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In this paper, a method is presented by which the distribution of current on some structurally 
simple coil or multi turn loop antennas may be obtained. The input admittances of unshielded and 
shielded coils are determined and their operation as receiving elements is considered. 

1. Introduction 2. Current Sequences 

- -------, 

The high-frequency behavior of thin circular loop 
antennas has been studied in the past by several in
ves tigators [Wu, 1962J. It is shown in this paper 
how results pre viously obtained for single-turn loop 
antennas can be applied to give the admittance and 
distribution of current for coils that possess symmetry 
in the sense that all turns of the coil are equivalent. 
Such symmetry obtains if at any section of the coil 
the wires appear at the corners of a regular polygon, 
and further if the main diagonal of this polygon is 
much smaller than both the radius of the coil and the 
wavelength in air. 

Let N be the number of turns on the coil. A point 
on the coil is de noted by X whi ch is its a ngular distance 
from some fixed point on the coil , measured along the 
condu ctor. The c urrent J(X) across the sec ti on of the 
co ndu ctor a t X must sati sfy the periodicity condition 

One advantage of the coil over the si ngle-turn loop 
antenna is that at low frequencies, the output voltage 
is direc tly proportional to the number of turns of the 
coil whe n it is used as a receiving antenna. Also its 
higher impedance may make tuning or matching a 
simpler problem . For these reasons coils are widely 
used in direction finders and radio receivers. A recent 
application of co ils is in the production of very high rf 
magnetic fields . The prese nt theory may be used to 
calculate the voltage distribution on the coil and hence 
estimate the maximum magne tic fi eld obtainable before 
electrical breakdown occurs. 

In practice, the detailed structure of the coil may 
not permit rigorous application of the following analysis 
but in most cases it should be possible to obtain semi
quantitative estimates. 

In brief, the method is as follows. Instead of solv· 
ing directly for the current on each of the N turns of 
the coil, it is found more convenient to regard the 
current on each turn as the superposition of currents 
in N phase sequences. In the sequence for which the 
phase difference between the currents on any two 
turns is zero, the current distribution is the same as 
that on a single-turn loop of appropriate equivalent 
cross-sectional size. Other sequences are nonradiat
ing and behave essentially like the TEM mode on a 
two-wire line. The current in each sequence is, there
fore, known or can be found, and the current and input 
admittance of the coil determined by summing up the 
contributions from each phase sequence. 

I(X) = l (X + 21TN). 

Hence, J(X) may be written in a Fouri er seri es: 

00 

J(X) = 2: Ame- jmX/N. 
m = - :x> 

To display this as a sum of phase seq uences put 

m = k+nN; (k=O,I,2, ... ,N-I; 

n = O, ±I,±2, . .. , ±oo). 

An eq uivale nt form for J(X) is, therefore, 

.\' - 1 Xl 

J(X) = 2: e-jkx/N 2: A~e-jnx. 
k = O n = - oo 

The (1 + i)th turn of the coil is defined by 

He nce the current on the (1 + i)th turn is 

N-l 
= 2: e-21Tijk/NJk(t/J), 

k =O 

where 

'" Jk(t/J) = e- jkw/N 2: A;'e-jllw. (1) 
n =- x 

Jk(t/J) IS called the k-sequence current. When a pure 
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k-sequence current exists on the coil, it IS implied 
that the current on the (1 + i)th turn is 

f7(1jJ) = e-2rrijkINJk(1jJ). (2) 
It foliows from (2) that 

N- I 

J'to/1jJ) == 2:J}(1jJ) = NJk(1jJ)8kO; (3) 
i=O 

that is, in each sequence k "'" 0, the total current across 
a section of the coil is zero. 

3. Driving Voltage Sequences 
Suppose a voltage generator of strength Vi is intro

duced into each of the N turns at 1jJ = 0 (fig. 2). Define 
N sequence voltages Vk by the set of equations 

N-I 
Vi=L e-2rrijkINVk; (i=O, 1, . . . , N-1). (4) 

k=O 

The solution of (4) for Vk is 

(5) 

For the case where only one source is present (say in 
the first turn), this simplifies to 

Vk = V/N, where Vi = V8iO. (Sa) 

4. Phase Sequence Input Admittances 

Great simplification of the problem of coil antennas 
results if it is assumed that there is sufficient symmetry 
to ensure that if the coil is driven by a k-sequence 
voltage, the currents, too, form the same sequence. 
Coils that approximately satisfy this condition may be 
wound by making sure that at any section, the turns 
of the coil appear at the corners of a regular polygon. 
Further, since all turns should be as nearly as possible 
of the same length (physically as well as electrically), 
the separation between turns should be small com
pared to both the radius of the coil and the wavelength 
corresponding to the frequency of operation. A four
turn coil is shown in figure 1; for clarity the separation 
between turns has been exaggerated. 

v 

FIGURE 1. A four turn coil in which the conductors appear at the 
corners of a square in every cross section. 

