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Several numerical examples are presented for radio propagation over a three-section path. These
are based on formulas which were derived earlier [Furutsu, 1957a, 1957b, 1959, 1963; Furutsu, Wilker-
son, and Hartmann, 1964] in which the height and the electrical properties of each section may be
different. First the path is assumed to be a land-sea-land path and a sea-land-sea path with no height
difference: the attenuation using this model is obtained both for the flat earth and the spherical earth
and the values are compared to show the asymptotic approach of these two values at short distances.
Second, the effect of the height and width of a mesa is illustrated and the attenuaticn values are com-
pared to the values obtained when the obstacle is a knife-edge of the same height. Next the effect
of varying the receiver height is presented when the path is either a sea-land-sea path or a land-sea-land
path. Finally, examples of the attenuation caused by both a channel and an island having bluffs are
given which illustrate the recovery effect as well as the diffraction loss in the vicinity of the coastlines.

1. Introduction

This paper presents some numerical results obtained assuming a three-section inhomogeneous
earth which may be either spherical or flat. It is a continuation of a paper which assumed a two-
section earth [Furutsu, Wilkerson, and Hartmann, 1964]. These two papers are based on a theory
of radio wave propagation which was developed previously [Furutsu, 1955, 1957a, 1957b, 1959,
1963]. The basic terrain consists of three sections of different heights and electrical properties
with a ridge at each section boundary. This terrain is illustrated in figure 1. Using this model
the field may be found over an inhomogeneous earth path consisting of three sections, such as a
land-sea-land path having a bluff at each coastline, a two ridge path, or a path including a plateau,
etc.

The basic formula of field strength can be given in a form of multiple residue series, which
reduces to the ordinary Van der Pol and Bremmer series in the special case of a homogeneous
earth. Also the corresponding flat earth formula has been obtained in an analytical form for the
limited case where the earth’s surface is smooth and both the transmitter and receiver are on the
ground [Furutsu, 1955]. This flat earth formula may be used for short distance paths when the
spherical earth formula is poorly convergent.

Figure 1 shows the basic terrain used in this paper, which consists of three sections of different
earth radii, as, a4, and as, and different propagation constants, k., k4, and ks, respectively, with
ridges of radial heights, as and as; (measured from the earth’s center to the tops of the ridges), at
two boundaries of the three sections. The transmitter and the receiver are located at the points

FIGURE 1. The geometry of the basic terrain for equation
(1.2).

1011



x1 and x; whose radial heights are z; and z7, respectively. Also, the path lengths along these three
sections are respectively ra, r4, and re, which are assumed to be measured along a mean earth
surface of radius a.

The attenuation coefficient A4 is defined in such a way that, if £ is the field strength to be
obtained,

it

E=24E,, Eo= dar(re +rq+r¢)

e-ikl(r2+7‘4+7'6), kl — 277/}\’ (11)

where \ is the wave length in free space. Thus, Ey may be regarded as the field strength in free
space excited by a dipole of the moment (47)~! (in Gaussian units).
Then, according to formula (38) in [Furutsu, Wilkerson, and Hartmann, 1964], the attenua-
tion A in this particular case becomes as
A=34y, 1, 1, Vrles+ ea T co) e (312) (62— g8)~ e {qafy (v fulysa) — auf (ysa) il }
X (y2—ya+ ta — ta) " ta— gD e {quf (y54) f1s(ys6) — qefy(¥s6) f1a(¥54)}
X (ya— ¥+ ta— te)~te — gB) e (y76), (1.2)
where cs, cs, and cg are the numerical distances corresponding to the distances rz, ry, and rs, i.e.,
ca=(rz/a)(kra/2)'3, cs=(ra/a)(kr1a/2)'3, ce=(re/a)(k1a/2)'3, (1.3)
and
Yii = Yi™ Yis (1.4)
where y; i=1, 2, . . ., 7) are the numerical heights defined by
yi=kizi—a) 2lkia)',  yr=ki(z:— a) 2/kia)'?,
¥i= ki(ai— a) (2[k1a)'?, i=2,3, .. .,6. (1.5
Here the set of t,, (m=2, 4, 6) stands for the roots of the equation
W' (tm) = quW(tn) =0, (1.6)

