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The effect of motion of heavy ions on the radiation characteristics of a point charge moving with
uniform velocity along the direction of the external magnetic field in a plasma is investigated. For
the case of stationary ions, two modes are found to be excited up to zero frequencies for values of the
normalized strength of the external magnetic field above a certain minimum value. The result of
inclusion of the motion of heavy ions is that the ordinary mode has a resonance at the so-called lower
hybrid resonant frequency below which it is not excited and the extraordinary mode is excited up to
zero frequencies even for very small values of the normalized strength of the external magnetic field.
The power radiated in the ordinary mode in the neighborhood of the lower as well as the upper hybrid
resonant frequencies is relatively large. The frequency and the angular spectrum of the emitted
radiation as well as the direction of the Cerenkov rays are evaluated for some typical parameter values

which include those usually obtained in the exosphere.

1. Introduction

A point charge moving with a uniform velocity in
free-space does not radiate in view of the constraint
that its velocity cannot exceed the phase velocity ¢
of the electromagnetic waves in the medium. On
the other hand, a point charge moving in a material
medium with a uniform velocity less than ¢ can radi-
ate provided its velocity is greater than the phase
velocity of the electromagnetic waves in that medium.
This radiation is the well-known Cerenkov radiation.
An excellent treatment of the general field of Cerenkov
radiation may be found in the book by Jelley [1958]
and the review articles by Bolotovskii [1957, 1961].

A cold plasma in a magnetic field is equivalent to a
dielectric, and Cerenkov radiation is possible in such
a medium. However, in a cold plasma without ex-
ternal magnetic field, the phase velocity of the elec-
tromagnetic waves is always greater than ¢, with the
result, Cerenkov radiation is not emitted in an iso-
tropic plasma. But in an anisotropic plasma, Cerenkov
radiation is possible. Kolomenskii [1956] and Sitenko
and Kolomenskii [1956] have examined some aspects
of the problem of radiation by a charged particle mov-
ing with a uniform velocity along the direction of the
external magnetic field in a plasma. In their papers,
Kolomenskii and Sitenko have not systematically in-
vestigated the frequency spectrum of the ordinary and
the extraordinary modes nor have they given any
consideration to the angular distribution of the radiated
energy. Mckenzie [1963] has given a thorough treat-
ment of the Cerenkov radiation in a magneto-ionic
medium with emphasis on its application to the gen-
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eration of low-frequency electromagnetic radiation in
the exosphere by the passage of charged corpuscular
streams. The present authors [Tuan and Seshadri,
1963] have also given a treatment of the problem of
radiation from a point charge moving with a uniform
velocity along the direction of the external magnetic
field in a plasma. It was found [Tuan and Seshadri,
1963] that for certain parameters both the ordinary
and the extraordinary modes were emitted up to zero
frequencies. All the foregoing treatments of the
Cerenkov radiation in a magneto-ionic medium are
based on an idealization in which the motion of the
heavy ions is neglected. It is reasonable to neglect
the ion motion for frequencies sufficiently greater than
the plasma and the gyromagnetic frequency of the ions.
But for lower frequencies, it is not legitimate to ignore
the ion motion. It is therefore of interest to study the
effect of the motion of the heavy ions on the low-
frequency spectrum of the radiation emitted by a
uniformly moving charged particle in an anisotropic
plasma.

In this paper, the radiation characteristics of a point
charge moving with uniform velocity along the direc-
tion of the static magnetic field are investigated for
the case of the plasma in which the motion of the heavy
ions is taken into account. The method employed
in this paper is different from those previously em-
ployed [Mckenzie, 1963; Tuan and Seshadri, 1963].
In general, the emitted radiation is found to consist
of two modes. The dispersion relations of these
modes are analyzed in detail with a view to finding
out the influence of the heavy ions on the low-frequency
spectrum of the two modes. The frequency and the
angular spectrum as well as the directions of the
Cerenkov rays are examined. Numerical results are
evaluated for some typical parameters of interest.
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FIGURE 1. Geometry of the problem.

2. Statement of the Problem

Consider a fully ionized, homogeneous plasma of
infinite extent. For the sake of simplicity, the plasma
is idealized to be a lossless and macroscopically neu-
tral mixture of a gas of electrons and a single species
of ions in which compressional effects due to finite
temperature are neglected. An external magnetic
field B, is assumed to be uniformly impressed through-
out the plasma in the z-direction, where p, ¢, and z
form a cylindrical coordinate system (fg. 1). It is
desired to investigate the radiation characteristics
of a point charge moving uniformly in the plasma me-
dium along the direction of the external magnetic
field. Let

g=qo (23(p) 8(z— ut) 1)

7p

represent a point charge gy moving with a uniform
velocity u along the z-axis from z=— to z= such
that it passes through the origin at t=0. The current
density arising from this uniformly moving charge is
given by

3(p)
2mp

J @, )=2qou 8(z— ut), (2)

where T represents the position vector of a point in
the p, ¢, and z-space. It is assumed that the source
(2) is sufficiently weak so that the linearized plasma
theory is applicable.

