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The radiation from an electron in a homogeneous magnetoplasma has some unusual properties
as a consequence of the dispersive anisotropic nature of the medium. Attention is confined to emis-
sion in the ordinary (whistler) mode frequency band below the cyclotron resonance and the extraor-
dinary mode frequency band around the plasma frequency where the indices of refraction are appre-
ciably greater than one and vary significantly. Due to the large indices, electrons can emit Cerenkov
radiation over a limited band of nonrelativistic energies. The cyclotron radiation which is generated by
the gyrations of electrons is complicated also by this property of the medium which permits both normal
emission due to “slower than light” motion and anomalous emission due to ““faster than light” motion.
In the ordinary mode, for example, the anomalous cyclotron radiation is emitted into the forward hemi-
sphere with respect to the guiding center motion of the electron whereas the normal radiation is emitted
into the backward hemisphere. In this paper the frequency spectra and angular patterns of the average
radiated power are calculated by the Hamiltonian method which avoids a direct calculation of the com-
plicated electromagnetic field vectors. The theory of emission in dispersive anisotropic media with
a hermitian dielectric tensor by Kolomenskii and Eidman is thoroughly reviewed and extended to
include relativistic energies; the complicated analytic formulas for the power are evaluated for several
special cases; and the results are applied to recent interpretations of very low-frequency (VLF) and
low-frequency (LF) emissions from electrons in the magnetosphere. The main conclusions of the
work are as follows: (1) In the ordinary (whistler) mode most of the energy is radiated along wave nor-
mals at large angles to the magnetic field at frequencies other than the rectilinearly Doppler-shifted
fundamental cyclotron harmonic which is contrary to assumptions of certain VLF emission theories.
(2) The resonance singularities in the indices for a cold, collisionless plasma must be eliminated to
achieve finite power levels, but unfortunately the dielectric tensor for thermal motion is extremely
complex and for collisions is non-hermitian; consequently, an arbitrary upper limit is imposed on
the indices in order to make a quantitative estimate of the power. (3) Based on this approximation
the total power in the ordinary mode is a slowly varying function of frequency and electron energy with
an average level of 1073° W/(c/s) per electron. (4) This level is inadequate to explain observed VLF
signals on the basis of incoherent emission, but coherent emission from bunches of electrons can
give the observed power level of 10-'* W/cm? (c/s) above the ionosphere; hence, the onus of explaining
the complex dispersion patterns of VLF emissions is left to the coherence mechanism.  (5) The radi-
ation in the extraordinary mode varies considerably with frequency and energy but an average power
level is on the order of 10-2* W/(c/s) per electron which still requires some coherence to generate the
observed level above the ionosphere; however, this energy cannot penetrate the ionosphere to account
for the dispersion observed by ground-based receivers.

1. Introduction

The problem of radiation from an electron in a plasma in a homogeneous magnetic field occurs
in astrophysics, radioastronomy, thermonuclear physics, and magnetospheric physics. Due to
the dispersion and anisotropy of the magnetoplasma, the emission from an electron moving along
a helical trajectory has some very unusual properties. The analysis is restricted to those fre-
quency bands in the ordinary and extraordinary modes where the indices are appreciably greater
than one. The polarization induced in the medium by the electronic charge produces Cerenkov
radiation when the local phase velocity is less than the particle velocity, and acceleration due to
the orbit gyrations of the charge produces cyclotron radiation which is appreciable in the low-order
harmonics at Doppler-shifted frequencies. The cyclotron radiation consists of a “normal” emis-
sion in which the source moves slower than the local phase velocity and an “anomalous” emission
in which the source moves faster.

The general nonrelativistic formulas for the frequency spectra and polar diagrams of the power
radiated by gyrating electrons in a magnetoplasma have been given by Eidman [1958].  His analysis
is based on earlier work by Kolomenskii [1953] in which the fundamental Hamiltonian method of
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calculating radiation from a source is generalized for the case of an anisotropic dispersive medium
with a Hermitian dielectric tensor. Although the formulas are available, the emission properties
have not been analyzed appreciably because extensive numerical evaluation is required.
P. S. Johnson [1962] used the expressions to evaluate the frequency spectrum of Cerenkov radiation
from an electron moving parallel to the magnetic field. The equation relating the frequency and
angle of emission has been solved numerically by Ellis [1962] for certain parameters appropriate
for radiation from Jupiter. The power formulas were also evaluated by Bazhanova and Shafranov
[1963] for the special case of normal emission in the ordinary mode from the fundamental cyclotron
harmonic. However, the general problem of Cerenkov radiation and normal and anomalous cyclo-
tron radiation from several harmonics has not been considered for electrons in helical orbits.

Some approximate formulas have been derived independently. Several limiting cases of
emission in a thermal magnetoplasma have been given by Pakhomov, Stepanov, and Aleksin [1962],
and Pakhomov and Stepanov [1963a, 1963b].  Another method was employed recently by McKenzie
[1963] to obtain the frequency spectra and polar diagram for Cerenkov radiation from a uniformly
moving point charge.

This paper has three objectives. First, the complete theory by Eidman [1958] and Kolomenskii
[1953] is reviewed in order to include relativistic effects and pick up certain errors and omissions in
the original analysis. Second, a numerical study of the formulas for Cerenkov and cyclotron radia-
tion is presented to demonstrate the unusual properties of the emissions. Third, the results are
applied to recent interpretations of the very low-frequency (VLF) and low-frequency (LF) emissions
from the magnetosphere (3 to 300 kc/s).

As a first approximation, the medium is represented by a cold, collisionless electron plasma.
However, at the resonance frequency where the index of refraction becomes infinite, the power is
also infinite. By introducing additional physical effects such as thermal motion or collisions,
the singularity is removed but the expressions become so complicated that numerical evaluation
is very difficult. As a compromise, an upper bound is imposed on the index which cuts off the
emission at a finite level. Fortunately, in many cases this cutoff model is a good approximation
to the index when thermal and collisional effects are small, and the physical properties of the power
are described quantitatively in some parameter regions.

The emission at high frequencies where the propagation is like that in a vacuum is not dis-
cussed in this paper. Attention is confined to frequencies near the cyclotron and plasma frequen-
cies of the electrons where the indices are most interesting. In the ordinary (whistler) mode the
emission is confined to frequencies below the cyclotron frequency. In the extraordinary mode the
emission is confined to a narrow band of frequencies near the plasma frequency. The index of
refraction for these modes is generally greater than unity, and the electric vector of the wave ro-
tates in the same sense as the electrons gyrate about the field (right-hand polarization).

Due to the symmetry of the medium, the energy is radiated along cones about the magnetic
field direction. The Cerenkov radiation is emitted entirely in the forward hemisphere with respect
to the guiding center motion of the electron (velocity component along the static magnetic field).
The normal cyclotron radiation is emitted entirely into the backward hemisphere in the ordinary
mode, but into either or both hemispheres in the extraordinary mode. The anomalous cyclotron
radiation is emitted entirely into the forward hemisphere. In general, the maximum power is
radiated at an appreciable angle to the axis of symmetry.

The anomalous cyclotron radiation is a consequence of the anomalous Doppler effect which
was discussed some time ago by Franck [1942]. Since this property only arises when the source
moves faster than the local phase velocity of the medium, the physical process is analogous to the
Cerenkov mechanism; the charge induces a polarized wake in the medium which radiates electro-
magnetic energy. An elementary example of the anomalous effect occurs in the acoustic case
where the source moves faster than the speed of sound, and a stationary observer receives both
increased and decreased (Doppler-shifted) frequencies when the source is receding but no signal
when the source is approaching.
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Finally, the feasibility of Cerenkov or cyclotron radiation from electrons as the source of VLF
and LF emissions in the magnetosphere is discussed. A review of the early observations and the-
ories and a classification system for the various emissions has been prepared by Gallet [1959]. The
frequency-time patterns range from continuous wide bands of noise called hiss to discrete patterns
with descriptive class titles: hooks, risers, quasi-vertical (“dawn chorus”), etc. The intensity of
the wide band noise has been measured simultaneously at several frequencies by Dowden [1962a],
and after ionospheric absorption effects were removed it was concluded that the source spectrum
is relatively flat at a level of the order of 10-'* W/cm?(c/s). The morphology of VLF emission events
has been recorded by Watts, Koch, and Gallet [1963] using an instrument which permits continuous
observations. Recently, Helliwell [1963] has found that certain periodic VLF emissions are trig-
gered by whistler echoes.