where W'(t) is the first derivative of the function W(¢) defined by

W(— t) — (7Tt/3)1/2e_i2”/3H(1% (% t3/2>,

(1.7)
and
gn=—"i(k1a/2)"3(k:[k,,), (1.8a)
with
K2V k2, — k3, Vertical Polarization
k= (1.8b)
K2V k2 —k2, Horizontal Polarization.
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Also
Jo ) =W (tm— y)|W(tm),
Jint ) =W (tm—NIW ' (tm) = g5 W' (tm— )| W (tm), (1.9)
where f,(y) is the ordinary height gain function. From these definitions it follows that

S, (0 =f,(0)=1. (1.10)

The corresponding attenuation coefficient in the flat earth approximation can be given in terms
of the following functions:

2 ®© 2 2 0 ©

H2)= e”f e dt, & (z, a)=<—> e‘”"‘z)z’f dtle“ff e~Bdt,,
Ve Var . Pl
£, B, @) <2>3 negrsamiz [~ gret |7 dre-t |

9‘ zZ, B, a)=|—=]) e +B82(1+a2 zzf t16_¥ tze'%f e—t_?’dt. ,

\/7_T 2 Bty aty :

x(z, B, @)= (i)s pl1+a2+p2)z2 2 dtle_,ffw e"fdtzfm e~ Gdts, (1.11a)
\/; z Bty aty

&M (2)=(3/92)"8 (2),
&z, ) =(8/02)"¥(z, @) =21+ 0¥ {26z, ) +(n— 1) "2z, @)} —(2/V7) ar~150-(az),
Xz, B, )= (3/02)x(z, B, a)=2(1+ o>+ B2x(z, B, &) — (2/ V') £ (a2)8(Bz). (1.11b)
with the relations
£z, =8 @) (az)— 8 (ez, ™), a>0
&2 6 Bz, @)= £ (2, B, &)= & (aP2) § Bz, B~)—& (aBz, 7', B~)
=x(Bz, B, @), «a,B>0. (l.llc)

The attenuation coefficient, 4, is given in appendix A for the general case. In the special case of
k,= kg, which may be practically most important (land-sea-land and sea-land-sea paths), the attenua-
tion is given by

o kL +k, mame

A= \/‘,_T[g(‘)(i\/p—z)+2i\/p_4< k )2 [%tan" \/T“g(i\/;o

— 8V meps, V(ms+ me)ma)— £ iV meps, V(mz+ ms)/me)

= g(i\ﬁnzm, \/WLs/Tn2, \/m4/ms)+ é)(i\/”k;p‘;, \/Ing/Yns, \/m4/m2)
+(ka/k2) {(& iV pa(ms+ me) — & (Vmeps, Vmalme)) &@V map2)

+(6 @G Vpama+ma)— & (i Vmaps, Vmalme)) & (i Vmep2)}
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+ (kifky)? £ (i Vmaps) § (i Vimaps) § @V meps) ]

+L\/p—[ (2’_1‘: = T 5(2)(1\/_)

+ (&G Vpamat+me)— & (@ Vmapz, V me/ms)) g(z)(l V mzp2)
+(H5G@Vpamstma)—& @ Vmape, Vmalms) & P Vmeps)

+ 2(X(i \/m4pz, \/ms/ mg, \/mz/ my)+1 \/m4p2 X(l)(i \/m4p2, \/ms/ my, \/mz/ ma))

— 2i(V(ms+ me)pz £V V po(ma+ me), Vme/(ms+ me))