Let E(7, t) and H(F, t) be, respectively, the electric
and the magnetic field vectors. It is convenient to
introduce the time Fourier transforms defined by

e f " A, vewid 3

fir, t)=i f - fF, we “dw (4)
DT

to the source (2) and all the field quantities. The
Fourier transform of the source (2) is obtained as

8(p) eiwz/u. (5)

J(r, @)=qo %

In the frequency domain, the electric and the magnetic
field vectors E(r, w) and H(r, w) are known to satisfy
the following Maxwell’s equations

VX EF, o) =iomwH(T, ») (6)
V X HF, w)=—iwese - E(F, o)+ 3.7 ), (7

where uo and €, are the vacuum permeability and di-
electric constant. In (7), € is the familiar relative
dyadic dielectric constant used in the magneto-ionic
theory and its components are given by the following
matrix:

€1 i€2 0
€=|—ies € 0 |, (8)
0 0 €3
where
2
(=1 — e _ Db (9a)
o, 0y
2 2 A
w: Wi Wei
g =—tt (9b)
w3 w?wy
w2, w?;
e =1— e @i 9c)
w w
w2
ae=1——"*% (9d)
[0}
1Y
a;=1——"Lt (9e)
0}

In (9), wpe is the plasma frequency, and wc. is the gyro-
magnetic frequency of the electrons. Also wpi and
wci are the corresponding quantities for the ions. It
is found to be advantageous, though somewhat un-
conventional, to employ the following normalized
frequencies:

w Wee

Q=ww, sz,,e (10)
With the above notation, (9a—c) becomes
1 m
“=l R C-Rmw (11a)
. R _ Rm?
T —RY) QQ2—R'm?) (11b)
Pl ] =
e (11c)

02
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where

me
m=—
mi

(12)

and me and m; are the masses of an electron and an
ion respectively.

In view of (5) and the geometry of the problem it is
obvious that the field components are independent of
¢ and depend on z only through the phase factor eiw?/*,
which may be conveniently separated out as follows:

fr, 0)=f(p, w)e. (13)
The arguments p,  of all the functions will be omitted
for convenience.

The projection of a vector in the p—d¢ plane will
be denoted by the subscript ¢t and z denotes the unit
vector in the z-direction. The longitudinal and the
transverse components of (6) and (7) are given by

)

é%(pE,,,Hw,M,Hz:o (14a)
14 ) B
l_)%(pHd))_*_ iweoesl. = J. (14b)
_£X<V]E:_I%E(>:lwﬂ()ﬁl (15(1)

_EX <V/H;_L%H1> :_iwf()ﬁlEy_wG()622 X E’.
(15b)

On cross multiplying (15a, b) by 2, the expressions for
2X H, and 2XE, can be found and these when substi-
tuted back in (15a, b) result in two simultaneous equa-
tions in £, and H,. The solution of these simultaneous
equations yields the following expressions for E; and
H, in terms of H, and E.:

2 cZe; 9
E;):—L—'—a_ Lcoel —Ez (16&)
WEE P wue dp
E, =—i% (M Hz+ MisiE:] (16b)
e 2 2 o
I L (16c)
wue p WU o€ P
J
H(b:% [Mg]Hz+M22iEz] (16d)
where
= G 22 2
Q=€ G=G—G; (17a)

= a2
M= < ’ M2 =Mz = =2
WE)E WUE
1 02€~1
M22=—[1+J2—] (17b)
Lo uce

and co= 1/V o€y is the free-space velocity of electro-
magnetic waves.

The substitution of (16b and d) respectively in (14a
and b) yields a pair of coupled wave equations, which
are conveniently written in the matrix notation as
follows:

[M]V AF]+[N][F]=[S] (18)
where
2 1 90
2{—— I —— .
V2 30t p 3p (19a)
’—Mll M12 r_HZ
M]= [F]= (19b)
LMZI M, _iE:
[N, 0 [0
[N]= [S]= (19¢)
0 N J:
‘dl]d /V] — WMo, N-):wﬂ)ﬁ:;. (]()d)

The solution of (18) and the subsequent evaluation
of all the physical quantities of interest are carried
out by employing the methods first used by one of the
authors [Seshadri, 1965b] in the treatment of the Ceren-
kov radiation in a warm anisotropic plasma.

3. Solution of the Coupled Wave Equations
(18)

The coupled wave equations (18) may be decoupled

into two separate wave equations by a transformation
to a new base. Let

Tll Tlil \p]
R = .
Tor Too| | Vs
The substitution of (20) into (18) and the premulti-

plication by [T]-'[M]! yields

VAV [TT MIPNITIY]=(TT'M

(20)

I'[S].

The matrix [M]7'[N] may be shown to possess two
distinct eigenvalues A2 and k%, and hence, [T] may be
chosen in such a way as to diagonalize [M]~'[N] with
the following result:

(21)

[V 24k ¥, =—S, 22

2mp for n=1, 2.

(22)
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With the help of (5), (13), and the right side of (21), it

is found that
Si 0
—— g ||
Ss 1

The solution of (22) is easily seen to given by

(23)

¥, (p) n=1,2 and m=1 or 2.

