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Several pertinent parameters such as gain, focal efficiency, depth and width of focus are reviewed

for a near field focused linear array of radiators of arbitrary spacing.

An analytic expression of the

field distribution in the focal region of a phased linear array of Hertzian dipoles having a constant sepa-

ration, d, is derived and characterized by the aforementioned parameters.

A dipole spacing condition

in terms of the parameters of the array is derived for which the array of discrete radiators may be ap-

proximated by a line source.

Several examples of arrays consisting of more general radiators separated

by Fresnel distance are considered (using a digital computer) and curves are presented comparing
various array configurations with the analytic expression of a focused spherical basin.

1. Introduction

The field distribution in the region of the focus of
apertures has received extensive investigation. Some
of the original investigators were Airy [1834], Lommel
[1886], Guoy [1890], and Debye [1909], who considered
problems relative to the intensity distribution of visible
licht. More recently other investigators such as
Mathews and Cullen [1956] and Sherman [1962] have
considered the problem of microwave focusing. Few
investigators, however, have considered the problem
of characterizing the field distribution in the region
of the focus of phased arrays of discrete radiators.
Ricardi, in 1963, specifically described (with the use
of a computer) the gain and spot size of such a linear
array of Hertzian dipoles placed A/2 apart.

In the present work the concepts of gain in the focal
region, focal efficiency, and depth and width of focus
are reviewed for arrays with arbitrary spacing. A
specific configuration of a focused array of Hertzian
dipoles having constant separation is examined, and a
separation condition is defined within which the array
of discrete radiators may be approximated by a line
source. Utilizing this condition, the field expression
in terms of a sum of field contributions due to the
individual dipoles is approximated by an integral.
The integral is of identical form to that obtained by
directly evaluating the field due to the line source,
except that the former expression is in terms of the
array parameters. Making use of the analytic field
expression, the above-mentioned focal parameters
are characterized in terms of the dipole spacing, height
of focus, length of array, and wavelength. The “depth
of focus” is specifically characterized as a function
of the focal height and the region is determined within
which two half-power density points exist and outside
of which only one such point may be defined.

The field distribution in the focal region of several
focused array configurations consisting of more gen-
eral radiators separated by Fresnel distances are
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examined. For these examples the field is numeri-
cally obtained by directly summing (with the aid of a
digital computer) the contributions due to the indi-
vidual dipoles. Curves are presented comparing
the field distributions along several axes with the field
distribution for a spherical basin. The field intensity
of the side lobes is also examined for the various array
configurations for purposes of providing a measure of
the relative focal efficiencies.

2. General Considerations

It is the purpose of the present section to review
such pertinent parameters as gain, focal efficiency,
depth of focus, and width of focus for a linear array
of radiators. These parameters simultaneously
characterize the field distribution in the focal region
as well as the ability of the array to focus power
efficiently.

Consider a linear array of Hertzian dipoles situated
along the z-axis (fig. 1), each separated by a distance
greater than A/2 but otherwise arbitrarily spaced.

For purposes of simplicity, the orientation of the
dipoles will be assumed such that their axes are
orthogonal to the x-z plane. Let p(x’, y', z) be the
point at which a knowledge of the total field com-
ponents is desired. Assume the polar parameters,
p and ¢, to be such that,

PE> || a= 2, —% < <%for all possible p,
(2.1)
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FIGURE 1. Linear array configuration.



where

p=(a+ 2,

zp = the axial distance from the origin to the pth dipole,
¢=polar angle as shown in figure 1. (2.2)
The electric and magnetic field components due to

the radiating array in the far field of the individual
radiators are approximately given by

N exp [-—j <2T77 Toats lllp)]

Ee~cos ¢ > By (2.3)
p=0 Tp
Eo
H,=~—
Mo (2.4)
E,~E.~H,~H,~0, (2.5)
where
rp =[x+ 2+ (z— zp)?] V2,
{5, = phase of the pth dipole,
mno=wave impedance of free space. (2.6)

If all the radiators are equally fed, the coefficient,

B,, is given by,
_ T)OGOPO,
By N Ao

Po=the power fed into each radiator,
Go=maximum gain of the individual radiators.