(ma~+ ma)p2 £V V pa(ma+ ms), Vme/(ma+ mz)))}

) - . v

SF g @ \/pz(m4 ate mz), \/m(i/(m4 ar m2))}

—2 <k -ﬁk { tan— \/7 é’(L p2) +x( \/m4p2, Vme/ma, \/mg/m4)} “]

(1.12)

Here
ma=rsfr, ms=r4fr, me=rg/r, r=re+ry+re,

p2=—ilk1/k3)*k1r/2, pa=—i(k1/ky)*k1r/2, (1.13)

and p; and p4 are the total Sommerfeld’s numerical distances measured by the ground constants
ks and k4, respectively.
Using the identities

EAVmaps, Vmelms, Vmsme)— & iV maps) £V meps, NV malme)
+ & ((Vmeps, Vmalme, Vmalms) — & iV meps) &GV meps, Vmalms)

— XV meps, Vmalme, Vmas/me) —x(iVmaps, Vme/ma, Vma/m,)

= x(i\/m4p4, \/ITLG/”L4, \/MQ/YI‘M) - g(l\/M2p4) é7(le4p4) g(l\/me}pﬂ, (114)

the formula (1.12) in the special case of ky= kg) =k} can be shown to reduce to that for a homoge-
neous earth of the ground constant k,. The analytic expansions of the functions used are treated
in appendix B.

The Sommerfeld numerical distances p, and ps introduced in (1.13) and the numerical dis-
tances cz, c4, and cs defined by (1.3) are related by

p2=ig3(c2+catce),  pa=igica+tcatce). (1.15)
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When the frequency is low enough so that €, is much less than 18 o,/f, the Sommerfeld nu-

merical distance is given by

Ppm=(57/27) (f*|om) (r2 + rs + r6). (1.16)
In the above, f is the frequency in Mc/s, o is the conductivity in millimho/m and r; is the distance
in km.

In concluding this section, it may be noticed that the theory is valid independent of the incident
angles of wave on the boundary lines of sections, except in the immediate vicinities of the bound-
aries. On the other hand, it does not take into account the possible wave components which are
reflected several times between the two boundaries of sections (fig. 1) and are finally propagated
to the receiver. In the case of mixed paths (smooth earth), the attenuation also has been obtained
in terms of convolution integrals [Feinberg, 1944, 1946, 1959; Bremmer, 1954; Wait and House-
holder, 1956, 1957; Wait, 1961], and is usually computed by a numerical method.

2. Three-Section Mixed Paths

In figure 2a, the flat earth value (broken line) of the attenuation is compared to the spherical
earth value (solid line) for a sea-land-sea path (curve 1) and also a land-sea-land path (curve 4).
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FIGURES 2a and 2b. Comparison of the flat earth values of the attenuation to the corresponding spheri-
cal earth values for various combinations of the ground constants, when r;=rs=rg and the sea has
the constant (a) q=0, (b) q=1.5e~1"/4,
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The graph is plotted against the total Sommerfeld numerical distance, p, measured using the con-
ductivity of the land, o, (€, < o./f) when r.=r;=rs. The sea is assumed to be perfectly conduct-
ing and the ground constant of the land is assumed to be ¢=30e~/4. In this figure, the curves
2 and 3 are also shown when the paths are reduced to the mixed paths of two sections caused by
putting g2 = ga.

In figure 2b, the attenuations are found for the same paths on the same conditions as in figure
2a except that instead of a perfectly conducting sea the ratio of the sea conductivity, oy, to that of
the land, o, is assumed to be 400 (this gives the ground constant ¢ =1.5e=""/* for the sea parts).
As in figure 2a, the curves are also shown for the associated two-section paths.

As expected the spherical earth value approaches the flat earth value asymptotically at short
distances in both figures.

Figures 3a and 3b illustrate a set of curves of the attenuation and phase for land-sea-land paths
when the earth is flat and os/o,=400. They are displayed versus the total Sommerfeld numerical
distance measured by using the land conductivity o, for various values of the parameter N = (r» + re)
[rs in the particular case of r.=re.

