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A perfectly conducting prolate spheroidal antenna immersed in a conducting medium is analyzed. 

The dimensions of the spheroid are assumed to be small compared to a skin depth in the medium. A 
gain factor for 'the antenna as a receiver is computed as a function of the spheroid's axis ratio. The 
prolate spheroid is then assumed to be excited by a circular filament of magnetic current located in 
the plane of the spheroid' s minor axes to approximate excitation by a magnetic toroid. Expressions 
for the antenna's input admittance and effective length are derived. Some experimental results veri· 
fying the derivation of the input conductance are included . A computation shows that at VLF, the 
antenna has a Q of 0.5 or less, and a relatively constant effective length. 

1. Introduction 

It is well known that the receiving properties of a 
small electric loop antenna can be e nhanced by loading 
the loop with a permeable core. A theory developed 
by Wait [1953a, 1953b], valid for small loops in a 
uniform field, shows that the permeable core tends to 
concentrate magnetic flux within itself thereby in­
creasing the effective area of the loop wound around 
the core. An analogous situation occurs with a sphe­
roidal piece of metal in a medium where conduction 
currents dominate displacement currents. Lines of 
electric current tend to concentrate in the metal which 
is assumed to have a much greater conductivity than 
the dissipative medium surrounding it. W. L. Ander­
son [1961a, 1961b] seems to have been the first person 
to consider seriously the use of this phe nomenon to 
improve the reception of antennas buried in the earth. 
In this paper, the basic ideas of Anderson are modified 
and extended to analyze the prolate spheroidal antenna 
immersed in a conducting medium. 

The general problem of a small electric type antenna 
in a dissipative medium was investigated first by C. T. 
Tai, in which he analyzed the fundamental electric 
dipole in an insulating radome [Tai, 1947], and the thin 
biconical antenna in a spherical insulating radome 
[Tai, 1949]. Wheeler [1958] and Hansen [1963] sum­
marize some properties of the electric type antenna 
and compare these with the properties of the magnetic 
loop antenna in an insulating radome. One purpose 
of the insulating radome in these analyses is to sepa­
rate idealized circuit theory type sources from the 
dissipative medium. For, if these sources are in con­
tact with a dissipative medium, then losses become 
unbounded. Equally valid methods of eliminating 
these unbounded losses can be made other ways. 

I This work was sponsored by Cont ract Nom 2798(01) (FBM). 

One example is given by King, Harrison, and Denton 
[1961], who consider a small uninsulated cylindrical 
antenna in a dissipative medium. Their me thod, 
however, requires the current distribution to vanish 
at the ends of the cylindrical antenna, whjch means 
that their antenna length cannot be too small. Another 
example is given in this paper in which the source is 
specified in terms of a practical toroidal winding. 

Assume a perfectly conducting prolate spheroidal 
antenna that is s mall with respec t to the skin depth 
in the dissipative medium surrounding it. A prolate 
spheroidal coordinate system is used [Magnus and 
Oberhettinger, 1954, p. 149, 157] (see fig. 1). Since 
the spheroid is assumed small, the quasi -static ap­
proximation to Maxwell's equations is valid in regions 
near the spheroid. Thus, Maxwell's equations are 
taken to be 

-v X H=o-E, 
(1) 

-V X E=-M, 

where M is the magnetic current de nsity vector. 
In the following sections of this paper, advantage 

is taken of the azimuthal symmetry of the spheriod 
shown in figure 1. With this symmetry it is clear that 

Prolate 

----~--~~~------ y 

Di ssipative 
medium 

(0 ' ~o ' < 1) 

FIGU RE 1. Prolate spheroid in an infinite dissipative medium in 
which a-/(WE,) p J. 
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E", = HT/ = Hg = ° and that H"" ET/, and Eg are independ­
ent of cpo It then follows that 

'\lx'\lx H=-(TM (2) 

reduces to a scalar partial differential equation when 
M is oriented in the cp-direction, and is independent of 
cpo In regions where M = 0, (2) is se parable and its 
solutions can be constructed as a product of linear 
combinations of associated Legendre functions 2 in 
both variables 'Y/ and ~ : 