In addition to these ground-based observations, VLF emissions have been observed above the
ionosphere by satellites. The VLF receiver aboard the Alouette satellite was operated by Barring-
ton and Belrose [1963]. Their telemetered recordings of wide band noise exhibit a systematic
decrease in the lower cutoff frequency as the satellite latitude increases. More detailed VLF
emission data was obtained by Gurnett [1963] with instrumentation aboard the Injun III satellite.
In addition to the telemetered wide band signal, a six channel frequency spectrum analyzer meas-
ured the absolute amplitude of the VLF magnetic component. The rms amplitude at the satellite
varied from the threshold of 10=% to a maximum of 5X 1072 gamma ( ~ 10~ W/em?(¢/s)). On
several occasions complex VLF emissions were triggered by spheric impulses. A clear correla-
tion among VLF emissions, auroral enhancements, and electron precipitation was also revealed.
In a rocket flight to 1700 km, Walsh, Haddock, and Schulte [1963] observed intense radio noise
near 1 Mc/s, which they attribute to emissions in both modes.

Several mechanisms have been suggested as the source of VLF emissions. Gallet and Helli-
well [1959] proposed that geomagnetic field alined streams of electrons interact, as in the traveling
wave tube mechanism, to produce amplification of existing background electromagnetic radiation.
This mechanism was recently considered in greater detail by Dowden [1962b] who showed that
traveling wave tube amplification of selected bands of VLF noise can explain several character-
istics of hiss. The possibility of Doppler-shifted VLF cyclotron radiation from protons was pro-
posed by MacArthur [1959] and later extended by Murcray and Pope [1960a, 1960b]. Dowden
[1962¢, 1963] also showed that Doppler-shifted cyclotron emissions from discrete bunches of
electrons produce hook dispersion patterns which fit the experimental data quite well. Bell and
Buneman [1964] found a plasma instability in the interaction between a whistler-mode wave and
a gyrating-electron stream which may initiate coherent triggered emissions. Triggering mechan-
isms and cyclotron emissions are also discussed by Hansen [1963]. The transfer of energy
between whistler-mode signals and energetic charged particles has been examined for several
VLF emission mechanisms by Brice [1964].

In most of these theoretical analyses only the one-dimensional longitudinal equations (parallel
to the geomagnetic field) were considered so that wave normal directions in which the maximum
Cerenkov and cyclotron power is available were tacitly omitted. Furthermore, no estimates of
the total power or its spectrum were attempted. With the power estimates presented here it is
demonstrated that incoherent emission is undoubtedly inadequate, but coherent emission from
bunches of electrons may provide the observed power level.

2. Hamiltonian Method

The Hamiltonian method for calculating the energy radiated by a charged particle in an ani-
sotropic dispersive medium is described in some detail. The solution which was formulated by
Kolomenskii [1953] is a generalization of a method employed by Heitler [1954 and earlier editions]
and others for calculating particle emissions in free space. The name of the method arises because
the coefficients in the eigenwave expansion for the vector potential of the radiation field are just
the canonical variables of the Hamiltonian for the system.
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Any homogeneous medium which is electromagnetically dispersive and anisotropic is char-
acterized by a complex dielectric tensor €(w, 6, ¢), where o is the angular propagation frequency
and 6 and ¢ are the polar and azimuthal angles measured from some reference direction. It is
necessary for the following analysis to assume that this tensor is Hermitian

e (2.1)

where the asterisk denotes the complex conjugate and transpose. Furthermore, the magnetic
susceptibility of the medium is assumed to vanish so that the permeability w of the medium is that
of free space. The implications of these assumptions in a magneto-ionic medium are discussed
in the next section.

A charged particle moving through such a medium may radiate electromagnetic energy if it
is being accelerated or if its velocity is greater than the phase velocity of the medium. The
electric and magnetic fields which are generated by a particle with charge e, trajectory r. and
velocity v are described by Maxwell’s field equations (Gaussian units) and some familiar subsidiary
relations:

V X H—D/c=4m(e/c) v 8(r—r) 2.2)
VXE+B/c=0 (2.3)
V-B=0 (2.4)

V - D=d4ared(r—r) (2.5)
D=¢-E,B=H (2.6)

where & is the Dirac delta function and the dot denotes 9/dt.

By introducing the electromagnetic potentials, A and ®, which are defined by the field
quantitites,

E=—V®—Alc, 2.7)
B=V XA, (2.8)
equations (2.2) to (2.6) reduce to
V X (V XA) +e- Vd/c te- Alc2=Ada (e/c) v&(r —r¢), (2.9)
—V~;-V¢—V-€:- A/c=47're8(r—re). (2.10)

Since the potentials are not uniquely defined by (2.7) and (2.8) a Coulomb gage condition
may be imposed on them:

V-e-A=0 (2.11)

In this gage, ® is just the static potential of the source charge and Dy =€ - V® is the corresponding
static vector field. It will be shown that the electromagnetic radiation fields E., and B, are
derivable from the vector potential A alone.

In order to express these equations in canonical form it is necessary to consider only that part
of the field which lies inside an arbitrarily large but finite cubic volume 7= L3, where L > charac-
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teristic wavelength. In this volume the potentials are represented by a superposition of eigen-
functions Ay and ®,,

Az%Qx(t)AA(l‘), (2.12)
®=%qox(l)®x(r),
where gn and qo\ are expansion coefficients. The eigenfunctions are required to satisfy the
boundary conditions,
A\, V XAy, ®y, VO, (2.13)
periodic on the surface o of the volume 7,
and the homogeneous wave equations,
VX(VXA)\)_(U)\ZS' A\/c2=0, (2.14)
V2(V(D>\) +w02,\s : V(DA/CZZO, (2.15)
where the eigenvalues w, and woy are real constants. Since the divergence of a curl always van-
ishes, the eigenfunctions A, defined by (2.14) also satisfy (2.11) as required. The orthogonality
of the set of Ay with respect to the weighting function € can be verified using (2.1), (2.13), and
(2.14) and the divergence theorem,
(wﬁ—wf)J’d‘rA: -S-AA:czjdﬂr[AA VXV XAY=AY - VXV XA
:czfd'rv-[A:XVXAA—A;‘XVXA,L]=O, (N # w). (2.16)

The orthogonality of the set of V®, with respect to € is verified analogously. The normalization
of the eigenfunctions is chosen such that

fd'rAj € Ay =4dmc?By,,

deV@ﬁ - € - VO\ =470\, (2.17)

The orthogonality of Ay and V®, for all X, u with respect to the weighting function € can be
proved with the aid of a vector identity,

Jdr[b-VX(VXa)—VXb:-VXal=—[do: (bXV Xa). (2.18)

Inserting a= A, and b=V®%, the surface integral vanishes due to the boundary conditions and
the last term of the volume integral obviously vanishes to that with the aid of (2.1) and (2.14)

JdrAS - €V, =[[ drVd% - €- A\]* =0. (2.19)

The expansions for A and @ permit (2.9) and (2.10) to be reduced to a system of uncoupled
elementary scalar equations for gy and gor.  If (2.9) is multiplied by A¥ and integrated over 7, the
orthogonality relations derived above reduce the vector equation to simple harmonic oscillator
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equations for the set of g,
Gut 0igu= (elc)v - Aj(r). (2.20)

The forcing function depends on the dielectric tensor since A} must satisfy (2.14), and on the time
through re and v.  Similarly multiplying (2.9) and (2.10) by V@ and integrating over 7 yields

cdou= (efc)v - Vd*(r,), (2.21')

cqou= e} (r), 2.21)

respectively. Since r. is explicitly time dependent, 0®7 (r.)/dt =v - V@7 (re), and therefore (2.21')
is redundant because it is just the time derivative of (2.21). Hence, the complete solution for the
static and electromagnetic fields can be obtained in principle by solving (2.20) and (2.21) with the
appropriate set of A, and ®, for the medium.