(2.7)

where

If the radiator parameters are adjusted such that there
exists a point (xo, o, 20) at which
E¢ = nEg, (2.8
where E), is the field due to the pth radiator and p is
arbitrary, then the array may be said to be focused
here. Condition (2.8) is satisfied, for example (with
i = constant), if the individual radiators are located
on a circle and the field point is located at the center
of the circle.
In addition, (2.8) may be approximately satisfied
if the individual dipoles lie on a straight line and are
phased such that

by=2r (m_"’T") m=0,1,2 ... (29

where

rpo= [x§ + y§ + (20 — 2p)*]'2. (2.10)

Condition (2.8) may also be approximately satisfied
(assuming s, = constant) if

2D? .
p> ~ (where D is the array length).

(2.11)
For this case the maximum distance between the plane
and the osculating spherical surface of radius, p,
is =< \/16. Condition (2.11), which represents the
standard definition of the far field of an antenna, cor-
responds to the degenerate case of focusing in that
(2.8) is approximately satisfied at every point in which
p > po along the axis of the major lobe.
The power flow in the focal region is essentially
cylindrically radial and is given by
2
5~
o (2.12)

The gain of the array at the focal point (po, @0, zo) is

d7rp} E§
G~ ——ﬂ)= nGo, 2.13)

P

where P =nP,.

It is observed from (2.13) that the gain at the focal
point of the array is approximately given by the ex-
pression for the gain in the far field of the array assum-
ing the conditions in (2.1) are satisfied. This statement
is in agreement with the numerical results of Ricardi
[1963], who has evaluated the gain for a series of focal
points of a phased linear array of dipoles whose axes
were alined along the z-axis and spaced A\/2 apart.
He has shown the gain to be essentially constant sub-
ject to the condition that the height of focus be at least
larger than the array length.

The focal efficiency, defined as the ratio of the power
flowing through the region dictated by the half-power
density points (at the height of the focus) to the total
power radiated by the dipoles, is approximately given by

1
n’f)oP 0 JA,

&=~ f E%dA (2.14)
where A, is defined as the area at the altitude of the
focus bounded by the periphery over which

S,=0.5S (2.15)
and S, represents the power density flow at the focal
point.

Another useful parameter, A, called the “depth
of focus” may be defined as the dimension along the
axis of the main lobe whose extremities connect the
half-power density points. The “width of focus”
o may likewise be defined as the distance along the
line orthogonal to the main lobe axis in the plane of
the array and connecting the half-power density points.

The above considerations will now be utilized in the
following paragraphs in which several specific cases
have been examined analytically and numerically.
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3. Focused Linear Array With Constant
Separation

An analytic expression of the field distribution in
the focal region of a phased linear array of dipoles
having a constant separation will presently be derived
and the focal efficiency, “depth of focus,” and “width
of focus” will be examined.

Consider an array of length D having (2N + 1) Hert-
zian dipoles and the same configuration as assumed
in the previous section. Let each of the radiators be
separated a distance d apart, and let the linear array
be symmetrically placed about the origin (fig. 1). Let
the array be phased such that the focal point is at
(Po, ¢o=0, 20=0).

For this case, r, in (2.3) is given by

rp=[p*+ (z—pd)]'2, (3.1)

where
—N<ps<N

and Y, is given by
— 2my 271/2 ) —
lllp"277m_ T[p¢)+(Pd) ] ) m~07 17 2o oo (32)

Assuming m = po/\, (2.3) may be approximated by
p=+N

.21
exp [—JTP]
cos ¢ > Byexp [—jél, (3.3)
P p=-N

Ew*

where
— &= 2 ([ +— pd?] = (p— po)— (0} + (PP}
(3.4)

Utilizing the binominal expansion for the first and
third terms in (3.4), £, becomes

§p:z[&_~lﬂ2_w]

N o (3.5)

when the conditions

m|e—pd? (pd?|_
Al p Po

™

4\

(z—pd)* (pd)*

<<1
p? Py

(3.6)

are satisfied. The above conditions are elaborated
upon in appendix A and it is specifically shown that
the right-hand condition of (3.6) reduces to the sim-
plified condition (A10) in the focal region defined by
the 3 dB points of power density.