It may be noticed from figure 3b that, in the case of the flat earth approximation, the phase
delay of the attenuation coefficient for a land-sea-land path can exceed 7 for p > 1 and N < 1, when
the finite conductivity of the sea is taken into account and the corresponding numerical distance of
the sea part becomes of the order of magnitude of 1 or greater. A similar situation can also be
seen for a land-sea path, a mixed path of two sections, on the same conditions. For comparison,
the attenuation and the phase in the latter case of land-sea paths are also displayed in figures 4a
and 4b on the same condition, os/o;, =400, as in figures 3a and 3b, where N =r./rs, the ratio of the
land part to the sea part, and p is the total Sommerfeld numerical distance measured by using the
land conductivity (refer to the equations with rg=0 in fig. 3a).
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FicURESs 3a and 3b. Flat earth values of (a) the attenuation and (b) the phase delay for land-sea-land paths
versus the total Sommerfeld’s numerical distance p (measured by the land conductivity o) for various values
of N =(r2+ r¢)/rs, when oo, =400 and ra2/re= 1.
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FIGURES 4a and 4b. Flat earth values of (a) the attenuation and (b) the phase delay for land-sea paths, versus the total
Sommerfeld’s numerical distance p (measured by the land conductivity o) for various values of N, the ratio of the land
part to the sea part, when oo, =400.

FIGURE 5. The geometry of the mesa for figures 6a and 6b.
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3. Effect of a Mesa

In order to illustrate the effect of a mesa the terrain is considered to be as shown in figure 5.
The distances on each side of the mesa, ¢, and cs, are both equal to 1 and the transmitter and the
receiver are both on the ground. In figure 6a the attenuation is illustrated versus the numerical
width of the mesa, cq, for its numerical height, y3 =y56=1 and 5.

Also shown in this figure is the value of the attenuation which would be obtained if a ridge
(broken line) of the same height as the mesa (solid line) were placed at the midpoint of the path
with the same total length. It definitely shows the obstacle gain (the higher the obstacle the smaller
the attenuation), and also that the effect of the mesa width becomes greater with increasing height.

The latter situation is also illustrated in figure 6b, where the attenuation relative to the cor-
responding ridge value is shown versus the numerical height of the meas for various values of its
width with the same values of other parameters as in figure 6a.!

4. Effect of Varying Receiver Height

In the previous paper [Furutsu, Wilkerson, and Hartmann, 1964] the variation of the field
strength was illustrated when the receiver was raised and the path was a mixed path of two sections
(sea-land). A similar situation is illustrated in figure 7 for a mixed path consisting of three sections.

In figure 8a, a path is selected corresponding to a land-sea-land path having the numerical
distances c; =10, c4s=1.0, and ¢s=0.7 with the ground constants g=¢gs=—150 and gs=—1 10~
and, keeping the transmitter (x1) on the ground, the numerical height y;6 of the receiver (x7) is
changed; the attenuation is shown by a solid line, while the broken and the chain lines are the
associated mixed path values of two sections and the homogeneous earth values for go=—150,
qs=qs=—1 107%, and g2 =qs=gs=—1i 50, respectively. The two optical boundary points of this
path are found to be at y;6=1(0.7)? and (1.7)2. However, as is seen, the three section values ap-
proach the two section values and then the homogeneous earth values at much higher points than
these optical boundary points. It also shows some oscillation, which may be interpreted as an
interference of the principal wave with the waves induced at the section boundaries.

Figure 8b shows a similar illustration for a sea-land-sea path with the same values of the
parameters involved except that g =¢g¢=—1 10~% and g4 =—1 50.

5. Examples of Field Strength When the Obstacle Is an Island or a Channel

In figure 9, a sea-land-sea path (island) is considered where the height of the island is 500 m.
The transmitter and the receiver are both assumed to be on the ground, the wave frequency is 1
Mc/s, and vertical polarization is assumed. The island is 200 km from the transmitter, and
the electrical constants of the land are €, =4, o, = 10 millimho/m and those of the sea are €,= 80,
os=4000 millimho/m.