Since A and ® are determined by uncoupled systems of equations, the electric and magnetic
fields which they prescribe are also uncoupled. In particular, the electromagnetic fields are
obtained from the vector potential alone using (2.7) and (2.8),

Een=-— A/c, B, =V X A. (2.22)

In the present application only the energy of the radiation field is required, and it is given by
the general expression

W=$fdt’ fd-r(Ej,"m-Dp,,,—FB;",,, “Hen). (2.23)

The magnetic energy term is simplified with the aid of (2.18). Inserting a= A, and b =A%, noting
that the surface integral vanishes by the boundary conditions, and using (2.14), it is found that

fd‘rv XA} -V XA\= (wﬁ/cz)deAﬁ ST (2.24)

Hence, using the normalization of (2.17), (2.23) reduces to

e T, ..
W(t) =Jdt’ > (@G + widian) =5 Y (qidut ©lgian) =3 Wi (2.25)
W W m

This expression is identical to that for the Hamiltonian of a system of harmonic oscillators which
describe the radiation field.

The polarization of the electromagnetic waves can take two arbitrary directions which corre-
spond to the two possible modes of propagation in the medium. In the foregoing equations these
different modes of polarization are denoted by different indices, A(or w). In the following equations
only one mode is considered.

In order to evaluate the summation in (2.25) it is necessary to assume a particular form for the
eigenvectors A, which satisfy (2.13), (2.14), and (2.17). Here, for convenience, they are chosen
to be

A, =Vix c(ay/n,L3?) exp (—ik, - 1), (2.26)
where a, is the polarization vector, n, is the index of refraction, and k, is the propagation vector.
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(The sign convention in the exponent is opposite to that used by Kolomenskii and Eidman, but it

is essential for the equations to be consistent with the polarization convention used in magneto-

ionic theory.) The orthogonality of A, in 7 is assured if the components of k, are given by k,»
= 27run/L where the wy are integers and n='x, y, z. The components of a, and n, are determined,

in principle, by (2.14) and (2.17) which reduce to

(lw,®) [kia,—ku(k, - a#)]=i~ a,, ay-€-a,=n2. (2.27)

I

Since the wavelength is small compared to L (L — ), k-space is approximately continuous
and u-space can be represented by continuous spherical coordinates u, 6, ¢ without loss of gen-
erality. (The polar and azimuthal angles, 6 and ¢, are independent of the space variables in 7.)
Furthermore, by definition, wn/c=Fk=2mu/L so that the frequency w will be used as the inde-
pendent variable with k(w, 6, @), n(w, 6, ¢), and a(w, 0, ¢), in general, and the subscript w is omitted
hereafter.

The number of oscillators in 7 which radiate into the solid angle d€)=sin §dfd¢ and the fre-
quency interval between @ and w+dw for a prescribed polarization is given by

o BiE
3, — 12 = —
Td3u = wrdpudQr @m0y (1 aF

%g—:)) dwdQr = pdwdQr, (2.29)
where p(w, 6, ¢) is the density function of the radiation. (In Kolomenskii’s [1953] and Eidman’s
[1958] papers the frequency dependence of n was omitted in the definition of p.)

With a continuous variable for w the discrete summation in (2.25) transforms into a volume
integral over the continuous variable w. Hence, the differential energy of the radiation field can
be expressed as

W =wpdwd(), (2.30)

where w (w, 6, ¢, t) is the energy of a forced oxcillator in dwd().

3. Emission in a Magneto-lonic Medium

The foregoing general equations are developed further in this section for emission in a magneto-
ionic medium which consists of a uniform static magnetic field and a homogeneous electrically
neutral plasma. Such a medium is dispersive and anisotropic with respect to the direction of the
magnetic field. The analysis follows Eidman’s method with some modifications and corrections.

The xyz coordinate system is oriented such that the z-axis is parallel to the static field B,. If
collisions are neglected, the orbit of a relativistic electron in the static field consists of a gyration
about the field direction and a drift along it as shown in figure 1. Hence, the position (r.) and

FIGURE 1. The position and velocity coordinates of an electron on a
helical trajectory.
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FIGURE 2. The components of the electric vector E of the radiation

field in a magnetoplasma.
The wave normal k and the Poynting vector S are not parallel in general.

velocity (v) coordinates along the x, y, z axes are, respectively,
yri cos Y lwgt, yr1 sin y~lwgt, vat, 3.1)
—v; sin y~lwgt, v1 cos Yy lwst, V2, (3.2

where the subscripts 1 and 2 refer to components perpendicular and parallel to By and the rela-
tivistic corrections have been introduced explicitly. The nonrelativistic cyclotron or gyrofrequency
is related to By by ws=|e|Bo/Mc, and the nonrelativistic gyroradius is given by ri=v/ws. The
relativistic factor vy is defined as usual by

y=Q1=g)"1", p=@}tv)c. (3.3

The propagation vector k is at some angle 6 with respect to By, in general, and it is arbitrarily
placed in the yz plane since there is azimuthal symmetry,

K—ki—Fk sin Bk cos 65, (3.4)

where k ¥, Z are unit vectors. The components of the electromagnetic fields are taken along the
orthogonal directions x, 0 k as shown in figure 2.

The dielectric tensor for a magneto-ionic medium can have several forms depending on which
properties of the plasma are important. In addition to the frequency domain, the effect of thermal
motion, collisions, or ionic motion alter the dielectric tensor appreciably under certain conditions.
Elementary derivations of the tensor for a cold plasma are given by Ratcliffe [1959], Ginzburg [1961],
and others. Several papers have treated electromagnetic wave propagation in hot plasmas re-
cently, and an extensive review is provided by Stix [1962]. It is noteworthy that the tensor is
hermitian when thermal motion or ionic motion is included, but is not hermitian when collisions
are important.

The polarization of the electric vector of the wave field and the index of refraction for the me-
dium are obtained from the components of the dielectric tensor. In terms of the spatial configura-
tion in figure 2 the polarization coefficients are defined by

Eo/Ez=ias(w, 0),  Ex/[Er=iax(w, ), (3.5)

and the index is denoted by n(w, 6), where ay and ax may be complex but n must be real in the

following solution. .
The components of a (and n) in this medium are determined by (2.27) and (2.28) for a prescribed
€. Since the electric field of the propagating wave must satisfy the wave equation, its amplitude
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vector E must satisfy (2.27). Hence, the solution of these four complicated algebraic equations
is obtained indirectly by assuming that a=«kE/E,;. The constant of proportionality is easily shown
to be

k=(1+|Eg/Ex|?)" =(1+a2)~12, (3.6)

(Eidman’s normalization factor k = 1/V2 does not satisfy the equations unless cos § ==1.) There-
fore, the components of a in the Cartesian coordinate system of the electron are given by

ar=kKk, Qy=iKQy, Q= IKa, (3.7)
where

ay= o cos O+ oy sin 6,
(3.8)

o= o cos 0— o sin 6.