Substituting (3.5) into (3.3) and approximating the
sum by the integral, E¢ becomes

.21
exp | —j 5P

Eo= cos ¢ | Bp) exp [—jé(p)]dp.

_‘\'
(3.7)

where p in the integrand corresponds to a continuous

variable. This approximation is valid if

|Bps1—By| <<1 (3.8)
and

[€pe1—&p| <<1. (3.9)

In appendix A it is demonstrated that, in the focal
region defined by the 3 dB points of power density,
(3.9) reduces to the condition d << 0.03D.

Completing the square within (3.5), &(p) becomes

__mp—=po [( zpo )2
& pd+p_p0

Apop
Assuming the above conditions examined in appen-
dix A to be valid, we obtain upon substituting (3.10)
into (3.7),

= ()]
pP—pPo\  p—po

/(3.10)

to(+D/2)
Es=Cy cos gof B(t) exp [jﬁtz} dt, (3.11)
to(~D/2) 2
where
_ Q(P_Po)]]/z( 2P0 )
t=|=-+H—" d+—"——), 3.
[A o pd+-2 (3.12)
2 e 1/2
to(D/z):l:— (p po):| (an _+_Q>’ (3.13)
N pop pP—po 2
— 1/2
w-Di2=| 2@ 00]"( 20 D) (31
A pop p—po 2
\Do e .21 7
S N TN
" L20—popdz] [P X \P T 2= 0y
(3.15)

It should be remarked that, in passing from the sum-
mation (3.3) to the integral form (3.7), the linear array
problem reduces to the focused line source problem.
Thus, the resultant field is of identical form to that
obtained for a focused line source, except that the
solution is now in terms of the parameters of the
array. The field of the line source has previously
been derived as a limiting case of a focused rectangular
aperture [Sherman, 1962].

For the specific case in which the dipoles are equally
fed, B,= B, [given by (2.7)], and (3.11) becomes

Ee=B,Co cos ¢[(Clty) — Clty) +j(St5) —S(t5))]  (3.16)
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where C and S are the cosine and sine Fresnel integrals,
respectively. Expression (3.16) thus corresponds
to the electric field in the focal region subject to the
condition that (2.1), (3.6), and (3.9) are satisfied.

It is of interest to note that along the plane z=0, Eo
reduces to

Ee =~ 2CoB, cos ¢ [Cltg) +jS(¢7)] (3.17)

and along the cylindrical surface p=py, E¢ becomes

sin (TrZD>
Apo 2 [ ]

(777.0) RN
Apo

The focal efficiency may now be obtained by substi-
tuting (3.18) into (2.14) and integrating over the cylin-
drical surface (at the altitude of the focus p=po)
defined by the half-power density points. Hence,
€ becomes

E., =~ B, ELS cos ¢

pod (3.18)

e=717.3X10"2 (ATGO> (3.19)

Note that the efficiency is enhanced as the dipole
spacing is reduced. For the special case in which
the dipoles are spaced \/2 apart, the efficiency
becomes

€=21.9 percent. (3.20)
Since there are theoretically two focal regions (one
below and the other above the array), approximately
44 percent of the total power may be said to flow
through the regions defined by half-power density
boundaries.
The width of focus, 8§, may be obtained from the

relationship
. (wzD
(e
W— 0.707. (3.21)
/\po
Hence,
_ Po)
8—0.89<D) A. (3.22)

The depth of focus, A, is obtained by solving the
following transcendental equation for to:

(@’)2 — [1*4arf]® 1 (3.23)

= g [+ ] =3,

where

and E¢; and Ee¢,, are the magnitudes of (3.16) evaluated:
at the half-power point and the focal point, respec-
tively. Solving (3.23) with the (+) sign gives the
radial distance of the half-power point below the
focus:

Po

P1 ZW’ (3.25)

and the solution with the (—) sign results in the radial
distance of the half-power point above the focus:

:——po
=gt (3.26)
The normalized depth of focus defined by
A_pr—pi_ da[ti(H) + ()] 3.97
P o [+daiH]1—daz] 320

is plotted in figure 2 as a function of c.
Since the condition (2.1) implies po > D, the curve
in figure 2 is valid for

A
o> 5D (3.28)
It may be observed for a < 3 X 10-2,
2
A=~6.85 (%) A (3.29)

RICARDI DATA

A=DEPTH OF FOCUS
Po = HEIGHT OF FOCUS
D = LENGTH OF ARRAY

A\ = WAVELENGTH

llllllI_z T T T II!T_[_]
’ 10

o
(¢S]
20°

A

(3.24) FIGURE 2. Normalized depth of focus versus normalized height of

focus.
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The “focal depth-to-width’ ratio is then given by

%= 7.7 (%)- (3.30)

It may be noted that in the solving of the transcen-
dental (3.23) for t,(+), no solution existed for o > 0.1.
This implies that no lower half-power density point,
p1, exists for this range of . Hence, in addition to
(2.8), the definition of focusing may thus be extended
to satisfy the additional condition that two half-power
points along the vertical direction must exist. Hence,
for the present case, the focal region is limited to the
region
2DZ>_

p<0.1 (T (3.31)

It is shown in appendix A that the lower limit for p is
given by

p? > 0.64D2. (3.32)

4. Field Distribution in Focal Region of
Linear Arrays Whose Radiators Are
Separated by Fresnel Distances

In the previous section, the field distribution in the
focal region was analytically characterized for a phased
linear array of Hertzian dipoles separated a constant
distance apart.

In the present section, the field distributions in
the focal region of various linear arrays are numerically
characterized for the case in which more general radia-
tors are separated by their Fresnel distances.

4.1. Formulation of the Problem

Consider an array of identical radiators situated
along an axis y; in the x-y plane making an angle «
with respect to the x-axis, as shown in figure 3. It is
assumed that each radiator is focused at x=y=0,
z=h.

Let the field pattern of each of the radiators have an
angular variation given by

f(6,) =cos™ 6,

(xyy', z')

e

(xp,¥p,0)
.

FIGURE 3. More general radiator configuration.

where m is an arbitrary integer and 6, is the angle
between the lines connecting the pth radiator and the
focal point 0, and the pth radiator and any other point
x', ', z' (as shown in fig. 3). Assume the point p(x’,
y', z') is in the far field of the individual radiators and
a condition analogous to (2.1) to exist. Let the radia-
tors be identically polarized such that the dominant
component of the electric field is given by

NoA :
JG= 2 ;ﬂcosm 0, exp [—] (2% rp+<p,,> ], 4.1)
p=0

»
where
p=["—xP+0 —yP+h+2?M2 4.2
and
TRy [P =g sy ="57 A 0
o8 O ey R — 5+ () — )+ (h+ 2
(4.3)

At the focus point, 0,

Ey = NEy. (4.4)

If (4.4) is to be satisfied, d), and ¢, must be such that

2—:— (d}+h2)"2 + gp =27 <p+i—l>,

(4.5)
where d, corresponds to the location of the pth radiator
of the linear array and is given by

dp = (a2 +yV, (4.6)

Solving for d, from (4.5),

Yp (2 ¢p
= (p2—22 p+ L2 )4 ph (2p—22) |-
o= 810 (-2 |
For the case in which ¢, is constant, the distances,
dp, correspond to the classical Fresnel separations
of diffractions theory. Substituting the parameters
dp and « into (4.3), E, becomes

_w [d2+h2+ hz' —dp(x' cos a+y' sin )|
E, pgo % [d2 + h2]m/zrm+1
(2
X exp [—] (T r,,-ha,,)} (4.8)
where

rp=[(x'—dp cos @)+ (y' —d, sin a)?+ (h+2')*]"2
(4.9)

In order to increase the utility of the following numeri-
cal examples, (4.8) is expressed independently of \ as
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N oL 26 _ . ,
\E,= 4, [a3+b*+bc a:p(dc/(;s a+e sin @) |7
p=0 [a3+ b21" it

o [—j (27” rp+«>,,)], (4.10)

where
dy,=ap\, z'=cA\, ¥ =eA,
h=0bA\, x' =d\,

rp=A[(d—a, cos a)*+(e—a, sin @)?+(b+c)?] /2.

