordinate. It follows that the 
conjugate momentum P<I> is a constant of motion. 
From the definition of P<I> , we immediately obtain the 

In this and in the following sections we discuss the equation 
case in which the phase velocity is isotropic. We 
specifically study propagation of a hydromagnetic (r21> sin2 (})/V(r, (J)2 = constant. (30) 

1141 

--- -----------~ 



This equation, of course, is the canonical equation 
for 1> wit~ Pti> constant. 

Since 1> = V d1>/ds, where s is path length along the 
trajectory, (30) can be written as follows: 

(RZ/V)d1>/ds = a (31) 

where 

R = I' sin e (32) 

and where a is a constant. 
We define an angle X by the equation 

Rd1>lds = sin X (33) 

so that X is the angle between the tangent to the ray 
in the direction of its motion and the meridian plane. 
As can be seen in (33) the sign of X is taken such that 
X is positive when 1> increases as the ray advances . 
Figure 7 illustrates the angle X. 

Using X, (31) reduces to 

(R/V) sin X = a. (34) 

For rays belonging to a, (34) gives the angle X as a 
function of I' and e. 

Since - 1 ",;; sin X ",;; 1, we have the relation 

-1"';;aV/R",;;l. (35) 

Thus, given the value of a, (35) defines the "allowed" 
region for the rays belonging to a. Areas outside the 
allowed region are forbidden to these rays. 

MERIDIAN 
PLANE 

PROJECTION ONTO 
MERIDIAN PLANE 

FIGURE 7. ILLustrating the angle x. 

The constant a can be taken as the initial condition 
specified by 1'0, eo , and Xo: 

a = (Ro/Vo) sin XO (36) 

where Ro and Vo are the values of R and Vat 1'0, eo. 
It should be noted that the angle Xo does not specify 

the initial direction of a ray completely, except in the 
equatorial plane . To specify the initial direction of a 
ray completely one more angle is needed (sec. 3.8); 
however, we only need XO for the time being. 

When the initial conditions 1'0, eo, and XO are given, 
the allowed and forbidden regions can be mapped 
out using (35) without integrating the equations of 
motion. 

The problem is formally identical with that in 
Stormer's work on the motion of a charged particle 
in a dipole magnetic field [Stormer, 1955]. In Stor­
mer' s problem the Hamiltonian for the particle does 
not contain 1> explicitly. 

The meaning of (33) becomes more explicit if we 
limit ourselves to rays confined in the equatorial plane. 
The Alfven velocity V is now a function of I' alone, and 
X is the angle which the tangent to the ray trajectory 
makes with the radial direction. Let X be measured 
positively from the inward radial direction toward 
the direction of increasing 1> (which is taken to be 
eastward) and le t X vary from -1T to 1T; thus rays with 
- hr < X < t 1T are inbound and those with Ixl> t7T 
are outbound, and when X= ± t7T, a ray is tangent to 
the circle of radius r. 

The angle X at r is related to its initial value XO at 
the point source at 1'0 by 

sin X = (1'0/1') (v/vo) sin XO. 

If V(r) is a maximum at 1'= I'm and is a monotonically 
decreasing function of I' with increasing 1', then for 
1'0 > I' > I'm, the inequality Ixl > IXol always holds. 
This simply implies the obvious result that the ray is 
bent away from the region of high Alfven velocity. 

The Alfven velocity is a maximum at several thou­
sand kilome ters altitude and decreases both above 
and below thi s level [Dessler, 1958]. The Alfven 
velocity increases again near the F2 peak, but we are 
not concerned h ere with the ·propagation of hydro­
magnetic waves in the ionosphere. We only consider 
the ray trajectories above 600 km altitude. 

It is of interest to find the critical i~itial angle Xo , c 
at which an inbound ray from a point source at a great 
distance is re fl ected away from the earth at the region 
(1'= I'm) of the Alfven velocity maximum. This critical 
initial angle can b e determined by 

Isin Xo , cl = (rm/ro) (Vo/Vm) 

where Vm is the value of V at I'm . 