= g SuH{M (kp):
(24)

The outward power radiated per unit area is given by

ST, =EF, t) X HEF, f). (25a)

Therefore, the total power radiated in the radial direc-
tion per unit area and per unit frequency interval is
easily obtained with the help of (3), (4), (13), and (25a)
to be given by

Sp<w>=§—ﬂ Re E(@, w) X H*(p, w)

1 4 ’
= Re [Es(p, w)—iH4(p, )] |ilEI'i(/(0p, ‘j;)}

(25b)

M| 3 | Hp, ) ,
M K iEp, 0)

(26)

From (16b, d), it follows that

Edz(Pa ) ) M
=—1

_in:(Pa ) My,

The substitution of (26) in (25b) and the use of (20)

yields
1 v, v, v¥
win 5 5 ][T]”M”T]*[qf}

Sp(w) =
(27a)

Since the matrix [M]~Y[N] is real, it follows that its
eigenvalues k% and /3 are either purely real or complex
conjugates of each other. When the eigenvalues are
complex, the corresponding wave functions are seen
from (24) to either increase or decrease exponentially.
The exponentially growing solution is ruled out from
physical considerations and the exponentially decaying
solution will not give rise to any radiation. The
interest is therefore in the ranges of the parameter
values for which the eigenvalues are real. For the
case of real eigenvalues, [T] is real and hence (27a)
becomes

1 v,
Sel) 2 Im[ p Ip

IV, p*

| o m[ - e

It was shown that

repemm=lg | e
On premultiplying both sides of (27¢) by
(=7t =[] 8

it is found that
b b
B1=[5 ] =t i
21 22
— axn a2 k% O:I
[021 (122] [0 k% ’ (29)
From (29) it follows that

b11 = aukf, b22 = (122](1%,

(30a)

bi2= a12k3, bo1 = asik3. (30b)
It is known from (17) and (19) that [M] and [N] are
symmetric, and therefore it follows that [4] and [B]
are also symmetric. If the eigenvalues k? and k% are
distinct, since biz=bs; and ai2=az1, it follows from
(30b) that ajpp=as=b12=021=0. Consequently,
it is found from (27b) and (28) that

v,

ow
Sp(w)= 2 —Im [au‘lf P —+ axV¥i pz] . (3D

Since the radiation is circularly symmetrical about the
direction of motion of the charge, namely the z-axis,
the total power radiated per unit path length and per
unit frequency interval is obtained from (31) to be
given by

d¥,
dp

dV¥,

I(w)=2mpS,(w)=p Im [au‘l’ o5 ] . (32

——Ar azz\lf

The total power radiated is seen from (32) to be the
sum of the powers in the two modes separately. This
arises due to the absence of cross terms in (32) and
therefore the two wave functions defined by y;; and
Y2 are orthogonal.

On substituting (24) in (32) and making use of the
relation

2

ImH{* (O™ (x) = (=D 20 (33
it may be shown that
ISn|2
— —1\ym—1
I(w) n;l;z( 1) Ann 8
- m— bun IS"|2
=SComE S 89
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. and extraordinary, respectively.

For each mode, which corresponds to different values
of n, m is chosen to be either 1 or 2 depending on
whether the corresponding value of by, is positive or
negative. For a propagating mode, the value of k2 is
positive and with the above choice of m, I(w) given in
(34) will be positive. Thus the fulfillment of the radi-
ation condition, which requires a net outward flow of
power at large distances from the source, is ensured.

4. Dispersion Relations

Since k% and k% are the two eigenvalues of [M]-1[N],
it is obvious that k72=12/w? and k3?>=V3/w? are the
eigenvalues of [N]-![M], where V is the velocity of
phase propagation in the radial (p) direction. Using
(19b, c), V' may be easily shown to satisfy the following
quadratic equation:

Vi+AV*+B=0, (35)

where

M]l M22
—_— 2 —= it 2] P
A=—w <N1 + N2> (36a)
and
0)4

B=——— (MM — M12M,). (36b)

A

The dispersion equation (35) which specifies the phase
velocity V' for propagation in the direction perpen-
dicular to that of the motion of the charge can also
be derived in a much simpler way, as shown in the
appendix.

The use of (17a,b) and (19d) in (36a and b) yields,
after some simplification, the following expressions

for A and B:

_ U e te—pBAeaes el —€d)]

= €3 [1 _261'BZ+(€%_€§)B4] (37&)
and )
=22 {1 —2aft e —e§>34]‘1 (37h)
3
| where
u
=% (37c)
The solutions of (35) are given by
A €1 ‘
e e
3 27 e (4/2) (38)

where the subscripts 1 and 2 correspond to the posi-
tive and the negative signs in (38) and denote ordinary
The factor €/|e]
is introduced in front of the radical to ensure the con-
tinuity of Vs, across the line ¢,=0. It is obvious that
propagating waves are generated only in the ranges of
parameters for which V? is positive real. From (38)

positive, real values of V2 are seen to be obtained only
in the following two cases:

Case 1 B<0. For this case, | V(4/22—B | > |/§1|

and hence V% only is positive real, with the result that
only the ordinary mode is excited in this range.