Consider first the distribution of current induced by 
a zero-sequence voltage. By suitably altering the 
connections at the N driving points, the problem of the 
coil reduces to that of N identical, closely coupled, 
circular antennas driven symmetrically, i.e., by equal 
voltages in phase. The change in connections leaves 
the distribution of current unaffected. It is shown in 
the literature [King and Harrison, 1965] that for two 
identical, closely coupled loop antennas driven in 
zero-phase sequence, the distribution of current is the 
same as that on an isolated loop of the same diameter, 
but with the wire of radius a replaced by wire of radius 

Ii = vi (ad), where d is the separation. A simple ex
tension of this result to the present case shows that 
the equivalent loop is one with the same mean diameter 
as the coil but made of wire of radius a given by 

where d i is the distance of the (1 + i)th turn from the 
first turn. The current JhlOP(1jJ) and admittance yOOP 
for the equivalent loop have been evaluated for small 
a in an earlier reference [Wu, 1962], and numerical 
results are available [King, Harrison, and Tingley, 
1963]. In terms of these known quantities the zero
sequence current on the coil is, therefore, 

The zero-sequence input admittance IS defined by 

Hence 

1 
yO="N YooP. (6) 

For all higher sequences, radiation from the coil 
can be neglected as a consequence of (3) and the condi
tion that the separation between any pair of turns be 
much smaller than a wavelength . Now the theory of a 
straight, infinitely long, multiwire transmission-line 

FIGU RE 2. Schematic view of coil. 
- One turn is drawn with a heavy line . 
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[Tai, 1948] shows that when it is driven by a k
seque nce voltage (k 01= 0), a TEM wave propagates 
along the line with the velocity of light- Propagation 
along the line is essen tiall y unaffected even if the lin e 
is curved, provided the radius of curvature is mu ch 
large r th an the separation between conducto rs . 
He nce, the k-sequence current /k(ifJ) and (in ana logous 
notation) the k-sequence scalar potential ¢'·(ifJ) obey 
(fo r ifJ 01= 0) the eq uations 

a nd 

where 

~ d2¢k + f32,1,.k = 0 
R2 difJ2 'f' , 

R = mean radius of the coil, 

(7) 

(8) 

Zk = characteristic impedan ce , i. e., impedance re
quired in e ac h arm of a s tar-connec ted load th at 
matches the transmiss ion-line when it is exc ited 
by a k-sequence voltage, 

and 

f3 = phase constant of the em wave. 

At ifJ = 0 there is a discontinuity in scalar pote ntial 
(see (Sa)) 

(9) 

Furth er, (1) gives 

(10) 

and, a nalogously 

(11) 

The solution of (7) and (8) subj ect to (9) , (10), and (11) 
is obtained in the appendix _ The k- seque nce input 
admittance is shown to be 

k = /k(O) _ ~ si n 21Tf3R . 
Y - VA" - 4Zk (k ) (k . )' 

sin 1T N + f3R sin 1T N- f3R 

(k 01= 0). (1 2) 

Eq uati ons (6) and (12) give the input admittance for 
eve ry sequence, k = 0, 1, 2, ... , N-l. 

It is now a simple matter to calculate the admit
tance Y in presented to the source at ifJ = 0 on the first 

? turn: 
tV- I 

Yin=/O(O)/V= Ly')N. 
k =O 

Hence 

_ yOOI) . sin 21Tf3R 
Yin - N2 +, 4N 

.\" - 1 1 

X L (k) (k )-
k = 1 Zk sin 1T N+ f3R sin 1T N- f3R 

(13) 

It is interesting to note that for Nf3R < < 1, (1 3) 
r educes to the familiar low-frequency formula , 
Y in = yOOP / N2 _ In fact, as long as the coil is perfectly 
conducting and the medium surrounding it is lossless , 
the input conductance is always I/N2 times the con
ductance of the equivalent loop, irrespective of the 
size of the coil. 

Another well-known feature that follows from (13) 
is the antiresonance associated with the di stributed 
capacitance between the several pairs of turns. At 
low frequenc ies , the input admittances of all se
que nces othe r th an the zero-seque nce are capacitive, 
while the zero-seque nce input admitt a nce is inductive . 
The net susceptance becomes zero at a frequency that 
is quite low . For some typical cases calculated below, 
antiresonance occurs at Nf3R ~ 0.2; i. e., the total 
le ngth of wire used in the coil is only a fifth of a 
wa vele ngth. 