For a rough es timate, taking ro = 60,000 km , I'm 

= 10,000 km, and Vo = 400 km/sec, Vm = 2,000 km/sec, 
we obtain Isin Xo , cl = 1/30, and he nce Ixo, cl is about 
1.9°. There are uncertainties in the distribution of 
Alfven velocity in the magnetosphere, but Xo , c is not 

1142 



likely to be c hanged greatly as more accurate infor­
mation on the Alfven velocity di s tribution becomes 
available. 

3.6. Further Remark on Ray Tracing in the 
Equatorial Plane 

In 3.5, time t was used for the variable in the varia­
tion equation. However, anyone of the three coordi­
nates can be used as the variable in place of t. 

If we choose cp as the variable, and if we confine 
ourselves to the equatorial plane, the integrand L in 
the variation equation reduces to 

L(r, r') = (r'2 + r)1 /2jV(r) 

where the prime represents differentiation with re­
spec t to cp. 

Considering thi s function as the Lagrangian, La­
grange's equation of motion is 

d~ G;') -~; = O. 
This is the equation used by Francis, Green and 
Dessler [1959]. 

De noting the mome ntum conjugate to r by p , the 
Hamiltonian for the system is given by 

H = pr' - L 

where 

p = aL ta r' . 

It is understood tha t H is expressed as a fun ction of 
rand p . Then the Ha miltonia n does not contain cp 
explicitly. Thus the Hamiltonian is a co nstant of 
motion. We immedi ately arrive at the equation: 

, aL L 
r ar' - = co nsta nt. 

This is the equation which Francis, Green, and Dessler 
[1959] derived mathematically and used for their cal­
culation of the tran sit time for the ray, and which 
Dessler, Francis, and Parker [1960] used for their 
two dimensional r ay tracing. 

3.7. Hydromagnetic Rays in the Magnetosphere: 
Axially Symmetric Case 

Using the method described in section 3.5, we will 
now inves tigate the access ibility of hydromagnetic 
rays originating from the magnetospheric boundary 
to the vic inity of the earth . We use the same model 
magnetosphere as the one presented in sec tion 2.3; 
for the magnetic fi eld we approximate the geomag­
netic fi eld by a centered dipole. 

As was shown in sec tion 3.5, when the position 
(ro , eo) of the point source and the initial value of X 

of the ray are specified, we can de termine the allowed 
and forbidden re gions by (35) and (36). 

We place the point source at the distance of 10 
earth-radii from the earth's center, i.e. , ro = lOa, where 
a is the earth 's radius, and we determine allowed and 
forbidd ed region s for eo = 30°, 60°, and 90°; the las t 
value of 00 places the source on the equatorial plane . 

Typical diagrams showing the allowed and forbidden 
regions are presented in figure 8. In the figure, for· 
bidden regions are indicated by patches and the open 
areas represent allowed regions. The patched circle 
in the center represents the earth and the position of 
the point source can be at any of the four arrows on 
the great circle whose radius is ten times that of the 
earth. All the diagrams are symmetric with respect 
to the equator , and the three dimensional allowed (or 
forbidden) region can be obtained by rotating each 
diagram about the vertical axis through the center , 
namely, the dipole axi s. 

For very s mall values of XO (well below 1°, say), that 
is whe n the initial direction of the ray deviates from 
the meridian plane only by a small angle, the ray can 
reac h the earth's vicinity except direc tly above the 
poles. As XO increases, the two forbidde n region s 
aro und the axis, one in eac h he misphere , become 
larger a nd ex te nd to lower latitudes near the altitude 
of the Alfven velocity maximum . Whe n XO reaches 
some critical value , the tips of the northe rn and 
southern forbidden regions touch each other on the 
equatori al pla ne . There is an allowed region between 
the ionos phere and the altitude at whic h the two for· 
bidden regions join on the equatori al pla ne, but thi s 
inner allowed region is not accessible to the ray com· 
ing from outside . 

Whe n XO exceeds a certain value a little greater than 
the critical value, the earth is co mpletely immersed 
in a forbidde n region and the outer allowed region 
is more a nd more pu shed outward , a nd finall y, as 
Xo tend s to 90° the inner surface of the outer allowed 
region approach es so me limiting s urface whic h inter­
sects the la rge sphere (of radius ro) at 0 = 00 and 
0 = 11"-00• When eo is 90°, the allowed region for 
XO = 90° dege ne rates to a c ircle of radius ro on the 
equatorial plane. 