With the foregoing explicit expressions for A, r., v, k, and a given by (2.26), (3.1), (3.2), (3.4),
and (3.7), respectively, the forcing function in (2.20) takes the form

\V dmriek

nl3/2

(e/c)v - A¥ =—

(— tvr sin Yy~ 'wpt + a,v; cos Y 'wpt + azv2)
exp (+ ik sin 6 yry sin y~lwpt + ik cos 6 vat). (3.9)
This expression can be simplified by introducing the Bessel function expansion
. . 00 .
exp (41X sin ¢)=EJS(X) exp (+is ), (3.10)

so that

(ay cos d — i sin ¢) exp (+ X sin ¢b)

1+cc

= 2 (ayS se1+ ayfs—1+ Jsi1— Js—1) exp (+is b) =+Ex (—J| + aysJslX) exp (+is ), (3.11)

where the prime denotes differentiation with respect to X. Hence, (2.20) for the forced harmonic
oscillator has the simple form

+oo
q+ w2q=2 Cs exp (+ipst), (@32)
where
ps(w, 0) =swp/y+ vk cos =swp/y+ B> wn(w, ) cos O (3.13)
and
Vi i
Cile, ) == | g0+ (sBulX + asp 0 |, (3.14)
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with
X(w, ) =yrik sin 0 =yBin(w, 0) (w/wp) sin 6 (3.15)
and

Bi=wvilc,  B2=uv2c. (3.16)

With the initial conditions g=¢ =0 at t =0, the general solution of (3.12) is

R exp (ipst) —exp (+iwt) | exp (ipst) —exp (— iwt)] )
O ] e e PR3 317
The sum of the energies of all the modes then vanishes at £=0 and is given by

+oo
w=y %(q?‘qs + w?q¥qs) + cross product terms
- (3.18)

=+2_ |Cs|2 [1_005 (w—ps)T | 1—cos (w+ps)T] Oscillating Cross
~2 ' (w—ps)? (w+ps)? product terms

at t=T. In the limit 7— o, the explicit summation terms reduce to Dirac delta functions,

. 1—cos (wxpy) T . sin(wxp) T
I;l_{r}c (@ = po)eT —;J_lgl —W(wips) =8(w=*ps). (3.19)

The first equality can be demonstrated by partial integration, and the second is discussed by
Schiff [1955]. The average (unweighted differential) energy per unit time radiated into 7 by the
electron is given by

+o
Lim w/T=7 3 |Ci|? [8(w—ps) +8(w+ps)], (3.20)

—oo

where the oscillating transient terms vanish as 1/7.

The limiting process which introduces the 8-functions is justified provided that the radiation
never reaches the boundary o of the volume 7. This is assured because L and T can approach
infinity and simultaneously satisfy the inequality L > cT'/n.

The mathematical interpretation of the 8-function terms depends on the propagation properties
of the vector-potential quantity

quAL=qo, 6. s()As, 6, 6(r) ~ exp i(Fwt—k - 1), (3.21)

where ¢ is given by (3.17), A is given by (2.26), and w is always positive. If a particular set of
values, w1, s1 =0, 6;, satisfy w =+ ps, then by (3.13), w1, —s1, 6; + 7 satisfy @=—p;. Therefore,
the term 8(w— ps) which is associated with the first term in (3.17) has a propagation exponent of
the form + wit — k1y sin 61— kiz cos 61, where k=wn/c, and the term 8(w + ps) which is associated
with the second term in (3.17) has a propagation exponent of the form — wit+kyy sin 61+ kiz
cos 0;. Hence, these two terms describe identical radiation which is called “normal” emission
because of its dispersion relation. Similarly, if ws, s; <0, 6, satisfy o =+ p;, then w2, —s2, O+ 7
satisfy w=—ps, and the two terms have a common propagation exponent of the form = (wst — koy
sin @2 — koz cos 602). This radiation is called “‘anomalous” because of its unconventional dispersion
relation which is discussed below.
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Due to this duplication of emission properties, the energy expression can be simplified. By
introducing the explicit property @y, x(w, 0) =— agy, 1w, O+ ), which is valid in the magneto-ionic
medium, and using the properties of Bessel functions it is readily verified that Cyw, 0)
=—C w, 6+m). Therefore, the energies given by &(w—ps) and 8(w+ ps) are identical, and the
radiation emitted by the electron is described completely by the terms

ITJim ws/T=1|Cs[28(w — ps), (3.22)
where s=0,*+1,*+2,. . .. The frequency w and polar angle 6 of the emission are related by

the anisotropic dispersion equation w =+ ps, henceforth called the emission equation, which can
be expressed in the form

B2 cos Os=(w —swp/y)on(w, 6). (3.23)

The physical explanation of the emission terms is provided by the properties of the emission
equation. The s=0 term describes Cerenkov radiation, emission from induced polarization in
the medium, because 6, must satisfy the usual relation cos 6,=1/B2n. Since n is independent of
the sign on the static-field vector-component, the Cerenkov emission is in the forward hemisphere
with respect to the velocity component Bs(B2 cos 6y > 0). For s # 0 the emission is due to the
cyclotron harmonics [s|wg/y. The distinction between the normal and anomalous emission is
obtained from the emission equation relation Bzn cos ;S 1 for s = 0. Hence, the guiding center
moves slower than the parallel component of the phase velocity when s > 0 and a normal Doppler
effect is obtained, but it moves faster when s <0 and an anomalous effect is obtained. The
normal emission appears in either the forward or backward hemisphere (B2 cos 6 = 0) depending
on whether w = swg/y, whereas all the anomalous emission is in the forward hemisphere (B, cos 6y
>0). Hence, frequencies below the source frequency |s|wg/y are emitted into both hemispheres
when the propagation modes permit. The simultaneous emission of both the normal and anoma-
lous radiation is due to the dispersive anisotropic nature of the medium which allows waves of a
given frequency to be reinforced in many directions at once. The general solution of (3.23) for
cos Oyw) and its application to VLF and LF emissions in the magnetosphere is considered in the
following section.

The Cerenkov and cyclotron power which is radiated by the electron into dwd( is given by
terms of the form

d*Ps= Lim (wy/T)pdwd(l, s=0,x1,%+2, ... (3.24)

T—x

where the definition of average power and (2.30) have been used. In order to perform the inte-
gration over frequency or solid angle, the delta function must be reduced to an elementary form
by the expansion,

3(f(x) = 8[(x—x5)f ()] = |f" (xxs)| ~'8(x — xy), (3.25)

where x =0 or w and x; is that value of 6 or w for which @ =p,. Therefore, with p and C; given by
(2.29) and (3.14), the power radiated into the linear frequency interval df= dw/27 is obtained by a
trivial integration,
dPs/df = 2me?/cBe)w{ k[ — B1J UX) + (aysBi/X + azB2)]«(X)]?

- [1+(w/n)on/dw] /|1 — (9n/d0)/n tan 6|}o-syw), (3.26)
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where O(w) must satisfy (3.23). Similarly, the power radiated into the solid angle d{) is given by
d?P|dQ = (e2/27rc){ w*ni2[— B1] [(X) + (aysB1/X + a:B2)] (X) ]?

- [1+ (w/n)dn/dw]/|1— Ban cos 8 [1+ (w/n)dn/dw]|}u=wso), (3.27)

where wy(0) must satisfy (3.23). (These expressions for the power differ from those given by Eid-
man [1958] in the factors p, k, and the sign on J;, as well as including relativistic energies.)

Two limiting cases of these power expressions are of special interest. First, consider 8; =0
which gives

dPoldf = (2me?/cBo)w{k*a2B3 - [1+ (w/n)dn/dw]/|1—(8n/86)/n tan 6]} s=pyw (3.28)

for the Cerenkov radiation and the cyclotron terms vanish. Secondly, consider 8,=0, which
gives ps=swg/y and

d?P,/dQ) = (e*/2mc){ w*nik?*[— B ;(X) + aysB1)s(X)/X]? - [1+ (w/n)dn/dw] }u=swp/ (3.29)

for s=1. Here only the normal cyclotron emission is present since the motion needed for the
anomalous effect is absent. (Although the index is omitted from the emission equation in this
case, the frequencies are restricted to the propagation bands of the modes, of course.)

In free space where n=1, ag==1, ar=0, the cyclotron terms in (3.29) reduce to the Schott
formula [see Landau and Lifshitz, 9-8, 1951] when the power from both modes is added (s >0
only since n=1),

d?Ps[dQ = (e2[27r¢)(s2wk/y?)[B2]) '2(B1s sin 6) + cot? 0J%(B:s sin )] (3.30)

where X from (3.15), k from (3.6), and @ =swg/y have been introduced explicitly. Since n >1,
g =1, and ax > 1 (for sin # > 0) in a magnetoplasma, a comparison of (3.30) and (3.29) shows that
the magnitude of the power radiated into a plasma is far greater due to the interaction with the
medium, but the emission equation limits the angles of emission (or frequency bandwidth).

Although the power expression d?Py/d() is evaluated at 6§ and ¢ (¢ is arbitrary by azimuthal
symmetry), this power follows a ray path along 0’ and ¢ where 6’ # 0, in general. It has been
shown by Scott [1950] that the ray path is in the direction of the time-averaged Poynting vector
<S>=(c/4m) <Eem X Hen>. With the electromagnetic fields defined by (2.22) and a propor-
tional to E from (2.26), the ray path direction is along

<S>a<EXKkXE)>, (3.31)

Since E can have an appreciable component along k in an anisotropic medium, the electromagnetic
energy does not propagate in the k direction, in general. For the specific ap and oy given in the

next section, it is readily verified that the direction of <S > is within the acute angle between
k and = B,.

