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The relativistic form of the Vlasov equation is used to solve the problem of transmission and

reflection of normally incident electromagnetic waves.

Transmission and reflection coefficients

are derived for a plasma half-space and for a plasma slab, using the assumption that electrons are

specularly reflected at the boundaries.

These coefficients are functions of the ratio of the electron

thermal speed to the vacuum speed of light, indicating that temperature dependence in these cases

is a relativistic effect.

Nevertheless, it is seen that the nonrelativistic limits of these coefficients

differ from those obtained by using the cold-plasma equations since the transition to the zero-temper-

ature limit has a nonuniform character.

1. Introduction

Investigations of transverse electromagnetic wave
propagation in isotropic plasmas are usually based on
the cold-plasma equations. Since such an approach
reveals that the phase velocity of the waves is larger
than the vacuum speed of light ¢, and therefore much
larger than physically admissible thermal velocities
of the plasma particles, it is concluded a posteriori
that thermal effects are negligible. The validity of
the cold-plasma approximation for the case of a trans-
verse wave propagating in an unbounded collisionless
plasma has been demonstrated by Buneman, [1961a],
who derived a relativistically invariant dispersion
relation by solving the equations of motion and con-
servation of the different electron streams that are
superimposed on each other in their combined fields.
In contrast to the case of longitudinal waves, in which
the inclusion of temperature effects is necessary to
obtain a dispersion relation, Buneman’s dispersion
relation for transverse waves contains a thermal cor-
rection to the cold plasma result that is negligible for
laboratory temperatures.

The large phase-velocity argument which motivates
the use of cold-plasma formulas applies only to regions
of the plasma which are far away from boundaries.
In investigations of longitudinal wave problems, a
kinetic approach has revealed the existence of a short
range disturbance which is a superposition of modes
which have phase velocities ranging from zero to the
vacuum speed of light [Taylor, 1963]. It is expedient,
then, to use a relativistic kinetic analysis to investigate
the effect of boundaries on the transmission of trans-
verse waves, since the slow components of the field
provide a mechanism for the exchange of energy be-
tween the field and the plasma even in the absence of
collisions. In this paper, the approach previously
developed for longitudinal waves is extended to the
transverse wave problem. We will obtain a dispersion
relation for the propagating component of the field
which is identical to that of Buneman, and also a

tractable expression for the short range disturbance
produced by the effect of the boundary on the elec-
trons. We will then define transmission and reflec-
tion coefhicients for the plasma half-space, and contrast
these with the results obtained with the cold plasma
approximation. Finally, we will treat the problem of
electromagnetic wave propagation in a plasma slab.
In both of these cases temperature dependence of the
coefficients vanishes when the electron thermal veloc-
ity may be neglected when compared to the speed of
licht, but the limiting results differ from those obtained
by using the cold-plasma equations.

It should be noted that as in most treatments of
problems of this type, we will assume specular reflec-
tion of electrons at the boundary. This assumption is
based on the existence of a potential sheath [Bohm

and Gross, 1950].

2. Formulation of the Problem

We erect a rectangular coordinate system so that
the plasma is contained in the half-space z>0. An
incident transverse wave with frequency o propagates
in the vacuum in the positive z-direction so that its
electric field is alined with the positive x-direction.
We will determine the fields in the plasma and the
amplitude of a wave reflected into the vacuum. Be-
cause we wish to solve this problem by means of a
Fourier transformation, we use a mathematical arti-
fice which was introduced by Shafranov [1958]. We
consider an infinite plasma with a sheet current source
at the origin z=0. Setting E(z) =é,.E(z)e"!, we have

92 w* . :
a_zzE+§E+’w“‘l/:_A5(z) (1)

where j is the plasma current and 4 is an arbitrary
constant. The solution of (1) for all z is certainly a
permissible solution for the half-space z>0 of our
original problem. We need only require that at z=0,
it connects a physically proper way to the vacuum field
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in the left half-space, which means that the constant
A must be chosen so that the electric and magnetic
fields are continuous across the boundary.