H =i p:,( 'Y/) [AnP:,(~)+BnQ:,W]. (3) 
n = 1 

The second-kind solution in 'Y/, Q:.('Y/) , is not used be· 
cause it does not remain bounded when 'Y/ =± l. 

as 
Using (1), the electric field components are expressed 

ET/ -1 a [Ve-lH], 
CIT Ve-'Y/2 a~ 

(4) 

where C is the semifocallength of the prolate spheroid. 
The metrical coefficients for prolate spheroidal co­
ordinates are listed here for convenience since they 
are referred to often in the remainder of this paper: 

(5) 

In terms of the assumptions already stated, the reo 
ceiving properties of the prolate spheroid are derived 
in section 2, the driving point admittance is derived 
and compared with some experimental results in sec­
tion 3, the effective length and equivalent circuit are 
discussed in section 4, and the conclusions are pre­
sented in section 5. 

2 Since there can be no confusion, the cp-subscript in H is de leted. Also, no special 
nota ti on for I~/ a nd Qnl is used to s how t hat IlJl:OS:: 1 and ~ ~ 1. In this pa per th e followi ng 
definition s are used: 

P:('1)=-VI -'1'-!fr/,('1) I'l l'" I, 

P:W = ~ -!h P,(f) 

f> J. 

For ot her definit ions a nd properti es of associa ted Lege ndre fun ctions of the first and second 
kind , see Magnus and Oberhettinger [1954, eh. 4]. 

2. Receiving Properties 

Let an electromagnetic plane wave be incident on 
the prolate spheroid in figure 1 such that the electric 
vector is parallel to the z-axis . Let the spheroid be 
defined by the surface ~ = ~o. Since the spheroid is 
small, the incident electric field can be assumed uni· 
form in the region about the spheroid. Thus, 

Ei=azEi 

or, in terms of prolate spheroidal coordinates [Magnus 
and Oberhettinger, 1954, p. 149]: 

and 

(6) 

If the metallic sphe roid were not present, th e c urrent 
enclosed by a circle with radius b located in the 
x, y-plane at the origin would be 

(7) 

With the spheroid prese nt the current e nclosed by the 
same circle would be 

I=gIo, (8) 

where g is a current collec ting gain factor to be derived 
in this sec tion. Anderson [1961b] previously derived 
a similar gain factor using a method different from that 
used here. He assumed a prolate spheroid of finite 
condu ctivity and then used the formal analogy between 
stationary currents, and static fields in ideal dielectrics 
[Panofsky and Phillips, 1962, p . 120]. For spheroids 
of finit e conductivity this method, of course, led to 
electric fi elds inside the spheroid which are parallel 
to the z-axis. This result is valid only in th e strictly 
stationary current case, and does not allow for the 
appreciable skin effect phenomenon in the metal which 
occurs in this quasi·static problem. Although Ander· 
son's gain factor becomes the same as the one derived 
here when the conductivity of his spheroid becomes 
infinite, the method of derivation presented here seems 
preferable. 

The incident field causes induced currents in the 
prolate spheroid and produces a scatter field which 
can be constructed as a weighted sum of Legendre 
functions as shown in (3): 

00 

Hs = 2: B,.P:,('Y/)Q~(~) , (9) 
n = J 

where the coefficients An in (3) are set equal to zero 
because p:,(~)---,» 00 as ~ ---'» 00. The coefficients Bn are 
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determined by requmng the total tangential electric 
field at the surface of the prolate spheroid to vanish. 
That is 40 (current ga in, g)dB'" 20 109 10 (i;;) 

(10) 

Using (4) and (9), the only nonzero coefficient is B J; 

B -_ crcEI PMo) 
1- 2 QMo)' (11) 

The total current flowing through the circle of radius 
b with the conducting prolate spheroid in place is 

1 = [f27T fl hTlh'l'crEgdT}dcp] , 
o 0 g = go 

where Eg is the total normal field from (4) and (6): 