2
Case 2 B>0, A<0 and (%) > B. It can be easily

shown that for this case V% and V3 are both positive
real and hence both the ordinary and the extraordinary
modes are excited.

It is desired to find the ranges of the parameters
Q and R (given by (10)) which correspond to the above
two cases. In this way, the values of the parameters
Q) and R for which each of the two modes are generated
can be determined. ~

In most cases, the Alfven wave velocity V,= coRV'm
is very much smaller than the free-space electro-
magnetic wave velocity ¢p. Also the mass ratio m
is very much smaller than unity. Consequently, in
what follows, m and R?m are legitimately neglected
in comparison with unity.

The parameteric equations for A =00, B=w, 4=(),
and B=0 may be easily shown to be given by the
following curves in the *— R? space:

L]Z 6;;:0

forA=owand B=»
Ly: 1=(e1=* €2)B? for A= and B=
L;;Z 6120 f()I'B:O

Ly €1+ €;3— B*ees+€2—€3)=0 ford=0.

With the help of (11a, ¢), the curves L;— L4 are shown
to be given by the following parameteric equations

Li: Q2=14+m (39a)
2512

Ly [02 — Rm+ Ql%"gzﬁ] — Q*R¥(1 — m)? (39b)

Lz: Q*— Q%1+ R2+m—+ R?m?)

+R2m(1 +m+R*m)=0 (39c)

Ly: 2051 — 82— 204{(1+m) (1 —28?)

+ R*(1+ m2)(1— %)} + Q[ {2m2R*
+ (L4 m)(1 + m+ m2)R2}

— BH{R2m(1 +m+ R*m) + (1 + m)?

+ (14 m)(1 + m2)R?

+ (I +m+R*mP}] — m*R4(1 + m)

+ B2R*m(1 +m) (1+ m+ R2m)=0. (39d)
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FIGURE 2a. Qualitative sketch of the regions of propagation of

the two modes for a two component plasma.

In a similar manner, after some manipulations, it can
be established that (4/2)2—B =0 is specified by the
following parameteric equation:

Ls: R2[(1— 82 (1 + m3)Q2 — m2(1+ m) (1 — B)R?

+m(1 +mpp2]2=42(1 — m*»*1+m— Q3O (3%)

In figure 2a are sketched the curves L;—L; which
are seen to divide the )2— R? space into several re-
gions inside which the signs of 4, B, and (4/2)>—B
do not change. The term 4 changes sign only on cross-
ing the curves corresponding to 4 =0, «; i.e., L, Lo,
and Ls. Similarly, B changes sign on crossing the
curves corresponding to B=0, «; i.e., L, L», and Ls.
Also, (4/2)>— B changes sign on crossing the curve Ls.
The signs of A, B, and (4/2)>—B are determined for
any one region, and then their signs for the other re-
gions are obtained by inspection. It is then an easy
matter to determine the regions of Q2 — R? space cor-
responding to the case 1 (B <0, indicated by shading
with vertical lines for the ordinary mode and with
horizontal lines for the extraordinary mode) and the
case 2 (B>0, A <0, and (4/2)*—B > 0, indicated by
shading with horizontal and vertical lines). In figure
2b, the curves L;—Ls are drawn to scale for the case
B=10"2, and the regions of generation and propaga-
tion of the ordinary and the extraordinary modes are
indicated by shading with vertical and horizontal lines,
respectively.

In order to assess the effect of the motion of the heavy
ions on the frequency ranges of excitation of the two
modes, it is convenient to study briefly the limiting
case of stationary ions, that is m=0. For this case,
the parametric equations of the curves L;— Ls reduce
to the following:

Lig: Q2=1 (40a)

Loo: [Qz B (40D)

2 -
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%‘ S
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o \«\’7
c
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|
L2
Ly E
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FIGURE 2b. Regions of propagation of the two modes for a two
component plasma for B=u/co=10"*

Lsp: Q2=0; O2=1+R? (40c)
L40: \()2:0,
R2=(92—1)<m+ g )/(Qz—l> (40d)
11— 2
4 2
Lsy: RZ:L (1_92)' (40e)

(1—p%)*

In figure 3, the curves Lio—Lso are depicted. The
regions of generation and propagation of the ordinary
and the extraordinary modes are obtained as before
and are indicated, as in the case of the two component
plasma, by shading with vertical and horizontal lines,
respectively.

A comparison of figures 2a and 3 shows that the
inclusion of motion of heavy ions considerably modifies
the low-frequency end of the spectrum. The curve
L; is seen to have two branches, L; and L}, whose
parametric equations are obtained to be given approxi-
mately by ?=R?m/1+R2+m and O2=1+m+R2,
respectively. It may be noted that L; and L} represent
the equations for the lower and the upper hybrid
resonant frequencies, respectively [Stix, 1962]. It
is seen that the motion of the heavy ions alters the
radiation characteristics of a uniformly moving point
charge in the neighborhood of the lower hybrid reso-
nant frequency and lower. The lower hybrid resonant
frequency is considerably larger than the ion gyro-
magnetic frequency and is of the order of the geometric
mean of the electron and the ion gyromagnetic fre-
quencies. Since the lower hybrid resonant frequency
can be in the ELF or the lower end of the VLF band,
it becomes necessary to include the motion of the
heavy ions in obtaining the low-frequency part of the
Cerenkov radiation in a magneto-ionic medium.