The plasma current is given by

—ef d?uBcu,f, (2)

where f is the solution of the relativistic collisionless
kinetic equation [Clemmow and Willson, 1956],

. of e afo
iwf+Bcu. 2 Mo 8 o

=1+u (3)
The notation here is the same as that used previously
in the longitudinal wave problem [Taylor, 1963].
Proceeding in a straightforward manner analogous to
that of the longitudinal wave treatment, and assuming
specular reflection of electrons at the boundary, we
obtain

(&+%) - Katle—2 DB
" L " Kelz+2)E@)dz =— 48(), (4)
where
Kz()—%f durf du':f itz 2l
(221

Now we can consistently set E(z)=E(—2z) to obtain

82
(azz-f- ) f Ki(|z—2'|)E(Z')dz' =— A8(z).  (6)
A Fourier transformation of (6) yields
A ikzdk
E@z)= “om wge—, (7)
- = 2 — Ko(k)
where o,
Bux =
—,8112 =1

We have set w=|w|e® so that the integrand is defined
everywhere in the k-plane except at those points on
the branch line k= |k|e® for which |k| > |2| .
c
We may simplify the integral in (7) by deforming the

contour of integration in the k-plane. The result of
such a procedure is that the electric field may be

written as a sum of two components E; and E,, where

] e—ikz
B [<w/c)2—k2—KT<k>} ey

and

i eikzdk
27 Jo (w/c)? — k2 — Ky(k)

Ex2)=+ (10)

Each £; in the summation of (9) is an isolated pole of
the integrand of (7), and the path C proceeds clock-
wise around the branch line in the upper half of the
k-plane.

3. Dispersion Relation

To calculate E; we must find the roots of the dis-
persion relation

w?
g—kz——Kﬁk)=0. (11)
We set n=kc/w to obtain
1—n2—£§ I(n)=0, (12)
where
ti= [ BT

It is shown in the appendix that this relation may be
written to first order in the ratio of electron thermal
energy to electron rest energy as

3K

(1)2
1—n2—;22[1+(n2— =1 =0, (13)

which is the same as that obtained for the unbounded
plasma by Buneman [1961a], who used a different
approach. If we give w, the same small phase angle
o that we have given w, then (13) is a linear equation
in n? with real coefficients, and it has one real root.
It can be shown that no roots have been lost in the
approximation by examining the exact dispersion
relation given by (12). This means that in the evalua-
tion of E; we need consider only one pole in the k-
plane, and that this pole lies on the positive real or
the positive imaginary axis in the collisionless limit.
A simple computation yields

iAeikp?
E@="5" (14
where
, ) o
1—(a)§/cu2)(l—§KT/mc )
ky=w/c (15)

1 +(w12/w2) (KT/mc?)
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It follows from (15) that whenever o' <w? (1—§

2
KT/mc?) we obtain a nonpropagating exponentially

5
1 —3
KT|mc?) we obtain a propagating unattenuated wave.

This conclusion represents a relativistic correction to
the well-known cold plasma result. Maxwell’s
equations lead to a magnetic field B; associated with
the electric field that we have computed, and it may
be written

damped disturbance for E,, while for o> w?

= s
iA .
B] :é Blzé ——e”‘pz.
Y .‘/20)

(16)

4. Short Range Component of the Plasma
Field

We may evaluate the field E, by the extension of
Landau’s method [Landau, 1946] which was previously
developed for the relativistic treatment of longitudinal
waves [Taylor, 1963]. We allow & to go to zero so
that the branch cut swings onto the real axis. The
integral around the cut on the real axis may be re-
duced to

__4
Ez(Z)— 9 )
fx [K_(k)— K (k) ] e?**dk g
el @~ — K0 [ wleP—e—K.p 17
where
wiw +o 4o
K.(k)= f du,,-f du,,f du
C2 - — (==
Bus (9fo/dus)
ke Bu:— (18