£i 
Eg = P1(T})Pl(() 

v'(2_T}2 

Performing the integrations, one obtains 

1- 2 Eiv'c2_ 1 [pJ(I:)_PJ((0) QJ(C)] 
-7TC cr So J so QJ((o) J so . 

which can be written as 

(12) 

(13) 

(14) 

where the Wronskian of PMo) and QMo) is [Jahnke 
and Emde, 1945, p. 114] 

-1 
W[PMo), QMo)] = (~-1 . (16) 

The radius of the prolate spheroid is b as shown in 
figure 1, and is related to the prolate spheroidal 
surface (0 by 

b=cv'(~-I. (17) 

Using (7), (14) can now be written as 

10 
1 = ((~ -1)QMo) (18) 

Therefore the gain defined by (8) is 

1 
(19) 

Figure 2 shows the gain in dB as a function of the axes 
ratio alb of the prolate spheroid. 

~ 30 

20 

10 

alb 

FIGURE 2. Relative current gain 0/ the prolate spheroidal antenna . 

Prola te spheroid e x ci t ed by 

a ring of magnetic curren t . 

Prolate spheroid d rive n 

by a voltage across an 

infinitesimal g ap . 

(c) Prolate s pheroi d d riven 

by a magnetic tor o id . 

FIGURE 3. Methods 0/ prolate spheroid excitation. 

3. Input Admittance 
To find the input admittance of a driven prolate 

spheroidal antenna, assume a ring of magnetic cur­
rent K located at the center of the prolate spheroid to 
be the source, see figure 3a. If the spheroid is sepa­
rated into halves and driven by a voltage source, then 
the location of the magnetic current ring is on the sur­
face of the spheroid, ((J = (0) as shown in figure 3b. 
In case the spheroid is driven by a torroidal winding 
then K is an approximation to the magnetic c urre nt of 
the torroid, and is located in the center of the toroid 
cross section, (6 > (0), as shown in figure 3c. In any 
case 

(20) 
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where K is related to the voltage V by 

V=-K, 

and the integration is over the contour specified by the 
ring source. 

In terms of the magnetic current density vector, the 
ring sou!"ce is defined to be 

I 
(21) 

where 8(x) represents the Dirac delta-function. The 
primary quasi-static field from the ring source, that is, 
the field produced with no metallic spheroid present, 
can be obtained by substituting (21) into (2), assuming 
a solution of the form specified by (3), applying the 
orthogonality relationship to the functions of 1), and 
applying the method of variation in parameters to the 
resultant differential equation involving (. The result 
IS 

(22) 

where 

_uK (2n+1) 1 ~ 
Hn - 2 n2(n+ 1)2 P,,(O) (I -1. (23) 

The field scattered by the perfectly conducting 
prolate spheroid is constructed as follows: 

'" 
Hs = L CnH"Q~((l)P~(1))Q~((), (24) 

1/. = 1 

where (0 is the fixed ( describing the surface of the 
prolate spheroid. The total magnetic field is the sum 
of the primary and scatter fields: 

(25) 

The total tangential electric field must vanish at the 
surface of the prolate spheroid. Using this boundary 
condition, the unknown coefficients in (24) are deter­
mined. The results are 

n= 1,2, .. . . 

Substitution of H t into (20) yields 

(26) 

where 

(27) 

and 

l:,.G=-k i Hsdl. (28) 

The expression for Yo in (27) is that part of the total 
admittance Yin which is due to a magnetic toroid alone 
in a conducting medium. The quantity Yo has real 
and imaginary components and has been determined 
by Swain [1965]. The l:,.G expression in (28) is the 
contribution to the total admittance Yin due to the 
presence of the conducting prolate spheroid. Carry­
ing out the integration in (28): 

AG- (1:2-1) ~ (2n+ 1) [PI(0)]2 Pn((o) [Ql(1: )]2 
u -1rCU ~1 ~ n2(n+ 1)2 n Qn((o) n ~I • 

(29) 

Since Tl = C Y (I - 1, (29) can be written as 

l:,.G= y1:2-1 ~ (2n+l) Pn((o) [Pl(0)]2[Ql(I:)]2 
UT 1r ~ 1 L.J n2(n + 1)2 Q (I: ) n n ." 1 • 

1 n = 1 n ~o 

(30) 

Figure 4 shows a plot of (30) as a function of the ratio 
(a/b) of the prolate spheroid for various (rt/b) ratios. 