(4.11)

4.2. Numerical Examples

The term E,, given by (4.8) has been computed using
a digital computer. The specific parameters chosen
were D=6X10> A and A=2.11 D for the following
linear array configurations:

(1) =0, m=2, N=802 radiators, ¢p =0;
2) a=0, m=2, N=1602 radiators,

@2 =0
$r=

$on+1=1T,

where n=0,1,2, . . ., 800;

(3) fifty-nine alinements at 3° apart (i.e., «=1.5, 4.5,
75, ... 178.5° m=2. Each alinement con-
tains 1602 radiators and are phased as in 2).

For the first configuration the relative field strength,
AE,, is plotted (fig. 4) along the vertical axis about the
region of the focus. This variation is found to coincide
with the SH; X distribution corresponding to a spherical
basin of diameter equal to the array length. For the
same configuration (fig. 5), the field distribution is
plotted along the x'-axis (z' =0) about the region of the
focus and compared with the corresponding field dis-
tribution (2/:(x)/x) for a spherical basin. In figure 6
the normalized field intensities along the x-axis are
compared for configurations (1) and (2) over a distance
of 6 X 102\. Since the points were evaluated at 166 A
intervals, they are connected by straight lines. It may
be observed that the intensity of the side lobes is con-
siderably reduced for the case in which the alternate
radiators are counterphased [configuration (2)].
This reduction of the side lobe intensity implies a
greater power flow through the main lobe and hence
an increase in the overall focusing efficiency. This
conclusion is also consistent with the result (3.19)
which also indicates an increase in efficiency as the
radiator distance is reduced.

Note that at several locations the differences in
normalized field intensities between the two configura-
tions are greater than 20 dB. Also plotted in figure 6
is the normalized field intensity as a function of lateral
distance for configuration (3). It is of interest to note
that the side lobe intensity is reduced considerably

over the intensity for the first two configurations (i.e.,
approximately 10 dB reduction over the second
configuration).

© COMPUTED POINTS FOR LINEAR ARRAY
—— THEORETICAL FOR A SPHERICAL ANTENNA OF THE
SAME SIZE
NO. OF RADIATORS = 802
FOCAL HEIGHT ho=2.11D
ALINEMENT LENGTH D = 6x103 A

NORMALIZED FIZLD INTENSITY ALONG VERTICAL AXIS

NORMALIZED FIELD STRENGTH —>

z/10xn —>

FIGURE 4. Normalized field intensity along vertical axis.

© COMPUTED POINT FOR AN ALINEMENT OF 802 RADIATORS
(m=2) WITH REFLECTORS SEPARATED BY FRESNEL
DISTANCE .

—— THEORETICAL FOR A SPHERICAL ANTENNA OF THE SAME SIZE(M)

X
NO. OF DIPOLES =802

FOCAL HEIGHT =2.11D

ALINEMENT LENGTH D = 6x103)

NORMALIZED FIELD STRENGTH ALONG THE TRANSVERSE
AXIS PARALLEL TO THE ARRAY.

NORMALIZED FIELD STRENGTH —

FIGURE 5. Normalized field strength along the transverse axis
parallel to the array.

(1) -=---802 ELEMENTS IN PHASE

(2)——802 ELEMENTS IN PHASE,800 IN COUNTER PHASE

(3)—— 59 SYMMETRICALLY PLACED BISECTING
ALINEMENTS AS IN CASE (2)

= -20
Q ALINEMENT LENGTH D=6XI0>\
> FOCAL HEIGHT = 2.11D
o
@ EGION OF -
z mangeam A Ty h
RY | \
— | | '\
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o
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LATERAL DISTANCE FROM FOCUS X/103x

FIGURE 6. Side lobe intensities for three configurations of antennas.