4. Emission in a Cold, Collisionless, Electron Plasma

In order to evaluate the allowed frequencies and radiated power from a relativistic electron,
it is necessary to choose a model for the plasma. In this section the plasma is assumed to be so
cold that thermal motion can be neglected, so tenuous that collisions can be neglected, and the
frequencies of interest are sufficiently high that ionic motion can be neglected. Such a model is
adequate for many physical systems including several aspects of VLF propagation in the magneto-
sphere. In the present application, however, this elementary model is found to be unsatisfactory
at certain frequencies and angles of emission.
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Due to the complexity of the formulas and the large number of independent parameters, the
behavior of the emission is demonstrated by several examples. In particular, the specific pa-
rameter values are appropriate for trapped-electron orbits at sample points in the geomagnetic
field. A brief summary of orbit and medium characteristics for the magnetosphere is given in
the appendix.

Since the propagation frequency is an independent variable here, it is convenient to introduce
the dimensionless quantities /' and P which are defined to be the propagation-cyclotron frequency
ratio and the plasma-cyclotron frequency ratio, respectively,

F=w/w,;, P“—"wp/wn. (4“
The plasma frequency is related to the electron density N, by w?=4mNoe*/m. In terms of the
spatial configuration in figure 2 and these new variables, the dielectric tensor components for the
medium described above have the form [Ginzburg, 1961]
€xr =1+ P%/(1—F?),
€99 =1— P%(sin? 0 — F?)|F¥1 — F?),

€xk =1—P*(cos? 0 — F?)[F(1 — F?),

(4.2)
€r0=—€or =" 1P? cos O/F(1 — F?),
€k =— €xr="11P? sin O/F(1 — F?),
€9 =+ €xo =1 P? cos 6 sin 0/F2(1 — F?).
For these specific components, the indices of refraction for the medium are found to be
n% =1+ 2P¥P?—F?|/D., (4.3)
with
D. == [F?* sin® 6+ 4F%(P?>— F?)? cos? §]V2 —2F*P?— F?*) — F? sin® 0, (4.4)

and the polarization coefficients defined in (3.5) are given by
ag= =—F cos 0/[F%+ P?*/(n2 —1)]
=—2F(P?—F?) cos 0/[—F? sin? = (F* sin* §+ 4F%P2— F2? cos? §)'?], (4.5)
o= (N2t 1) ERSTN G (RS EE2)
=— [P2F sin 0 — ap-P? cos 0 sin 0]/[P%(cos® 0 — F2)— FX1 — F?)]. (4.6)
In this notation the upper (+) sign denotes the ordinary (whistler) mode and the lower (—) sign
denotes the extraordinary mode of polarization (Ginzburg’s nomenclature). The expressions for
ag- and oy~ describe a wave of the form exp i(wt —k - r).
The indices given by (4.3) and (4.4) have several unusual properties. They have resonances
(n? ==*) at
1 _1 , A y
Fpo=5 P+ 1) F 5 [(P+1)?—4P* cos? 0] (4.7)

753



or
cos? O =F2[1+ (1—F?)/P?] (4.8)

as well as at F=0, and they have cutoffs at

1

+ Gt " (n=0). (4.9)

Fo=P  (n:=0), Fx,=%;
From these relations it can be verified that Fr. < P and |cos 0|, Fx > Fr_> P and 1, and F, < P.
In a slowly varying medium, electromagnetic energy is absorbed at a resonance and reflected at a
cutoff, in general.

In the frequency band 0 < F < Fp,, the ordinary mode index n. is real and appreciably greater
than unity; for Fp. < F <F,, n, is imaginary (evanescent); and for Fy < F < %, n, asymptotically
approaches unity. In the frequency band 0 < F < F, the extraordinary mode index n_ is imag-
inary; for Fz < F < Fg_, n_ is real and increasing; for Fr_ < F < Fx n_ is again imaginary; and
for Fx < F < o, n_ asymptotically approaches unity.

At very high frequencies where the index is near unity, the radiation from an electron is
described approximately by the free-space formulas derived by Schwinger [1949]. For those
frequencies where the index is imaginary, emission of electromagnetic radiation cannot occur.
‘Hence, attention will be confined hereafter to the ordinary-mode frequency band 0 < F < Fg.,
where n; > 1, and to the extraordinary-mode frequency band Fz < F < Fg_, where n_ > 0. (Since
ionic motion has been neglected, the frequencies are further restricted here to F >> m/M, Pm/M,
where M is the ion mass.)

The ordinary mode frequency band 0 < F < Fp, is often called the whistler mode because VLF
radio whistlers propagate in this mode. The whistler-mode index of refraction is plotted in figure
3 as a function of F with § parametric and P=2. For a given F (and P) it is apparent that |cos 6|
> cos Og. This mode is frequently represented by its quasi-longitudinal approximation

n2=1+P?/F(|cos 6] — F) for F2? sin* 0/cos? 0 << (P?—F?)?, (4.10)

and its resonance value, |cos 0], is also indicated in figure 3. When the solution of the emission
equation is near the resonance, the discrepancy between Fr, and |cos | can cause serious errors
in the power evaluation if the approximation is used.

1COS 61 = 0259 0500 0707 0.866
0.226 0457 0662 |0.835
p=2

Fre =

100

CUTOFF
(T=1250°

T T RTTTEY

AL T Al 1 1 1

FIcURE 3. The ordinary (whistler) mode index of refraction.
The quasi-longitudinal resonance approximation |cosf| and the thermal cutoff for longi-
tudinal (§ = 0°) propagation are also shown.
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FIGURE 4. The extraordinary mode index of refraction.

The extraordinary-mode frequency band Fz < F < Fgr_ has no special designation nor reso-
nance approximation. It is shown in figure 4 as a function of F' with # parametric and P=2. Here,
for a given F Z P, | cos 0 | = cos Og.

The polarization of these modes is quite similar. From (4.5) and (4.6) it can be shown that
the electric vector of the whistler mode always rotates in the same sense as electrons gyrate about
the static field. The rotation in the other mode has the same sense when F' > P, but is opposite
when F < P because n_ < 1.

Although the indices of refraction given in (4.3) are complicated algebraically, when they are
substituted into (3.23), the emission equation for both modes of propagation reduces to a quadratic
in cos?04(F),

A cos* 0,+ B cos? 0,+C=0, 4.11)
where
A= BiF(P*— F%*— F(P*— F?)]+ BIP2F(F — slv),
B = B3FH2(P* — F2) + P* = 2F*|(F — s]y)* — P*(F — s[y)*, 4.12)
C=F2P2—F2+1)(F — s/y)*.

The allowable parameter ranges for 8> and P and allowable frequencies F are determined by the
condition that the elementary roots,

cos? 0 =[— B £ (B*—4A4C)"?]/24, (4.13)
are real, positive, 2 cos? Oz according to the mode, and < 1. These superscripts which denote
the two roots should not be confused with the subscripts () which denote the two modes of propaga-
tion. In keeping with the emission directions assigned by (3.23), it is required that 0 < 6% < 7/2;
0=< 65 <m/2 when F >s/y, s>0; or w/2< 0%, <7 when F <s/y, s>0; and 0 < 6= < 7/2 when
s < 0 irregardless of F.

In principle, one could determine F(6), but the equation is an eighth degree polynomial and its
analytical properties are more obscure.

Since the two propagation modes are quite different, their emission properties will be discussed
separately.

Ordinary- (whistler-) mode emission is discussed first. A typical set of curves for cos 0% (F)
are plotted in figure 5 for s=0,+1,+2, + 3, with P=2.25 and several arbitrary values of B,. The
Cerenkov emission is in the forward hemisphere, the normal cyclotron emission is in the backward
hemisphere, and the anomalous cyclotron emission is in the forward hemisphere. The cos
0f and cos 0 regions are adjacent but distinct with a boundary at cos 0, defined below. In the
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Cerenkov case, only, there is an upper limit 8; on 82 which occurs on the boundary cos 6.; however,
there is always a root for small B> when the index is unbounded. It is apparent from the plots
that a given frequency may be emitted along two cones defined by 6 and 6, along only one cone
defined by 65, or may not be allowed at all. An upper bound on the index which is discussed in
the next section is also shown.