Calculated values of susceptance for coils of 2, 3, 
and 6 turns are s hown in fi gure 3. For eac h coil the 
di s tance between adj ace nt turns has bee n taken as 
twi ce the di a me ter of the wire used. The actual size 
of the wire is c hosen s uc h that 2 In 21TR/"a = 10. In 
order to show the reso nances clearly, the scale for 
the ordinate in fi gure 3 is c hosen to be proportional 
to th e arc tange nt of the susce pta nce (multiplied by a 
consta nt). It will be noti ced that the be havior of the 
input susceptan ce resembles that of a short-circuit ed 
trans mission line quite closely except wh ere f3R is 
near an integer. At points of antiresonance or zero 
susceptance, the radiation fro m the coil is signific ant. 
Howe ver, where the s usce ptance beco mes infinite, 
one of the trans mission-line modes effective ly short 
circuits all others a nd radiation is a minimum. This 
is the condi tion of resonance . Resonance occurs 
wh e n e ve r f3R = n + k/N; (k = I, 2 , . .. , N-I ; 
n= O, 1, 2, _ .. , 00). 

FI GI RE 3. Susceptance of coi l anten nas.-· 
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5. Shielded Coil Antenna 
A method almost identical to that employed above 

may be used to analyze the shielded coil or multi turn 
loop antenna. In its most common form, a shielded 
coil antenna consists of a coil threaded through a con
ducting tube that is bent into the form of a ring. The 
ends of the tube are brought close together but do not 
meet. Here too, the method only applies to coils of 
the kind described in earlier sections, enclosed in 
shields that do not disturb their symmetry. An 
idealized configuration is considered, in which the 
generator (or load) in series with the coil is itself 
within the shield. For convenience, the gap in the 
shield is taken at 1/1 = 7r, (where 1/1 = 0 is the position 
of the generator). It is assumed throughout that the 
shield is thin and perfectly conducting, and that the 
diameter of its cross section is much smaller than a 
wavelength. 

The current on the coil and, similarly, the scalar 
potential, may be decomposed into sequences exactly 
as in section 2. For any k-sequence, k =P 0, (7), (8), 
(9), (10), and (11) hold because, as a consequence of 
(3), the gap in the shield at 1/1 = 7r does not affect its 
behavior. Hence, for k =P 0, the k-sequence input 
admittance is given by (12). Of course, the charac· 
teristic impedance Zk will now be different because 
of the presence of the shield. 

The current Ish (1/1) across a section of the shield at 
tfJ may be split into two parts: 

Let cpsh(tfJ) be the scalar potential on the shield. The 
zero-sequence potential difference between the coil 
and the shield is 

10(1/1) and 1>diff(I/I) together form a nonradiating, trans· 
mission-line type of wave, that exists within the shield. 
On the other hand, the part l"ad(I/I) of the current on the 
shield radiates like the current on a loop of the same 
shape and size as the shield. Hence, in terms of the 
admittance of this equivalent loop, 

The loop mode and the transmission· line mode couple 
through the gap at 1/1 = 7r where the following equations 
must hold: 

and 

Hence 

Thus, in effect, the loop mode places an impedance 
N/yiOOP in series with each turn of the coil at 1/1 = 7r. 

The zero·sequence input admittance is now readily 
found to be 

_ 1 2Z0y loop + jN tan 7r{3R 
yO - 2Zo N + 2Z0yiooP tan 7r{3R (14) 

Using (12) and (14), the input admittance is obtained 
from 

N-I 

yn=2: yk/N. 
k =O 

Formulas for Zk to be used in calculating y' are given 
in the appendix. 

6. Receiving Cbil Antenna 

The unshielded coil is considered first. Assume 
that the effective length [King and Harrison, 1965] 
of the equivalent loop is known and that the coil is 
loaded by an impedance R at tfJ = 0 on the first turn. 
From the definition of effective length it follows that 
if all turns of the coil were open·circuited at tfJ = 0, 
the resulting potential difference across the open
circuit would be the same for all turns and would be 
given by 

V'nd =- 2he . Einc (15) 

where 

Einc = incident electric field 

and 

2he = effective height of the equivalent loop; h e is a 
function of the direction of propagation of the 
incident field and its polarization. 

In normal operation as a receiving element, the 
voltage sequences must be given by 

N-l 

VI' = - RIo(O)/N = - R 2: Ik(O)/N. (16) 
k=O 

But, in terms of the current sequences Ik(O) , 

VI' = V'nd 8kO + 1" (0)/ yk. 