994



5. Conclusions

The gain at the focal point due to a focused linear
array of identical Hertzian dipoles separated by arbi-
trary distances is approximately given by the product
of the gain of the individual radiators and their total
number. This approximation is valid if the radial dis-
tance to the field point, p, is larger than the array
length, D (condition A4).

For the case in which Hertzian dipoles are spaced a
distance d apart, the condition for which the discrete
array may be approximated by a continuous line source
is given by d <3X1072D, (condition A9). If use is
made of this approximation many of the results become
analogous to those pertaining to the line source prob-
lem, except that the former results are in terms of the
parameters of the focused array.

The focusing efficiency for the array of Hertzian
dipoles of constant separation is proportional to the
product of the gain and wavelength and inversely pro-
portional to the dipole spacing (3.19). The total
efficiency for a A/2 spacing is approximately 44
percent.

A limiting focal distance p, exists such that the
“depth of focus,” A, beyond this distance can not be
specified. That is, focusing outside this limiting
region only gives rise to 3 dB degradation of the field
intensity (along the main lobe axis) at points above the
focal point but none below it. For the case in which
the Hertzian dipoles are equally spaced this limiting

2
distance is given by po, = 0.1 (%) It may therefore

be convenient to define the region p > py,, as the region
for which focusing is not possible. For the region
given by, D < po < por, the depth of focus varies as the

2
ratio <%0) while the “width of focus’ varies only as

(BDQ), (3.29) and (3.22), respectively.

Several interesting results become evident from the
numerical examples of section 4 and the corresponding
curves given in figures 4, 5, and 6. For the case in
which the radiators are in phase and separated by
Fresnel distances, the field distribution along the main
lobe axis coincides with the field distribution of a
spherical basin antenna for m=2. The intensity of
the side lobes is reduced by as much as 20 dB at several
locations if additional radiators are placed in counter-
phase with respect to the original radiators. Further
reduction occurs when additional alinements are
present.

6. Appendix A. Recapitulation and Dis-
cussion of Approximations of Section 3

In the derivation of the expression (3.11) the follow-
ing approximations were made:

p?>> [z—pd]? (A1)

% ‘ ([Z—(pp+ d]* [ ﬂ;ol)dP)

_ <__(Z—Pd)2_@)_2> ( <<1 (A2)
P Po

T

A

(z—pd?® _(pd)
p Po

A7
4\

(z—pd) _(pd)*

<<1
p? P

(A3)

>>

where —N <p < N.

Assuming the region of interest to be the focal re-
gion bounded by the half-power density periphery,
more straightforward conditions may be extracted
from (A1) to (A3).

Substituting (3.22) into (A1) and letting p=— N, and
amax = 0.1, the worst case condition becomes

p?>>0.64D2. (A4)

Expanding and combining the terms of (A2), we ob-
tain the condition

wd® (2p+1)(p—po)

<<1.
Po\ P

(A5)

The worst case condition may be obtained by injecting,
in the numerator of (A5), p=-+ N and, from (3.26),

dat§(—)po
— e ) N U
(P p())max 1 _ 410([?,(_) (A6)
and in the denominator of (A5), from (3.25)
:———po .
Pmin= T 402 (A7)
Hence, (A5) becomes
2ad\ , [1+ 4at2(+)]
(557) o [1 ) (A8)

In figure 7, to(—) and to(+) are plotted as a function of
« [i.e., solution to (3.23)]. The worst case condition
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to#) OR tg (-)

FIGURE 7. Solution of transcendental equation (3.23).

of (A8) corresponds to the maximum values of #(—),
a to(+), and a to(—). Extracting these values from the
curve, (A8) reduces to
d<3x1072D. (A9)
Condition (A9) thus represents the dipole distance
condition for which the linear array field solution takes
the form of the line source solution.
Consider now the right side condition of (A3).

Substituting (3.22), p=—N, and (A7) into this in-'

equality, there results the further stipulation of po
that

g5 245 X101+ 4 i HP 1 +1.78 ol 1) ),

o

(A10)

where

It should be remarked that the condition which must
be chosen with regard to po should be the more
stringent of the conditions given by (Al) and (A10).
The left-hand side of (A3) may be shown to be satisfied
if (Al) or (A10) are valid.
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