The solutions of the emission equation for this mode have a few analytical properties which are
quite easily demonstrated. In the low frequency limit ¥ <1 (P ~ 1, B2 < 1), the solutions can be
expanded in Maclaurin’s series,

cos? f = {(F — s/y)?[(F — s|y)* — B52P* + F?] |B3F(B3P* + s*[y*)} [1 — O(BEF™)],

cos? 07 = {cos? Or/[1 — B32P2 + 1)F?/(F — s[y)*]} [1+0(B3F?)].  (4.14)
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From these expressions it is easily verified that 1> cos? 6% > cos? 0> cos? O, cos? 6 > 1 for
s # 0, and cos? 0 approaches cos? O for s # 0. Hence, as F' decreases, Fr, decreases faster, so
that n, approaches the resonance limit at Fg; and not the limit at ¥=0. Also, the emission is
transverse to By when F' < 1. In the Cerenkov limit =0 (s=0), the emission equation has the
simple solution

Fi(0)= i% (1—4B3P2y2)12, (4.15)

N | —

Since F must be real, the parameters must satisfy the condition 8Py < ¥2. In the cyclotron limit
0=0 or 7, the emission equation reduces to an elementary cubic in F which always has one root
F(0 or ) in the range 0 < F < 1. By definition, the boundary between the two solutions is

cos? §f = cos? ; =— B[24A =cos? 6], (4.16)

and the vanishing discriminant B2=4AC determines F; and the maximum g, for the case s=0.

The frequency spectra and the angular patterns of the power given by (3.26) and (3.27) have
been evaluated for a few specific parameters. The results for Cerenkov radiation and the first
few cyclotron harmonics are presented in figures 6 and 7. The parameters of the background
medium have been assigned the values f3=wp/2m =102 ke/s and fp= wp/2m =229 kc/s, which
correspond to the magnetospheric locus L =3, A=30° defined in the appendix. The pitch angle
¥ between the electron’s velocity and By has been set at 30° so that 82/8:= V3. In figures 6 and 7,
the radiated power is shown for the electron kinetic energies KE =10, 1000 keV (dashed and solid
curves); the very fine structure involving AF < 0.01 is omitted. When both roots of the emission
equation contribute to the power, the superscripts = are explicitly given with the values of s. The
dotted curves are mean values of the power in regions with very large amplitude fluctuations where
the index is unrealistically large. The effects of a bound on the index, which are discussed in the
next section, are also included (solid curves only).

These figures demonstrate several unanticipated features of the emission process. First,
there is a broad maximum in the Cerenkov spectrum, and the maxima in the cyclotron spectra
are not at F;(m) as linear emission theories tacitly assume. Second, the angular patterns show that
the major portion of the energy is radiated at large emission angles from the static field B, (wave
normal direction, not ray path direction). Third, the energy in the cyclotron harmonics increases
with harmonic number. Fourth, the energy radiated by the cyclotron harmonics becomes infinite
as F— 0 or #— 7w/2. Finally, the power radiated by a nonrelativistic electron increases as S
(or KE) decreases. (The infinite amount of energy indicated by these last three properties is sup-
pressed by introducing thermal, ion, or collisional effects.)

f, ke/s
- 10 20 30 40 50 60 70 80 90 100
& = T T =) & T T T T
3 —sa~
. MEAN //4 ZSSQY B, =0.097 B, =0.169
L ,/_’/\L}L;\E\\\\\\\\ fo = 102 ke/s fp =229 ke/s
VIS N \T N

8,=0.097 B,

fg =102 kess f,
~—=nS$h=20

-24 -25 -26

oo [0 ——

FIGURE 6a. Frequency spectra of Cerenkov (s=0) and FIGURE 6b. Angular patterns of Cerenkov (s=0) and
normal (s > 0) and anomalous (s < 0) cyclotron radiation normal (s > 0) and anomalous (s < 0) cyclotron radiation
in the ordinary (whistler) mode from a 10 keV electron in the ordinary (whistler) mode from a 10 keV electron
in a magnetoplasma. in a magnetoplasma.

(L=3.0, A=30°) (L=3.0, A=30°)
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Figure Tb. Angular patterns of normal (s > 0) and anom-
alous (s <0) cyclotron radiation in the ordinary
(whistler) mode from a 1000 keV electron in a magneto-
plasma.

(L=3.0, A=30°

These properties of the power expressions can be demonstrated approximately without per-
forming extensive numerical analysis. From (4.5) and (4.6) it is easily verified that |ox| > |ag| = 1
for 0 < 6 < 7. Using this result and the emission equation as a definition of n, and assuming that
|J!| <|axJs| and that the partial derivatives of n are slowly varying, the power expressions are
proportional to

dPoldf, d*PoldS) ~ F3]3 tan?0/B3(P?— F?)? (4.17)

dPg/df, dPg/dQ ~ s*F J? tan? 6/2B3(P? — F2)? s#0, (4.18)
for F'# P. For small F the approximation cos 6§~ = F verifies additional frequency properties.
When 6=0 or 7, it is found that ax =0, ag=7F 1, X=0, and the power expressions vanish for all s

except

dP:/df=[(me?/c) (wB}B2) (1+ Cp)/ |1 — Co| Ir=rm,

(4.19)
d*P1/dQ = [(e?/4arc) (wnB}) (1+Cr)/|1+Ben(1+Cr)|1p=r,wm),

where

Cr=P*2F —1)/2(1—F) (P*— F2+F),
(4.20)
Co=P22(1—F) (P2— F?).

In addition to the results at L=3, A=230°, ¢y =230°, the power expressions have also been
evaluated at 3, 15°, 19°; 6, 45°, 19°; and 6, 15°, 6°, in order to ascertain the effect of varying f3, fp,
and ¢. Although the relevant frequencies vary considerably, the general shape of the frequency
spectra and angular patterns do not change appreciably. As a quantitative example, it is found
that a 10 keV electron at 6, 15°, 6° radiates less than 10-33 W/(c/s) at frequencies above 1 ke/s (the
lowest considered) although fz=>5.5 kc/s and fp = 70 kc/s so that n is large, and furthermore, below
1 ke/s the cyclotron emission is confined to 90° < 6 < 100°.

Extraordinary-mode emission is considerably more complicated than ordinary mode emission.
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The emission equation roots cos 0:(F) are plotted in figure 8 for s=0, £1, £2, =3, =4, with
P=2.25 and a few arbitrary values of B2. The Cerenkov emission is again in the forward hem-
isphere, but the cyclotron emission is spread over both the forward and backward directions. The
complicated nature of the solution for F ~ sy < P is qualitatively expected from (3.23), and the
discontinuity at F'=P for small B. is attributable to the sharp change in n_ there.

Emission in this mode is restricted by the index to the frequency band F; < F < F}AX
=(P?+1)"2. Some analytical properties of the solutions are observed by expanding them in
the limit B, << 1,

cos? 0 = (1 —s/yF)*|B3+ & + (P*— F?)[P*— (P*— F?p|P2F* + 0(83), (4.21)

cos? ;= cos? Og[1—B28/(1—s/yF)*+0(B3)],

759



where

8=2F2/P?—1—2(P*— F2[P?— cos? bp.

(4.22)

In general, F # s/y so that cos? 6 > 1 due to the first term in its expansion and cos? 0; = cos?®

0r(< 1 for F > P).
ing on the other parameters.

limit F'=(P?+1)!2, cos? 0; ~ cos® 0z =0.

When F = s/vy, the root cos® §* may contribute to the emission pattern depend-
However, the expansion for cos? 6; is not valid when F = s/y. At
F =P # s/y, it is found that =0 and cos? §r =1 so that cos? 67 = 1.