The critical value of XO becomes s maller as 00 in­
creases ; for 00 =30°, 60°, and 90°, the critical XO is 
3.3°, 1.4°, and 0.9°, respectively. In figure 8 the dia­
grams for thes e critical circumstances are included. 
For Xo= 10°, 30°, 60°, and 90° the forbidde n regions 
are indicated in one diagram for each 00 . 

We conclude that the earth and it s immediate vi­
cinity are remarkably well protected from the hydro­
magnetic rays generated in the outer regions of the 
magnetosphere . This feature has been s hown by 
Stegelmann and von Kenschitzki [1964] with their 
results from numerical ray tracing. 

3.8. Hydromagnetic Rays in the Distorted 
Magnetosphere: Axially Asymmetric Case 

The magnetosphere is contained in a cavity in the 
streaming sola r plasma [Cahill and Amazeen, 1963; 
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80 =30° 80 =60° 80 ~90° 

XO~IO° ~A 
Xo ~ 30o~B 

Xo~60o~C 

Xo~90o~D 

FIGURE 8. Allowed and forbidden regions for a hydromagnetic ray in the magneto· 
sphere with a dipole field. 

Ness et aI., 1964]. A number o.f workers have at­
tempted to. theo.retically determine the shape o.f the 
bo.undary o.f the magneto.sphere [fo.r reference, see a 
review paper by Beard, 1964]. In this sectio.n we o.nly 
briefly discuss the effect o.f the disto.rtio.n o.f the mag­
neto.sphere o.n the pro.pagatio.n o.f hydro.magnetic 
waves. 

In the absence o.f symmetry we have to. write do.wn 
the equatio.ns o.f mo.tio.n and so.lve them by so.me nu­
merical metho.d . Fo.r the sake o.f co.nvenience we 
multiply the Hamilto.nian given in sectio.n 3.4 by the 
facto.r ! . With this Hamilto.nian the cano.nical equa­
tio.ns are 

r= V2Pr 

e = V2po/fl 

cP = V2Prb/(fl sin2 e) 

These equatio.ns are no.t co.mpletely independent. 
The Hamilto.nian o.f the system is identically zero, 
and we have 

P; + p~/r2 + p2J(r2 sin 2 e) = 1/V2. (38) 

Using (38) o.ne o.f the variables can be eliminated fro.m 
the set o.f equatio.ns (37). But it is fo.und co.nvenient 
to. use (38) as a check in the numerical ray tracing 
calculatio.n. 

We define the directio.n o.f the tangent to. the ray 
trajecto.ry at a po.int P by two. angles X and 71. The 
angle X is the same as that defined in the preceding 
sectio.n, and 71 is the angle which the tangent to. the 
pro.jectio.n o.f the trajecto.ry o.nto. the meridian plane 
makes with the radial directio.n, namely 

sin X = (dcp/ds)r sin e 

Co.s T/=-(dr/ds) sec X. 

We deno.te the initial values o.f X and 71 at (ro, eo, CPo) 
by Xo and 710, respectively. The initial values o.f the 
mo.menta can be written in terms o.f ro, eo, cpo, Xo, 710, 

Pr =- (l/V)av/ar+ (1/'2/,-3) (P'9 + p'Msin2 e) 

po=-(l/V)av/ae+(V2/fl)p~ Co.s e/sin3 e 

Prb =- (l/V)av/acp. (37) and V(ro, eo , CPo) . 
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For the deformed geomagne tic field we take the 
model proposed by Mead [1964]. For the dipole field 
we take ~ = - 0.31 gauss, and for the additional field 

I due to the deformation we take 

"i?l =- 0. 2515/1 gauss 

g~ = 0.1215/,/: gauss 

where g's are well-known Gauss coefficients in the 
spherical harmonic expansion of the magne~ic field, 
and where rb is the distance, measured in earth-radii, 
from the earth's center t9 the boundary of the mag­
netosphere at the subsolar point. Here rb is taken to 
be 10 earth-radii. 

A computer program has been developed to integrate 
the equations of motion (37) with ro, 00, cf>o, XO, and 1)0 

as the initial conditions. For integration the Runge­
Kutta method was used. In this paper , trajectories 
on the equatorial plane alone are discussed. 