! When the frequency is 300 Mc/s, the value cs=0.5 corresponds to the distance 14.2 km and the value Y3 =5 to the height 238 m.

FiGURE 7. The geometry and the optical boundary points
for figures 8a and 8b.
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FIGURES 8a and 8b. The variation of attenuation versus height over mixed paths of 3 sections along with the connected mixed
path values of 2 sections and the homogeneous earth values.

(a) a land-sea-land path. (b) a sea-land-sea path.

FIGURE 9. The geometry of an island having bluffs for
Sfigures 10a and 10b.

(e, ,0%) (€6 ,0%)

Figure 10a shows the field strength in dB (0 dB=1 mV/m) versus distance (km) for several
lengths of the island, when the 2|E,| [defined by (1.1)] is assumed to be given by 300/(r; + rs+r6)
mV/m.2 Figure 10b shows the corresponding phase delay in cycles. Here it may be noticed
that the phase of E, defined by (1.1) is the phase delay corresponding to the distance measured
along the surface of a mean earth radius a (fig. 1). In figure 10b and also in the following figures
11b and 13b, the relative phase is displayed when this mean surface is taken at the sea level.

Figures 10a and 10b show the recovery effect as well as the diffraction loss in the vicinity of
the bluff at the second coastline. The effect of the bluffs may also be seen by comparing to figures
1la and 11b, in which no bluff is assumed with the same values for other parameters as in figures

10a and 10b.

2 This value is the field strength when the transmitter of a vertical electric dipole and the receiver are both placed on a perfectly conducting plane earth and the
radiation power is 1k
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FIGURES 10a and 10b. An illustration of (a) the field strength and (b) the phase delay versus distance for island paths.
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FicURE 12. The geometry of a channel for figures 13a
and 13b.

0 T
1 I
LAND-SEA-LAND PATH -04
LAND-SEA-LAND PATH
-0 LAND HEIGHT : 500m |
FREQUENCY : | Mc/s
€7€:4, CG;=0;=10 =05 — | LAND HEIGHT + 500 m™]
" R i
€,=80, C,=4000 ’ LAND FREQUENCY : | Mcss
ol _ L €7 €74, 0= =10

i €,80, 0;= 4000
IL—- LAND 08

FIELD STRENGTH IN dB

PHASE IN CYCLES
,
\

|
-08

SURFACE VALUES
==+ HOMOGENEOUS EARTH VALUES
———— VALUES 500m OVER SEA

SURFACE VALUES
=—=-=—+— HOMOGENEOUS EARTH
-09 | VALUES

————— VALUES 500 m OVER SEA

-60 (a)

| | \ " x

100 200 300 400 500 600 100 200 300 400 500 600
DISTANCE (km) DISTANCE (km)

FIGURES 13a and 13b.  An illustration of (a) the field strength and (b) the phase delay versus distance for channel
paths.

In figure 12, a land-sea-land path is illustrated, where the height of the land sides are again
500 m and the other conditions are assumed to be the same as in the preceding case of an island
path. The solid lines in figure 13a show the field strength along the ground surface, while the
broken line shows the field strength 500 m above the sea section, this being the same height as the
land. Generally, the latter values would be lower than the former (up to about 6 dB) except for the
vicinities of the bluff where the diffraction loss becomes predominant, since a smaller contribution
is expected from the reflected wave from the sea surface. Figure 13b shows the corresponding
phase delay.

Finally, it may be noticed that, in figures 10, 11, and 13, the possible contribution of the sky-
wave by the ionosphere is not taken into account, which becomes predominant at large distances
[Wait and Walters, 1963].