Also, at the frequency band

The frequency spectra and angular patterns of the Cerenkov and cyclotron power radiated
in the extraordinary mode by 10 and 1000 keV electrons at L =3, A=30°, with ¢y=30° are shown

in figures 9 and 10.
B, by the cyclotron fundamental.
by a bound on the index as before.

In this mode much of the energy is radiated at small angles to the static field
The power singularity at 6 =1/2, F =(P?+1)"/2 is suppressed
The Cerenkov emission near §=0, F =P is not adequately

described by this formalism; it consists of electric waves (E,, Eg=0, Ex # 0) which travel with
the source (B2n=1) and the infinite power obtained here is invalid. A detailed treatment of this
Cerenkov effect has been given by Gerwin and Guernsey [1963].
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5. Discussion

Since the elementary model plasma described in the last section leads to the emission of an
infinite amount of energy by the gyrating electron, it is necessary to introduce some additional
effects which will limit the emission and give a physically meaningful result. The major factors
which were omitted previously are thermal motion, ionic motion, and collisions in the background
medium. For VLF propagation in the magnetosphere and certain other applications, the dominant
modification of the propagation properties is obtained by including thermal motion alone.

Mathematically, the boundless energy radiated into the plasma medium is due to the un-
bounded property of n. at Fg.. From figures 5 and 8 it is evident that the solution of the emission
equation approaches 6 when F approaches 0, 6 approaches 7/2, or |s| increases, and the power
increases sharply because i is proportional to n2. Consequently, a physical process which
introduces a finite upper bound 7. on the index is essential if the radiation is to have physical
meaning. Furthermore, such a bound implies |cos 07|Z[cos 6-|, F Z F., |s| <5., and B> B,
according to (3.23), and the values of these limits depend on the explicit form of n..

An artificial bound on the index is introduced here to demonstrate the qualitative effect that
it produces on the frequency spectra and angular patterns of the radiated power. The index is
assumed to be given by (4.3) when n. <n., and by n. when n. >n.. Since n. increases mo-
notonically as |cos 67| approaches cos 6, the solution of the emission equation is cutoff at the
discontinuity where |cos 6;|=|cos 6.|. In figures 5 to 10 the cutoff is shown for the case 1= 20.
The finite power for this artificial case is described by the solid curves. Although the sharp
edges would disappear for a continuous index, the dominant maxima are expected to remain. Itis
noteworthy that the nonrelativistic maxima in both propagation modes occur at the cutoff (figs. 6
and 9) so that a small change in the cutoff location produces a large change in the radiated power.
The extent to which this artificial case is quantitatively applicable to a real case depends on the
validity of the index approximation which is discussed below.

Insofar as the index approximation is valid, a comparison can be made between the power
in the different harmonics and between different electron energies. For this purpose the power
expressions were evaluated at a few intermediate energies (not shown). In general, the maximum
power in the normal and anomalous cyclotron harmonics, and the Cerenkov radiation (when it
exists) is comparable at a given energy. The total radiated power is a slowly decreasing function
of B: (or kinetic energy for a fixed pitch angle) at nonrelativistic speeds, with an average level of
1073 W/(c/s) in the ordinary mode and 10725 W/(c¢/s) in the extraordinary mode. The range of
speeds Bs, which allow Cerenkov radiation, is severely restricted from below by a bounded index
and above by lack of a polarization interaction. At relativistic speeds the higher cyclotron har-
monics dominate, but they are restricted by the upper bound s.

The formulas for the dielectric tensors, polarization coefficients, and refractive indices which
include additional effects are quite complicated and difficult to apply. The extent of their influence
on the results is evaluated approximately here by considering some special cases.

Random thermal motion is considered first. Since it tends to disorganize the ordered motion
which is essential for wave propagation, there is a minimum phase velocity (or n.) which the
thermal medium can support. The dielectric tensor for a thermal medium is known, and an ex-
tensive review of the theory has been given by Stix [1962]. However, the dispersion equation
is so complicated, in general, that it has only been solved in a few special cases. In particular
for 6=0 (or ), the maximum occurs at F =1, and for a Maxwellian distribution with temperature
T, its value is ny = 3Y2P?3(rMc2/KT)"$/2. Liemohn and Scarf [1963] used a bell-shaped alge-
braic distribution which gives a much simpler dispersion equation to study the longitudinal whistler
mode n.(§=0). They found that the zero-temperature index is a valid approximation when
1—F >> (KT/Mc*"?n,. As yet n; has not been studied for arbitrary 6, and n_ has not been con-
sidered at all, although similar behavior is anticipated.

It is impossible to accurately assess the thermal effect on the emission with this limited
amount of information about the index. Nevertheless some speculation is conceivable. For the
magnetospheric case T=1250 °K and P =2.25, the zero-temperature index for =0 or 7 is valid
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when 1 —F >>0.02 and n: < n; =20 (see fig. 3). Hence, the artificial discontinuous index used
in figures 5 to 7 is a good approximation when |cos 8] >> 0. At other angles of emission and in
the extraordinary mode the validity of the index approximation is unknown at present.

In a thermal magnetoplasma the electromagnetic waves are also absorbed as they propagate so
that the power expressions are only valid near the source. The absorption is due to the cyclotron
resonance mechanism. The component of thermal motion parallel to By causes a Doppler shift
of the propagation frequency in the rest frame of each electron. For each angle of propagation
there is a corresponding velocity component which shifts the propagation frequency to the reso-
nance. Hence, the damping decrement depends on the frequency and angle of propagation as
well as the thermal velocity distribution of the electrons. Its value is determined by the general
solution of the dispersion equation. Due to the frequency and angular dependence, the power
spectra and patterns will change as the signal propagates away from the source. Fortunately,
in many applications the temperature of the plasma is so low that very few electrons resonate and
the thermal attenuation is negligible. If the background plasma has an appreciable number of
“fast” electrons due to a high temperature or other sources, however, the damping must be
considered.

In a recent series of papers, several limiting cases of emission in a thermal magnetoplasma
are analyzed by Pakhomov, Stepanov, and Aleksin [1962], Pakhomov and Stepanov [1963a, 1963b].
In general, their analysis is restricted to the index values n. ~ 1 where several approximations
for the emission equation and the power could be made. When the limitation on n. is relaxed,
other restrictions on w or 6 are imposed. Hence, their results cover a variety of special cases
but do not provide information about the complete frequency spectra and emission patterns.
A convenient feature of their expressions is that the thermal attenuation factors are included
explicitly.

Due to the inertia of the ions, they only interact appreciably with the electromagnetic fields
when F <<1. In this region Hines [1957] has shown that the index is bounded for § ~ 6 and
ionic effects are important when # < (m/M)'2. Since cos 6~ ~ F when P > 1 according to (4.14),
the limit is also applicable to the angle of emission. For the particular case of ionized hydrogen,
the limit is so close to the transverse direction that the bound imposed on the power is extremely
large compared to the anticipated thermal bound. Consequently, ionic effects can usually be
disregarded.

Collisions which the electrons make with heavy particles in the medium are usually approxi-
mated by a viscous damping force in the equation of motion. Such a force restricts the wave
propagation in a manner similar to thermal motion. The theory has been reviewed by Ratcliffe
[1959], Ginzburg [1961] and others. In general, collisions are only important when the collision
frequency o, satisfies . > w. In the magnetosphere, w. < 10 rad/sec so that collisions are neg-
ligible in the VLF band. Unfortunately,the dielectric tensor for this elementary theory is not
hermitian so that when collisions must be included a different formulation of the problem is needed.

6. VLF and LF Emissions

The foregoing properties of the radiation from electrons in a magnetoplasma suggest some
conclusions about the role that electron emissions might play in the generation of VLF and LF
emissions. An important test for any prospective source is to compare the theoretical and ob-
served power of the signal. Also, since the emissions have a wide variety of discrete dispersion
patterns as well as continuous bands, some mechanism is needed to provide for frequency selec-
tion. Finally, the emission properties suggest another strong signal which is only observable by
satellites or rockets.