The validity of the theoretical expression for l:,.G 
has been corroborated by an experiment. For this 
experiment a model of the toroidal-prolate spheroid 
antenna about 21f2 in. long was constructed. The 
model was immersed in a conducting medium of salt 
water (4.89 mhos/m) and measurements of the im­
pedance were made at the input of the transmission 
line feeding the model. Two sets of data were taken, 
the first set was over a selected frequency range for 
the toroid alone; the second set was for the toroid· 
prolate spheroid combination for the same frequency 
range. 

The electrical length effect of the transmission line 
was removed from both sets of data, then both sets of 
impedance data were converted to admittance form. 
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FIGURE 4. Graph of normalized conductance. 
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FIGURE 5. Graph of ~G determined theoretically and experimen­
tally. 

(a /b = 2.06) 

A change in conductance resulting from the addition 
of the prolate spheroid to the toroid antenna was com­
puted and is shown plotted with the theoretical t::.G 
in figure 5. (The effect on t::.G in fig. 5 caused by a 
number of turns of wire wound on the toroid was taken 
into account us ing the method described in the fol­
lowing section.) 

4. Effective Length and Equivalent Circuit 
Combining the results of Swain [1965], who dis­

cusses a toroid in a dissipative medium, and the results 
of this paper, an equivalent circ uit valid for the small 
toroid-driven prolate spheroidal antenna is shown in 
figure 6. The meaning of the various circuit param­
eters is described below: 

RI is the s elf-resistance of the N -turn pnmary 
winding on the toroid . 

LI is the self-inductance of the N-turn primary 
winding on the toroid. 

L2 is the self-inductance of the one turn secondary 
of the transformer. 3 

M is the mutual inductance between the primary 
and secondary. 

1/ R", is the conductance due to the toroid by itself 
(derived by Swain [1965]). 

t::.G is the increase in conductance caused by the 
presence of the spheroid given by (29). 

1/(wLp) is a susceptive component due to magnetic 
energy storage in the dissipative medium. 
The appendix contains a derivation of an 
approximate expression for this inductance, 
see (39). As the transformer in figure 6 
approaches an ideal transformer, the effect 
of this susceptance becomes appreciable. 

3 An investigation of the secondary res istance due to loss in the spheroid itself is not pre­
s ent e~ here but. has been performed. It showed that this resistance is negligible for typical 
practical material, e.g., spheroids made of copper and a dissipative medium of sea water or 
earlh. 

Il-3R1 ,.rM~ 
VI 
_ L~ L2 

I 
Rm 

[;G 

~--~----~----~----~ 
N: I 

FIGURE 6. Equivalent circuit for a toroid-driven prolate spheroidal 
antenna. 

The effective length and the driving point imped­
ance of the toroid-driven prolate spheroidal antenna 
can be computed using elementary circuit theory once 
values have been assigned to the parameters in figure 
6. The driving-point impedance is VdII when 1=0, 
and the effective length is VdEi when II = 0. 

It is of interest to note that when the transformer in 
figure 6 becomes ideal, then the drivin"-point im-
pedance is b 

(31) 

and the effective length· is 

(32) 

where 

The quasi-static approximations used in this paper 
do not contain some effects that could affect signifi­
cantly the input impedance and effective length of the 
antenna. These effects can be introduced into the 
equivalent circuit in fi gure 6 by the addition of appro­
priate circ uit parameters. Swain [1965] shows how 
to introduce a capacitor to correspond to parasitic 
capacities, and this paper shows how to introduce an 
inductance (Lp) to correspond to magnetic energy 
storage in the di ssipative medium. Several other 
effects could be introduced depending upon the user's 
application and desire for refinement. 