Figure 9 shows typical examples of the trajectories 
in the equatorial plane . The position .of the point 
source is placed at 10 earth·radii regardless of the 
longitude . This assumption is made because the 
location of the magnetospheric boundary is not well 
known on the dark side of the magnetosphere, and 
because with a fixed ro we can compare trajectories 
starting from sources at diffe rent longitudes more 
directly. Here longitude, cP, is measured eas tward 
from the midnight meridian ; in figure 9 the midnight 
meridian is towards the left and the longitude increases 
counterclockwise. 

20 

40 

60 

~~~~~IOO~~~~~~~~~~8~0--~ro~~40~~20~-i~ 
xo=O' 

FIGURE 9. Illustrating ray trajectories in the equatorial plane in 
the distorted magnetosphere. 

In the lower half of figure 9, trajectories starting at 
cf>0 = 0°, 45° ,135°, and 180°, all with Xo=!} (i.e., rays 
directed initially towards the origin) are s hown. In 
the uppe r half, trajec tori es wi th their initi al position 
at CPo = 90° with Xo = O°, 1°,3°, 4°,5°,6°, and 7° are 
drawn. 

The effect of the di stortion of the magne tosphere 
on the ray trajectories can be described by saying 
that hydromagnetic rays tend to be "blown" towards 
the direction away from the sun. This is because 
the magnetic field is more compressed on the sunlit 
side of the magnetosphere than on its dark side, thus 
increasing the Alfven velocity in the region facing the 
sun. 

However, the results presented in this section should 
be interpreted with caution. Although the distortion 
of the geomagnetic field is taken into account, possible 
changes in the plasma density distribution associated 
with the distortion are not considered here. Appre · 
ciable asymmetry may be introduced in the plasma 
densi ty, but no observational data are available as 
yet that indicate such an effec t. 

The magneti c field configuration on the dark side 
of the magnetosphere has also not as ye t been es tab· 
lis hed. Since the trajectories are sensitive to large 
scale magnetic field patterns, the actual trajec tories 
in the magne tosphere may be different from those 
shown in thi s paper. Our purpose is to de monstrate 
qualitative characteris tics of ray trajec tories in the 
magne tosphere. However, for the model used in this 
section the calculations are made as accurately as 
poss ible within the practical limitations. 

It is observed in figure 9 that if the point source is 
not in the meridian containing the sun (i. e., cf>o = 0° 
or 180°), the ray directed initially towards the origin 
does not reach the earth. For the ray to reach the 
earth it must s tart with XO slightly greater than O. 
If XO becomes too large, the ray is bent back at the 
r egion of Alfven velocity maximum . This circum· 
stance is shown for CPo = 90° in the upper half of figure 
9. At this CPo , rays with XO = 3.0° and less are " blown" 
towards the back of the magnetosphere. At XO be· 
tween 3.0° and 3.2° the ray begins to pene trate into 
the immediate vicinity of the earth, a.nd thi s condition 
prevails till XO reaches a value a little less than 6.5°. 
Beyond this latter angle the ray is again reflected away 
from the earth at the region of Alfven velocity 
maximum. 

In figure 9 the time in seconds is indicated along 
the trajectories. It is of interest to compare the tran· 
sit time from ro to some altitude near the earth for the 
trajectory in the midnight meridian with the corre· 
sponding transit time for the trajectory in the noon 
meridain. In figure 9 the altitude of the point marked 
95 sec in the noon meridian and the altitude of the 
point marked 129 sec in the midni ght meridian differ 
only by 45 km. The mean of the two altitudes is 1,363 
km above the earth's surface. Thus the difference 
in the transit time from 10 earth-radii to this altitude 
is about 34 sec. However, as has already been men· 
tioned, caution should be exercised in applying this 
result to any actual events that occur in the magneto· 
sphere . 

1145 



In concluding the discussions of the ray theory 
the following remarks are made. The hydromagnetic 
approximation is based on the condition that w ~ f1;. 
Thus for the most part of the magnetosphere this ap­
proximation is good below 10 Hz (fig. 3). There is 
another limitation to the ray theory, namely, that the 
wavelength be short compared with the dimension 
under consideration. We put this condition in the 
form w ~ VIL, where L is the typical scale length. 
If we take L to be the smallest value of the radius of 
curvature for the ray traj ectories, then the minimum 