In the magnetosphere, the geomagnetic field and the plasma density vary so slowly in space
and time that the propagation theory for uniform media is usually acceptable. However, the
magnetosphere changes significantly over several wavelengths so that a signal which propagates
in one region may be absorbed at a resonance or reflected at a cutoff in a nearby region. A further
complication is presented by the ionosphere where the electron density increases sharply. On the
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geomagnetic equator the cyclotron frequency varies continuously as the inverse cube of geo-
centric distance from ~ 1 Mc/s at the earth’s surface to ~ 1 ke/s near 10 earth radii. The variation
of the plasma frequency is very similar with a range from ~ 5 Mc¢/s in the F2 peak of the ionosphere
to ~ 20 ke/s near 10 earth radii. Mathematical models of the region which include latitude
effects are presented in the appendix. In the magnetosphere, P varies from ~ 0.03 to ~ 20.

At the conclusion of section 3, it was noted that the ray path followed by the electromagnetic
energy is not in the wave normal direction (6), but rather is in the time-average Poynting vector
direction much closer to the magnetic field direction. As a result, it is frequently assumed that
the ray path follows a magnetic flux tube. While such an approximation is questionable, it provides
a convenient framework for discussing some general propagation properties of electron emissions
from their sources to potential receivers.

Due to the cutoffs and resonances of the modes, the signals only propagate in well defined
regions of the magnetosphere. In the whistler mode the emitted frequencies can always propagate
into regions of increasing wp (inward), but can only propagate into regions of decreasing wg (out-
ward) if F <Fg+ (neglecting thermal and collisional effects). In the extraordinary mode the
emitted frequencies can propagate into regions of increasing wg until F=F,, where they are
reflected and can propagate into regions of decreasing wy if F < Fg_. Hence, the signals in the
whistler mode can penetrate the ionosphere and reach the ground, whereas signals in the other
mode are reflected, in general, above the ionosphere, and both modes have a minimum upper
frequency limit which occurs at the equator. A schematic diagram of possible propagation paths
is shown in figure 11. Since part of the whistler mode energy is reflected at the ionosphere by
irregularities, an emission may echo between hemispheres. Similar echoing in the extraordinary
mode is only possible when the source is very near the equator.

A detailed calculation of the VLI and LF power which is radiated into the magnetosphere is
impossible at this time because the propagation properties are not fully understood and the phase
space distribution of the electrons is unknown to a large extent. Hence, some crude estimates of
the power from incoherent and coherent sources must suffice.

First, it will be shown with a specific numerical calculation that incoherent electron emissions
apparently cannot account for the observed emissions received on the ground in the whistler mode.
The density of magnetospheric electrons N. which emit appreciable radiation is assumed to be
~ 0.1 elect/em®, which is fairly consistent with satellite measurements reported by O’Brien [1962]
and whistler analysis by Liemohn and Scarf [1964]. The volume of a flux tube with a 1 ¢m?
base which crosses the equator at 3 earth radii (L =3) is found to be ~ 10 em3. On the basis
of the numerical results for the ordinary mode, the average emitted power P, along the flux tube is
assumed to be on the order of ~ 1073 W/(c/s). With these gross approximations the incoherent
power at the base of the flux tube is found to be 102! W/em?(c/s). This is several orders of mag-
nitude below the observed power level P, of 10~ W/ecm?(c/s) at the base of the magnetosphere
(above the ionosphere).
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FIGURE 1la. Possible ray (energy) paths for the ordinary FIGURE 11b. Possible ray (energy) paths for the
(whistler) mode of propagation in the magnetosphere. extraordinary mode of propagation in the magnetosphere.
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Second, coherent emissions from ‘‘bunches” of electrons are shown to be a feasible source
of the emissions. Since the electromagnetic fields of individual sources must be in phase for
coherent radiation, the total power is proportional to the number of emitters squared. The
required size of the bunch is determined by equating the observed power over area A, to the
emitted power from an extended source of cross section 4. and length /. with coherent efficiency €.

ArP,=P.(eNcAel.)*?. (6.1)

The radiation is assumed to be confined to a flux tube so that B,4,=B.A.. Then, with the values
of P, Pe, and N, given above and the arbitrary assumptions B./B,=0.1 and €=0.001, eq (6.1)
reduces to 4.2=10"2 cm*. Hence, the dimensions of the bunches are small relative to the
magnetosphere, and the scale is comparable to a few wavelengths. On the basis of this crude
calculation, it appears feasible that coherent emission from electron bunches is a conceivable
source of the emissions in the ordinary mode.

Since the electron emissions are continuous over a wide band of frequencies, the discrete
nature of the observed VLF emissions must be attributed to the coherent interaction. The trig-
gering of emissions, which Helliwell [1963] has observed, suggests that strong whistler mode signals
from lightning strokes interact with the electrons and organize their phase space distribution so
that specific frequencies are amplified by coherence. The various interaction mechanisms which
may produce this bunching have been reviewed by Brice [1964].

The one-dimensional calculations by Dowden [1962c] and others, which support the theory
that emission at the Doppler-shifted fundamental cyclotron frequency (Fi(w)) is responsible for
hooks, is not ruled out by these results, but it is much more likely that stronger emissions at other
frequencies in nonlongitudinal directions dominate the coherent signals. The traveling wave
tube amplification of incoherent signals which is proposed by Gallet and Helliwell [1959] seems
improbable because a gain of several orders of magnitude is required.

The power in the extraordinary mode is considerably stronger than that in the ordinary mode
above the ionosphere. Hence, much less coherence is necessary for this mode to produce signals
which are detectable in the presence of the observed whistler mode noise level. The average
power level is on the order of 10-2> W/(c/s) so that 10? electrons in the flux tube described above
produce 1071 W/ecm?(c/s) of incoherent power at the base of the tube. Rocket observations by
Walsh, Haddock, and Schulte [1963] have revealed intense noise signals in the extraordinary
mode so that this mode cannot be ignored.

Certainly the calculations presented here are based on very limited numerical results and must
be considered as only preliminary estimates of the power levels. A thorough quantitative analysis
must await the inclusion of additional limiting physical effects such as thermal motion and perhaps
collisions. However, they serve to point out some inherent weaknesses in the existing theories
for VLF emissions in the ordinary mode, and they point out complications by the extraordinary
mode when observations are made above the ionosphere. Furthermore, order of magnitude cal-
culations of the power provide an additional test for future theories of VLF and LF emissions which
are based on charged particle radiation in a plasma.

I thank J. A. Fejer, W. B. Hanson, and J. E. Midgley for many discussions and helpful sugges-
tions during the preparation of this paper. The assistance of L. B. Wadel, who programmed the
computations, is gratefully acknowledged. This research has been supported by the National
Aeronautics and Space Administration under grant NsG—269-62.
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7. Appendix

The magnetic field of the earth is closely approximated by a dipole field of the form
By =b(—2 sin AR+ cos X A)/R?,

where R is the geocentric radial distance and \ is geomagnetic latitude. With R expressed in
earth radii the dipole moment b is 0.313 gauss (earth radii)3. The field line equation is

R=L cos? \,

where L is the radial distance at which the field line intercepts the equator (Mcllwain L parameter).
The scalar field is given by

Bo=0b(1-+ 3 sin2 N)'/2/L3 cos® \.

Several mathematical models which closely approximate the thermal plasma density in the
magnetosphere have been proposed. In this analysis the field-line diffusion model by F. S. Johnson
[1962] is used:

No=12500R~* cos® N exp (GR~! sin* \) R>1.3

where G=MgR./2KT is the scale factor of the medium in earth radii (R,). The temperature of the
plasma T'is usually assumed to be ~ 1250 °K, which gives G =3

The motion of high-energy electrons in this medium is described by the first-order orbit theory
for trapped particles [Welch and Whitaker, 1959; Chamberlain, 1963]. The electrons are con-
strained to follow helical orbits along magnetic flux tubes and are reflected at conjugate mirror
points in opposite hemispheres. The longitudinal motion is neglected here. Due to conserva-
tion of the electron’s magnetic moment, the pitch angle  between the velocity and field vectors
is related to its equatorial value . by

sin = (1+ 3 sin? A)'* sin ./cos? .

The latitude of the mirror point \,, is determined by setting iy =7/2 in this equation. Hence, the

orbit is completely specified by only two parameters, L and {5, which are independent of the kinetic
energy.
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