From figure 3, it is found that, in an electron plasma
with stationary ions, the ordinary and the extraordinary
modes are excited up to zero frequencies if the normal-
ized strength of the external magnetic field is above a
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certain minimum value which, however, is dependent
on the particle speed.  When the motion of the heavy
ions is included, the ordinary mode is seen to have
a resonance at the lower hybrid resonant frequency
below which it is not emitted. The range of excitation
and propagation of the extraordinary mode continues
to extend up to zero frequencies no matter how small
the normalized strength of the external magnetic field.
(1+m) B2

m 1—p3?
the extraordinary mode is not generated. As R?
moves away from the critical value, the frequency
range of excitation of the extraordinary mode increases.
Again for very small R?, the pass band of the extra-
ordinary mode decreases as R? becomes smaller and
finally vanishes for R*?=0.

The normalized phase velocity Vi/cy and the normal-
ized wave number Qco/V; for the ordinary mode and
the corresponding quantities Va/co and Qco/Vse for
the extraordinary mode are evaluated numerically
for four different values of R; namely, 1.0, 0.5,
0.025, and 0.01, and are depicted in figures 4 to
8. A perusal of the figures 4 to 8 reveals the fol-
lowing interesting characteristics for the propaga-
tion of the two modes in the radial direction. The
ordinary mode has resonance, that is its phase velocity
goes to zero, at the lower hybrid resonant frequency
O =V R2m/1 + R?>+ m and at the upper hybrid resonant
frequency Q=V1+m+R?. The phase velocity of
the ordinary mode increases as the frequency is in-
creased beyond the lower and decreased from the
upper hybrid resonant frequencies, respectively.
An examination of the frequency () versus wave num-
ber Qco/V diagram shows that, in certain frequency
ranges, the radial propagation is “backward™ in char-
acter in the sense that the phase and the group
velocities are of opposite signs. In order for the total
radiated power to be outwardly directed, it was found
necessary to choose m=1 in certain frequency ranges
and m=2 in the other frequency ranges. It was
found from the dispersion diagrams that the frequency
ranges in which m=1 or 2 coincided exactly with the
frequency ranges in which the phase and the group
velocities are of the same or opposite signs, respec-
tively. From (24) and the implied time dependence,
it follows that m=1 corresponds to waves whose
phase and group velocities are directed outwards from
the source whereas m=2 corresponds to a wave for
which the group velocity is outwardly directed whereas
the phase velocity is inwardly directed.

It is found that the ordinary mode is a “forward”
wave for Q2> 1+m and is a “backward” wave for
02 <14m. The phase velocity of the ordinary mode
decreases with the frequency for Q*>>1+m but in-
creases with the frequency for Q> < 1+ m. The extra-
ordinary mode is found to be either “forward™ or
“backward” or partly “forward” and partly “back-
ward” depending on the value of R. Its phase velocity
is found to either increase (R=0.025) or decrease
(R=0.01) with the frequency. It is interesting to
note that in the magnetosphere, say at a distance of 10

Note that for the special value of R?2=

earth radii from the center of the earth, R is approxi-
mately equal to 102 and for that value of R, the phase
velocity of the extraordinary mode decreases with the
frequency. This feature can be easily seen to account
for the “hydromagnetic whistlers” with a rising tone
caused by the passage of the solar particles along the
earth’s magnetic field, in the magnetosphere. In a
similar manner, the ordinary mode for )2 < 1+ m with
its phase velocity increasing with the frequency can
account for the well-known atmospheric whistlers
with decreasing tone.

40
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FIGURE 3. Regions of propagation of the two modes for a single
component plasma.
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FIGURE 4. Phase velocity and wave number of the ordinary and the

extraordinary modes for R=1.0 and R =10.5.
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104 ev=0*—0%(14+R2+ m+ R2m?)