5. Conclusions 
Equations (31) and (32) indicate that if the effects of 

Lp are small, and if the transformer in figure 6 ap­
proaches the ideal, then the prolate spheroidal anten­
na's driving-point impedance and effective length 
should be relatively insensitive with respect to fre­
quency changes (provided the original quasi-static 
approximations are observed). A more detailed com­
putation shows this to be so. For this computation, 
frequencies were assumed to be in the VLF band the 
prolate spheroid was assumed to be 1 m long with an 
axes ratio (a/b) of 2.5, and the dissipative medium was 
assumed to be sea water (0" = 4 mhos/m)_ The sphe­
roid was assumed to be excited by a toroid with 26 
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turns evenly distributed about it. Figures 7 and 8 
show the driving-point resistance and reactance re­
sulting from the computations plotted versus frequency 
for several different assumed toroid permeabilities_ 
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120 
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"v~ 80 

40 

12 16 20 24 28 

Frequency in kilocycles 

FIGURE 7. Input resistance for computed example. 
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FIGURE 8. Input reactance for computed example. 
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FIGURE 9. Effective lengths for computed example. 

Figure 9 shows the magnitude of the effective length 
plotted versus frequency for the assumed toroid 
permeabilities. It is to be noted that a relative 
permeability of 106 corresponds very nearly to the 
ideal transformer case. However, practical perme­
abilities of the order of 2 X 103 or 4 X 103 exhibit de­
sirable characteristics if broadband capabilities are 
desired at VLF. This example also shows that the 
Q of the antenna is 0.5 or less over the frequency 
band. 

6. Appendix 
The magnetic energy stored in the dissipative me­

dium external to the prolate spheroid antenna is 
computed using 

W = fLo 1 H2dv 
2 v ' 

(33) 

where v indicates the region external to the spheroid. 
At a given frequency w, this energy can be associated 
with an inductance: 

(34) 

where V is the peak voltage across the inductance. 
In principle, it is possible to substitute (25) into 

(33) and (34), and compute an expression for Lp. 
However, the computation of (33) in prolate spheroidal 
coordinates presents some numerical difficulties be­
cause the orthogonality relations associated with 
Legendre functions cannot be used except for the 
degenerate case when the spheroid is a sphere. 

It is of some value, however, to derive formulas for 
Wand Lp for the sphere, because the result can be 
extended, by approximation, to spheroids that do not 
differ too much from spheres. 

Thus, in the limit, as a prolate spheroid approaches 
a sphere, 

c~o, 

1/ ~ cosO, 

where c is the semifocallength of the prolate spheroid, 
and where (r, 0, cp) represents a standard spherical 
coordinate system. The result of this limiting process 
yields 

(35) 

where 
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r>b 

An = n + 1 (~)2n+1 
n rl 

The total magnetic energy stored external to the 
sphere is then 

w=~o L"" dr i7T rdO f7T r sin 0 dcpH7 · (36) 

If the magnetic ring source is very close to the surface 
of the spheroid then rl ~ b, and (36) is evaluated to be 

w 7TP-ou2K2b3 00 [PA(O))2[1 + An]2 
2 ,~n(n+l)(2n+l)(2n-l)' (37) 

This series is dominated by its fir st term, and the factor 
(1 + AI) is related to the gain g given by (19). The 
series is therefore approximated to 

(38) 

It is now intended that (38) applies to prolate sphe· 
roidal antennas that do not depart too muc h [rom a 
sphere, and that are excited by a toroidal winding 
located very clo se to the surface of the spheroi d. 

1.5 

Equation 38 

2. 0 

./b 

Digital computer 

2· 5 ' .0 

FIGURE 10. Comparison of magnetic energy computed by two dif 
ferent methods. 

Independent computations involving prolate spheroidal 
function s performed on a digital computer show that 
the error of (39) is not too great if alb < 3, see figure 10. 

Substituting (38) into (34), and using the fact that 
K =- V, yields 

(39) 
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