Using this and (16) to solve for lIk(O) yields 

% Ik(O)= - R +\/yn (;: V'nd) . 

The Thevenin equi valent of the coil at its output ter
minals is, therefore, a voltage generator of strength 
- yOV'nc/yn in series with an impedance l/yin. Alter· 
natively, this may be regarded as a current generator 
of strength -yOV'nd in parallel with an admittance, yn. 

The derivation from this simple picture, of the low
frequency result that the output voltage of a coil is 
proportional to the number of turns, is interesting. 
First it will be noted that since yO = yiOOP / N, the strength 
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of the current generator decreases as N is increased 
and is in fact roughly proportional to liN. But at low 
frequencies, yn is proportional to 1/N2. Hence, at 
low frequencies, the open·circuit output voltage is 
proportional to the number of turns. 

The equivalent circuit of a shielded receiving coil 
may be obtained by a similar method. Here, a simpler 
method will be used, which rests on the fact that the 
internal admittance of the shielded loop, viewed from 
its terminals, is the same whether it is being used as a 
transmitter or a receiver. The strength of the current 
generator in parallel with the internal admittance is 
found by calculating the current that flows through the 
output terminals when they are short circuited. In 
this condition, only zero-sequence currents are ex
cited. Using elementary transmission-line theory, it 
can be shown that the strength of the equivalent cur· 
rent generator, when viewed from the terminals at 
t/J = 0 on the first turn, is 

N cos rr{3R + 2jy100PZo sin rr{3R 

Here yOOP and ZO have the meaning they had in sec
tion S, and 0 nd is the voltage induced across the gap 
of the equivalent loop, open-circuited at t/J = rr . Just 
as in the unshielded case (IS), one may write down 
0 nd in terms of an effective le ngth, but care should 
be taken to see that it refers to a load situated at t/J = rr. 

7. Appendix 
The solution of the wave equation (7), subject to 

the boundary conditions (9) and (11) is 

cf>k(t/J)=! VI' ~ sin ~R(rr -i t/JI) 
2 t/J SIn (3Rrr 

+ . cf>k(rr) [s in {3R(rr + t/J) + e27Tjk/N si n (3R(rr - t/J)]. 
SIn 2{3Rrr 

Equation (8) now gives 

[k(t/J)=.L {_ VI' cos (3R(rr - it/Ji ) 
Zk 2 si n (3Rrr 

+ . cf>k(rr) [cos (3R (rr + t/J) - e27Tjk/N cos {3R(rr - t/J)]}. 
SIn 2{3Rrr 

(AI) 

This expression for [k(ljJ) m.ust satisfy the boundary 
condition (10). This is possible if and only if 

cos (3Rrr sin krr e- j7Tk/N 

cf>k(rr) =- jVl' N (A2) 
2rrk 

cos N- cos 2rr{3R 

Substitution from (A2) for cf>k(rr) in (AI) leads to 

,,k _ [k(O) _ L sin 2rr{3R . 
.! - Vk - 4Zk (k ) (k )' 

sin rr "N+{3R sin rr ""N-{3R 

The only quantity that remains to be calculated is 
Zk. The formula (neglecting proximity) to be used in 
calculating the sequence admittance for the unshielded 
coil is avialable [Tai, 1948] for k= 1. The generaliza
tion to other values of k is not difficult and yields 

[ d S 27Tik . rri] 
Zk=60 In ~- 2 ~ cos N In SIn N ohms. (A4) 

For the shielded coil, the formula to be used is (for 
a« diN, D-d) 

k- [ '.!.(1-d2/D2) R( d2) 
Z -60 Ina(l+d2/D2)+N8koln2d 1+D2 

S 2rrik 1. rri] -2 L cos--In-sm- ohms. 
i= 1 N Lli N 

(AS) 

In (A4) and (AS), 

d = diameter of the circle in which the regular polygon 
defined by the conduc tors may be inscribed, 

a = radius of each condu ctor, 
5 = N/2 or (N - 1)/2, whichever is an integer, 
D = diameter of a cross sec tion of the shield, if any, 

and 

In these formulas , the proximity effec t is neglected. 
A study of the exact and approximate formulas for 
the case of the two-wire line s hows that no serious 
error results if the approxim ation is made for d/a ~ 4. 
Hence, in dealing with the multiwire line , one can hope 
for reasonable accuracy provided care is taken to use 
th e approximate formulas only whe n the side of the 
polygon i s a t leas t four t imes th e radi us of th e 
conductor. 

The author is grateful to R. W. P. King for hi s guid
ance and kind encourage me nt. 
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