C ] +R2m(1+m+R2m)  (42b)
L | €1q= (92—R2) (Q2— R2m2) (42¢)
107 —0? G= 32 — €1N€1q
: o R0 2
| (-]
1= ( ) [ < . (42d)
- (0% €
A b e o) (g
ML ] 2 V,\2
Co - o —‘611\]) ] [QZ_ (02_ ].) (C_) :I (4-26)
| | 0
1073 —io and Vi, 2/co is given in (38). The normalized frequency
. - spectrum I;(w) and Iy(w) are computed from (41a, b)
- ] for four different values of R; namely, R=1.0, 0.5,
L i 0.025, and 0.01. The normalized speed ,8=(-:u— is
0
I ] assumed to be equal to 102, which is the same as
» used in the calculations of phase velocity. It is of
107 = -3 interest to note that the solar cloud speeds in the
. ] exosphere are of the order u=10"2¢y. The normalized
[ ] frequency spectrum of the two modes are plotted in
- . figures 9 to 17. A study of these figures shows that,
5 1 1 11 lllI 1 L L.l IIIJ 1 J R B S
%o 103 1072 a o
' T 410
FIGURE 5. Phase velocity and wave number of the ordinary mode E
for R=0.025 and Q < 1. i
12
. I
5. Frequency and Angular Spectrum e 4\Co
The frequency spectrum I;(w) of the ordinary mode
and I»y(w) of the extraordinary mode are defined to be 1072 1.0
the total power radiated in the respective modes per ]
unit path length and per unit frequency interval. It .
is of interest to examine the frequency spectrum of ]
the two modes as a function of frequency for some ]
typical values of R. With the help of (17b), (19d), 7
(20), (23), (29), and (38), it is possible to show from
(34), after some standard and straightforward manipu- 1073 — [[o3
lations, that the normalized frequency spectrum /;, »(w) .
is given by the following expressions: ]
2o hie) ( B23G? ]
M=, R, pe-ne] 4 R0 ]
= Ly(w) R2(V€%, \C
IZ(S)) :( ) — 212 (41b) 179 111111 L | O W
Iy [R2(Q? 1)92‘5 + B%K?] 10°4 1073 Q 102
where
Iozm FIGURE 6. Phase velocity and wave number of the extraordinary
86()(,‘(2) (42a) mode for R=0.025 and R=0.01.
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FIGURE 10.  Frequency spectrum of the ordinary mode for R=1.0
and Q< 1.
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FIGURE 11. Frequency spectrum of the ordinary mode for R=

1.0 and Q> 1.

in general, the power radiated is larger for the higher
frequencies than for the smaller. It is seen that the
frequency spectrum of the ordinary mode becomes
infinite at the two hybrid resonant frequencies and on
account of this, the total power radiated by a uniformly
moving point charge becomes infinite. This difficulty
can be overcome in the following manner. At the
two hybrid resonant frequencies, the phase velocity
in the radial direction goes to zero. The radial direc-
tion is transverse to the direction of the external mag-
netic field. In the neighborhood of the two hybrid
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FIGURE 12. Frequency spectrum of the ordinary mode for R=0.5
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FIGURE 13. Frequency spectrum of the ordinary mode for R=10.5

and Q) > 1.

resonant frequencies, since the phase velocity van-
ishes, the magneto-ionic theory obviously fails. When
the phase velocity becomes of the order of the thermal
velocity of the charged particles, it is not legitimate to
ignore the thermal motion of the particles. A treat-
ment of the wave propagation transverse to the external
magnetic field in a two component plasma has been
given [Seshadri, 1965a] wherein the effect of the finite
temperature of the electrons and the ions has been
included. When finite temperature effects are in-
cluded, it is found that the phase velocity instead of
going to zero at the upper and the lower hybrid resonant
frequencies, actually levels off to the value of the acous-
tic velocity in the electron and the ion gas respec-
tively. As a result of this, the frequency spectrum
at upper hybrid resonant frequency, instead of becom-
ing infinite, attains only a maximum value which
depends on some inverse power of the acoustic veloc-
ity ue in the electron gas. Similarly, the frequency

spectrum at the lower hybrid resonant frequency
attains only a maximum value which depends on some
inverse power of the acoustic velocity u; in the ion
gas. Since u;i < ue, the frequency spectrum near the
lower hybrid resonant frequency is likely to be higher.
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FIGURE 17.  Frequency spectrum of the ordinary mode for R=0.01.

A systematic investigation of the Cerenkov radiation
in a warm, anisotropic plasma has been carried out
elsewhere by one of the authors [Seshadri, 1965b] for
a single component plasma, and in that investigation
a finite value has been obtained for the frequency
spectrum near the upper hybrid resonant frequency,
as anticipated above.

The value of R over a large part of the earth’s exo-
sphere is of the order 10~2 and for example, at 4 earth
radii from the earth’s center, R=2X 1072, approxi-
mately [Mckenzie, 1963]. It is seen from figure 2b
that, for R between 2 X 102 to 6 X 1072, both the modes
are emitted above the lower hybrid resonant fre-
quency over a band which is largest for R=2X 102
and which continually diminishes as R is increased to
the value R=6X10"2 It is seen that the power
radiated in the ordinary mode is considerably larger
than that in the extraordinary mode as can be seen
from figure 14. In view of the presence of the lower
hybrid resonant frequency, the power radiated in
the neighborhood of that frequency is quite high, a
fact which is not uncovered in the treatments wherein
the ion motion is neglected.