6. Conclusion

Numerical results based on previous papers [Furutsu, 1957a, 1957b, 1963] are presented for
propagation over an inhomogeneous earth consisting of three sections with different heights and
electrical properties; a ridge may also be located at each section boundary. This is illustrated
in figure 1.

The flat earth formula [Furutsu, 1955] is used to show the asymptotic approach of the spherical
earth values and the corresponding flat earth values at short distances, although the flat earth for-
mula is available only when the earth’s surface is smooth and both the transmitter and the receiver
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are on the ground. A set of curves is illustrated for the flat earth values of the attenuation and the
phase delay of land-sea-land paths. It shows the fact that, when the finite conductivity of the sea
is taken into account and the Sommerfeld numerical distance of the sea part becomes of the order
of magnitude of 1 or greater, the phase delay of the attenuation coefficient can exceed 7 although
it can not in the case of a homogeneous flat earth.

The effect of a mesa, as illustrated in figure 5, is considered and the values of the attenuation
are compared with the corresponding values obtained when the obstacle is a ridge of the same
height. The mesa and the knife edge both exhibit the effect of the obstacle gain, and the effect
of the mesa length is found to become more predominant with increasing height.

The variation of attenuation is also illustrated as the receiver is raised when the path is a
land-sea-land path or a sea-land-sea path; this situation is illustrated in figure 7. As may be seen
from this figure, the field strength computed over a three-section mixed path is expected to depend
mostly on the sections closer to the transmitter as the receiver exceeds the heights of the optical
boundary points. Thus the attenuation is compared with the mixed path values of two sections
and further with the homogeneous earth values. However, the mutual approach of these values
is found at much higher points than the corresponding optical boundary points.

Finally, in figures 10a, 10b, 13a, and 13b, the field strength and the phase delay are illustrated
for a sea-land-sea path and a land-sea-land path, respectively, when the land is 500 m above the
sea; both the transmitter and the receiver are on the ground and the frequency is 1 Mc/s. The
recovery effect as well as the diffraction loss in the vicinities of the bluffs at the coastlines are
observed in these figures.

Although the present theory is valid only for terrains with sharp vertical faces, as illustrated
in figure 1, it may be available for other cases, in the same way as the knife edge model has been
found to be useful for actual ridge diffraction of VHF waves.

The author thanks R. E. Wilkerson, Perry H. Elder, and Raymond F. Hartmann for their help
in obtaining the numerical results for this paper.

7. Appendix A

Putting

A=1—V7ki(rs+rs+re)/2 ei™B,
[On == i(kl/k§)2k1r2/2, p4=_ i(kl/k4)2k1r4/2, p6=——i(/c1/ké)2k1ra/2

[these notations p,’s are to be distinguished from the same notations used in (1.12)], then

. N
PR kR U ' g, 0V Pelm

— & Vpamalma, V(ms~+ me)ms)— & (i \/p4ms/m4, V(ms+ m2)| me)

-+ t‘)’ (l \/p4m2/m4, \/ms/”Q, \/m4/m(;)+ (()l (l \/p4m6/m4, \/mz/ms, \/m4/mg)}

k "0 (: ) (s 37
+m {ki( £ Vpsms+ me)/me) — £ (i Vpsmelma, Vma/me) (i Vp2)

+ k(8 (0 Vpams+ ma)ms)— & (i Vpimalma, Vmalms)) £ Vps)
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+ k5 Vpa) § i Vps) & ( \/p_)}—l—(kﬁk){llz,,‘,( Vpelms)

+%//(i \/Pz/mz)}-i‘( il )gtan‘1 \/ { eyl — 2) i 'V ps/mg Kilky — kg) /} (i Vpz/m )}
> w maMmg

o [R= [P ky+ kg ky +k'
(A1)
+< = ) (k’ ,> {ky 6 Vpalms+ m)m2) & (i Vpe)
12 k; +k P2 4 2 2 P
;. B =152
— ki 5V pamgima, V(ms+ ma)/me)} — ——J—(k T £ Vpe(ms+ ma)[ms, \/ms/(m4+mz))]
6