frequency may be set at about 1 Hz. Thus, roughly 
speaking, the ray theory is applicable to propagation 
of hydromagnetic waves of frequencies about 1 to 10 
Hz. 

A more extensive study of the ray trajectories in 
the magnetosphere and their physical implications 
will be reported later. For instance, the efficiency of 
energy transfer from solar winds to the ionosphere 
via hydromagnetic waves is considerably reduced by 
the limited accessibility of the hydromagnetic waves 
to the immediate vicinity of the earth. 

A theoretical study of geometrical hydromagnetics 
based on a classical hydromagnetic fluid has been 
made by Bazer and Hurley [1963]; their paper includes 
comprehensive reference to the literature on the 
s"bject. 

4. Conclusions 

We reviewed the possible modes of waves in a two­
component cold plasma using the Clem mow-Mullaly­
Allis diagram. A systematic method of labeling the 
modes was explained. 

The modes relevant to propagation of ULF to VLF 
waves in the regions of plasma parameter space re­
presenting the conditions in the magnetosphere were 
reviewed. For frequencies below the ion cyclotron 
frequency there are two modes: the fast mode with 
right. handed circular polarization for propagation 
along the magnetic field and with phase velocity de­
pendent on the magnetic field for propagation across 
it, and the slow mode with left-handed circular polar­
ization for propagation along the magnetic field. 
Waves in the latter mode do not propagate across the 
magnetic field. Above the ion cyclotron frequency, 
only the fast mode represents propagating wave, and 
above the lower hybrid resonance frequency this mode 
becomes the guided whistler mode. 

Reversal of polarization in the electric field that 
could take place at a certain direction of phase propa­
gation with reference to the direction of the magnetic 
field was discussed. We concluded that there is no 
such reversal in polarization in ULF to VLF waves in 
the magnetosphere. 

The hydromagnetic approximation was examined 
and its relation to the more exact treatment was 
indicated. 

In this paper we only discussed propagation of waves 
in a collisionless plasma. When the thermal motions 
of electrons and ions are included, the waves found in 
a cold plasma are modified. The modifications are 

often only slight, but in a hot plasma new modes are 
introduced which have no counterpart in a cold plasma. 
There are two such modes in a relatively low-frequency 
range. They are ion acoustic waves and electrostatic 
ion cyclotron waves. These waves were not discussed 
in this paper; the reader is referred to discussions on 
these waves made, for instance, by Spitzer [1956], 
Bernstein [1958], and Stix [1962]. 

In the latter half of this paper, we changed the line 
of approach, and formulated a ray theory. The equa­
tions of motion of a ray were derived from a simple 
postulate that a ray moves with the group velocity. 
The action of the ray was defined with analogy to classi­
cal mechanics, and the principle of least action was 
proved. It was shown that the principle of least 
action takes the form of the principle of least time when 
the dispersion relation is homogeneous in the wave 
vector k and the frequency w. 

For the case in which the wave-normal surface is 
spherical, a ray theory was formulated in Hamiltonian 
form. In the axially symmetric case the generalized 
momentum conjugate to the azimuthal coordinate 
becomes a constant of motion. Using this relation, 
allowed and forbidden regions were defined for a hy­
dromagnetic ray in the magnetosphere with the 
magnetic field approximated by that of a dipole. It 
was shown that a ray originating from the magneto· 
spheric boundary car. reach the ionosphere only if 
the deviation of the initial direction of the ray from the 
meridian plane is small. 

When the distortion of the geomagnetic field due 
to solar wind is taken into account, the ray trajectories 
in the magnetosphere are appreciably altered from 
those in a dipole field. 

In spite of the limitations in its application the hy­
dromagnetic ray theory for the magnetosphere should 
provide a guide towards a more complete understand­
ing of propagation of hydro magnetic waves in the 
magnetosphere. 

I thank W. F. Cahill for his valuable suggestions on 
the numerical calculations in this paper. I am in· 
debted to W. H. Mish, Mrs. S. J. Hendricks, and 
Mrs. P. J. Connor for their helpful assistance in 
preparing the computer programs and performing 
the calculation. 
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