It is of interest to examine the polar diagram of
the Cerenkov radiation. The normalized angular
spectrum [;(0) and 7:(0) for the ordinary and the
extraordinary modes are evidently given by the relation

do )
—

dQ)
The angle 6 between the direction of motion of the
charge and the direction of the phase front is easily
seen to be given by

1,(0) :i,,(n)/<277 sin 0, 1,2.  (43)

tan 6, =p/(Valc))  n=1, 2. (44)
By making use of (38), (41), (43), and (44), the expres-
sions for the normalized angular spectrum [,(f) and

I5(0) of the modes can be obtained. The details of

T T
ot E
|0'SE— a:uo"%
1,(6) i
07E =
E Q=4.4x107* 1
'0_237*’ ela° el9° 90°

8

FIGURE 18.  Angular spectrum of the extraordinary mode for R=1.0.
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these calculations as well as the final expressions,
which are quite complicated, are omited here for the
sake of brevity. The numerical results of the angular
spectrum of the two modes are given in figures 18
to 24 for the same four values of R as before and for
B=10"2. The polar plot of the Cerenkov radiation
shows interesting maxima and minima as a function
of the angle made by the direction of the wave front
with the direction of motion of charge. It is seen
that the two hybrid resonant frequencies correspond
to #=90°, as expected. Note from the figures 18
to 24 that the angular spectrum has not been evaluated
in certain cases up to very close to the hybrid resonant
frequencies.

6. Cerenkov Ray Direction

In an anisotropic medium, the direction of the power
flow or the Cerenkov ray is different from the direction
of the wave normal. It can be shown [Stix, 1962]
that the angle @ between the directions of the Cerenkov
ray and the wave normal is given by

__Vd c_o) _
tan a, o d0<Vn n=1, 2

(45)
with the result the Cerenkov ray makes an angle 6+ «
with the direction of motion of charge. With the help
of (38), (44), and (45), the Cerenkov ray direction speci-
fied by 6+ « corresponding to every wave normal direc-
tion 6 can be computed. The numerical results are
obtained for the same four different values of R as
before and for the entire range of frequencies for which
emission is possible. The numerical values as

T T I I
10°E= E
1, [ ]
10%E= E
F 0=147
Q=102
102 = —
102 | | | | | | |
o° 10° 20° 30° 40° 50° P 60° 70°
FIGURE 20. Angular spectrum of the ordinary mode for R=1.0
and Q > 1.
WE=7 | T | 1 1 | |
£ Q=11 .
- R=0.5 b
=10l
6¥|= =
Lo F ]
0% = Q=1.5x10 %
2=48x10"
0= g
i | | | I | \ L |
@8 10° 208 302 40° 50° 60° 70° 9 80° 90°
FIGURE 21. Angular spectrum of the ordinary mode for R=0.5.

depicted in figures 25 to 34 reveal two important fea-
tures of the Cerenkov ray directions in an anisotropic
plasma. In an isotropic medium, the Cerenkov ray
directions make only acute angles with the direction
of motion of the source whereas in an anisotropic
medium such as the one considered in this paper, for
appropriate parameter values, the Cerenkov ray makes
obtuse angles with the direction of motion of the source,
as may be seen from figures 26, 28 to 31, 33, and 34.
The second important feature of the Cerenkov ray
directions in an anisotropic plasma is that for ex-
tremely low frequencies, the ray directions are con-
fined to angles very close to the direction of the ex-
ternal magnetic field, either in the same or in the
opposite direction to the motion of the source. It is
seen from figure 25 (extraordinary mode, 10=* < ()
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<4.4% 104, R=1.0), figure 30 (extraordinary mode,
10-* < Q< 103, R=0.025), figure 31 (ordinary mode,
6X1074<Q<1.5xX10*, R=0.025) and figure 33 (ex-
traordinary mode, 107*<Q <23Xx10~*, R=0.01)
that, for the frequency ranges and the appropriate
mode type indicated within the brackets, the ray di-
rections are confined to very small angles with the
direction of the magnetic field. For larger values of
R, the lower frequency Cerenkov rays are in the same
direction as that of the motion of the source as seen
from figures 25, 30, and 31. The atmospheric whis-
tlers arising from the solar cloud streaming through
the plasma of the exosphere in the direction of the
earth’s magnetic field are attributed to the ordinary
mode (fig. 31) and have their ray directions in the
direction of motion of the source. For smaller values
of R, such as for example R =0.01, which are usually
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FIGURE 23. Angular spectrum of the extraordinary mode for

R=0.01.
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obtained at distances greater than about five earth’s
radii from the center of the earth, the extremely low-
frequency Cerenkov rays are confined to small angles
about the direction of the magnetic field but lie in a
direction opposite to that of the motion of the source.
The sub ELF or the hydromagnetic emissions [Tepley,
1961] are attributed to the extraordinary mode (fig. 33)
and have their directions behind the motion of the
source. It is seen from figures 25 to 34 that, in certain
cases, the ray directions change very rapidly with the
wave normal direction and the physical explanation
for this behavior is not clear.