+<k,;.2/3k >[<l;§+f¢> {ki £ Vpema + mo)me) £ i Vp2)

kelkgk — k3?)
Fey(key + k)

+<k’2klk )I:(:-Fk‘) {ke £ Vp2) £ Vpsmalme, Vme/my)

— k) 4 Vpsmalmes, V(ms+ me)/ma)} — £V palms + me)ma, Vmaf(ms+ ms))]

—k} £V psmalms, Vmalma, Vme/ms)}

(ﬁ’+k ) {ks £ NV pe) & i V psmalma, N moms) — ki £ V pameimz, Vmalme, \/mz/m4)}]'

8. Appendix B

The function & (z, B, @) can be given in terms of the x-function using the relation (1.11c).
Therefore, in this appendix, the analytical expansions will be given only for the functions # (z),
o (z, a) and x(z, a, B).

When a and B are real positive, the definitions of these functions in (1.11a) give the following
expressions:

B@=er—§ (2),

(@, cv):;2 (tan-la-1)et 2 — g2 £ (1) + £ (z, a).
Xz, B, @)=x(z, a, B)=eP** {(z, )+ e** & (z, B)
=iV, @2, (RN ESHERR — G 57(2)_)((2, a, B). (B1)
Here
%0, a ,3):2 [1—01/3 \/1+a2+,32+aBa+B]
T (@+BV1+a2+ B2+ aBaB—1)
fia)=—= e fz eVt 8z, a)= <—2_)2 el fz dtiet fa“ e~dts
’ Vo 0 ' o Vo 0 0 ’
2 \3 ) Z at Bt
Xz, a, B)= (\/—_> el1ta?+h2)z2 fo dtle_t%f e '3dt, f e dts. (B2)
s 0 0
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The power series expansions of (‘E(z), g(z, a), and X(z, «, B) with respect to z are given by
,%_)(Z) = 2 Cn,
n=1

en=(n—=Y2) 1z, y, =2V, (B3)
(27(27 a)= i d’la

n=1
dn=n"(1+ a®)z2dn_1+ fn}, (B4)
fau= (n—Y2) a2 fp_1, di=f1=(2/m)az?,
Xz, a, B)="" xn,

n=1

=(n+ Y2)"{(1 + a®+ BHz%xn_1+ yu},
(B5)

yn=n"Y{(c2+ B2)z%yn_1+ an+ bn},
an=(n—Y2)"a222an-1, bn=(n—Y2)"'B%2%b,_1,

ar= by = 2/Vd)aB2.

While (B1) gives the power series expansions with respect to z, the asymptotic expansions
for large values of z are found to be given by the following equations:
2 n—1/2 1
£@~ g |z| >>1, |arg(z)| < 3mw/4, gu=— Z &b go:\/Fz’ (B6)

n=0

6z, a) ~ \/_(1+a2 EJna/V %R, R=V1i+atz, |R|>>1, |arg(R)|<3m/4,

Xz o B)~ \/_(1+a2+32)z§=:

R=V1+a*+p2z, IR| >>1, larg (R)| < 3w/4, (B7)

with

_, __ g, on 1
o= 6102 (B2 S Ry M g s ot

HBIVTF B, B+ =l it VTT 58 ) B8)

1
\/;R{\/H—zﬂaz

Here the ju(y, R)’s used in (B1) and (B8) are defined by
j0 = é) (‘YR)a
j2n+1 == BjZn - nAjval - kn,
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f2n=Bj2n~1_(ﬂ_ }!)AJ.Zn—% (BQ)
kn=—(n— ’li)R_zkn—l, ko=77“1/2’YR“1,
A=(1—y)R2, B=ny2

In all the above equations, both « and B are assumed to be real and positive. However, these
equations may also be used for complex values of « and B if the proper formulas are used. These
formulas may be found using analytic continuation.
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