To facilitate easy reference, an index to all the
figures is provided in table 1 wherein for each value
of R, the frequency ranges of excitation, the mode
number, the wave type and the numbers of figures
showing the dispersion, the frequency, and the angular
spectrum and the ray directions are included.
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TABLE 1. Index to figures
Figure number
Frequency range |[Mode Wave o N
R of excitation No. type
Fa W oo Qi A Shie -
C"&”{_n Freq. Spect. Ang. Spect. a—#6
1.0 |10~ to 45X 10—+ 2 | Backward Fig. 4 9 18
V2x102tol 1| Backward 4 10 19
1to V2 1 | Forward 4 1 20
0.5 |1072to 0.5 1 Backward 4 12 20
1to1.14 1| Forward 4 13 21
0.025[ 104 to 4.5 X 103 2 }‘v‘r“"‘_“lj 6 14 22
Backward
6x10*t02Xx10-2 1 Backward ) 14 22
1 to V1+6Xx10-* 1 Forward G 15 22
0.01 |107%102.3 X104 2 Forward 6 16 23
ltoV 1+10 1 Forward 17 24
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7. Concluding Remarks

The characteristics of some of the electromagnetic
emissions which are detected both on the earth and
by satellite borne receivers suggest Cerenkov type
radiation generated by charged particles moving at
high speed along the magnetic field lines in the
magnetosphere as a possible mechanism. With the
purpose of understanding these emissions, consid-
erable investigations of the Cerenkov radiation in a
uniform magneto-ionic medium have been carried out.
In all these treatments, the ion motion has been
omitted. Whereas the neglect of ion motion may be
legitimate for the higher end of the VLF band, it is
only proper to take into account the motion of heavy
ions for the evaluation of the electromagnetic emissions
in the lower end of the VLF and ELF bands. Re-
cently, there has been interest in the interpretation
of the observed emissions at hydromagnetic frequen-
cies in which range the ion motion certainly plays a
dominant role and cannot therefore be neglected.

In this paper, the restriction on the motion of the
ions is removed and the theory of Cerenkov radiation
in a magneto-ionic medium is extended to apply even
to ELF and hydromagnetic frequencies by the inclu-
sion of the motion of the heavy ions. Not only has the
analysis of the Cerenkov radiation in a two component
magnetoplasma been carried out using a different and
somewhat simpler method but some of the special
features, such as, for example, the existence of the
“backward” wave character of the radial propagation,
which have been overlooked previously in the liter-
ature, are emphasized in this treatment.

In an anisotropic medium, the direction of power flow
and the wave normal direction do not coincide. The
radiation condition requires that the net power flow
be directed outward from the source. In certain
frequency ranges, it is possible for the wave normal
direction to be inwardly pointed, giving rise to back-
ward waves. It was found necessary while evaluating
the frequency spectrum to require the waves to have
inwardly traveling phase fronts for certain frequency
ranges to obtain outwardly traveling power. The
existence of the backward waves was further confirmed
by the examination of the dispersion diagrams, which
yielded oppositely directed phase and group velocities
in the frequency ranges appropriate to the backward
wave regions.

Extensive numerical results on the frequency spec-
trum, the angular spectrum, and the Cerenkov ray
directions are presented for parameter values appro-
priate to the magnetosphere and for a particle speed
of the order of the estimated solar cloud speeds. The
power radiated by a single point charge in uniform
motion is so small that it cannot account for the ob-
served power levels of low frequency emissions. A
realistic estimate of the number density of particles
whose coherent emission alone can give the proper
order of magnitude for the intensity of the low-
frequency emissions will require a detailed examina-
tion of the propagation mechanism and the inclusion
of the effect of the ionosphere boundary, in addition

to the mechanism of excitation which alone is consid-
ered in this treatment.

The authors are grateful to R. W. P. King for his
help and encouragement of this research. One of the
authors (S. R. Seshadri) is indebted to Ronald V. Row
of the Applied Research Laboratory, Sylvania Elec-
tronic Systems, Waltham, Mass., for the several in-
structive discussions.

8. Appendix

The dispersion relations for a plane wave propa-
gating at an angle 6 with respect to the direction of
the external magnetic field are given by the following
Appleton-Hartree formula [Stix, 1962]

A0<VCL:>4+A1(%"£>2+A2=O (A.1)

where
Ao=es(€}—¢€) (A.2)
A1=—[etees— (e —€1€3) cos? 0] (A.3)
= (= (Ad)

and v, is the phase velocity of the plane wave in the
magneto-ionic medium. If the objective is merely
to determine the ranges of the parameters (1 and R
in which the propagating waves are excited by a point
charge moving with uniform velocity u in the direction
of the external magnetic field, then it is possible and
also desirable to start with (A.1) and obtain the disper-
sion relation (35) specifying the phase velocity v for
propagation in the direction perpendicular to the direc-
tion of motion of the charge. It is well known that a
charge moving with uniform velocity u« through a
medium of refractive index co/vy, will emit Cerenkov
radiation at an angle 6 with respect to its direction of
motion if the condition for coherent radiation, namely,

ucos 0=upn (A.5)
is satisfied. Also, it is easily seen that the phase
velocity v normal to the direction of motion of charge
is given by

v sin 0 = vpp.

(A.6)
With the help of (A.5) and (A.6), it may be shown that

vZ, =v}(1+0v?/u?). (A.7)
The elimination of cos 6 and vpn from (A.1)—(A.4)
with the help of (A.5) and (A.7) yields (35), after some

simplification.
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