The path C; is a semicircle in the upper half of the
us-plane, while the path C.is a semicircle in the lower
half of the u.-plane. It may be shown, using the
method of steepest descents that Ex(z) and Bs(z) have
negligible amplitudes several Debye lengths away from
the boundary, which means that the range of these
components is proportional to the square root of the
temperature of the plasma. The amplitudes of these
fields at the interface may be computed by setting
z=0 in the integrands of their representations and

expanding in powers of (KT/mc2). We obtain
E»(0) =0[ (KT/mc?)/2] (19)
and
idw?
B(0) +0 [(KT/mc2)] . (20)

T 2V 23

These results, combined with (14), (15), and (16)
indicate that there is a nonuniform transition to the
zero-temperature case, so that the transmission and
reflection coefhicients of the plasma interface differ

from those obtained by the cold plasma approximation
even for very small temperatures. This is due to the
behavior of the short-range component of the electric
field —its amplitude and its range are both proportional
to (KT/mc?)!2, so that the magnetic field which is
induced by it has a finite limit as 7— 0.

5. Transmission and Reflection Coefficients
for a Half-Space

Combining the results of sections 3 and 4, we find
that to zero order in vy/c the fields at the wall are
given by

iA4

B0 =7 . BO) =5, (1+a0),

(21)

w2
where a=—2L2. The parameter « represents the
®

correction to the results obtained by using the cold-
plasma equations —the latter results are given by (21)
when « is set equal to zero. If we define the trans-
mission and reflection coefficients 7 and R by the
equations

_9 . ~
Er(z) =TE; e e,
— _ (22)
Er(z) =RE; e p* é,,

where E; is the amplitude of the incident electric field,
Er(z) is the electric field in the plasma far from the
boundary, and Ex(z) is the field reflected into the
vacuum, we obtain

2
=15
(23)
R:L—_Z
1+y°

where

y=V1=(aplw)® (1+a).

If we define P;, Pr, and Pr as the incident, trans-
mitted and reflected power in the electromagnetic

field, we obtain
w > wp
(24)

0 S o<

0 < wpy
W > Wy

sy L
Pr_|(1+y)?1+a’
P,

and

)

&{: ] ’
P (1—y)2
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The cold plasma results are obtained by setting

[ 2
=4/1— (%) in (22), (23), and (24). It is interesting

to note that the sum of the transmitted power and the
reflected power is not equal to the incident power
when w > wy, indicating that some energy is delivered
to the electrons in the plasma. The fraction of inci-
dent power delivered to the plasma may easily be
shown to be (4ya) (1+vy)=2 (1+a)~!. (The concept
of kinetic power has been discussed by Buneman
[1961b] and by authors listed therein.)

6. Transmission and Reflection Coefficients
for a Plasma Slab

In sections 3 and 4 we found a solution to the one-
boundary problem in which there is no wave incident
on the boundary from within the plasma. We can
generalize this solution by adding the solution E of
the equations

it e —_ e pof
iwf+ Bcu. % o E P (25)
j=e[ d3u,8cu,,f,
and
9% = = -
P E+ ?/c*E + iwug =0, (26)

which is consistent with the requirement of specular
reflection. It is easily shown that such a solution
is given by an electric field which is proportional to
cos kpz, where k, is defined by (15). Several Debye
lengths from the wall, where the short range component
of the fields can be neglected, the general fields are
given by

E(z) = (A+ B/2)e*p* + B[2ekp?
B(z) = kplw[(4 + B[2)et*p? — B[2e~p?] (27)
where 4 and B are arbitrary constants. At the

boundary, where the short range component must
be included, the fields are given by

EO)=A+B

B0)=Fky/w A1 + ). (28)
If we write the vacuum field as

Eetko% + Ere—iko?
and the field inside the plasma as

EQz)=

Eprep? + Eppetikp? |

the boundary conditions become

2

Epr= EPI +——F,
Y

1

ER_ 2’)’

1+y 1

1 + @9)

If we use these boundary conditions to solve the prob-
lem of transmission by a plasma bounded by two
specularly reflecting walls of separation d, and then

define  E(z) = Ee*0* + REje %0, z<0 and E(2)
=TE %z, z > d, we find
T= y
(1 _+_ ,y)Z e—ikpd p— (l — ,Y)Z eikpd
R=1"Y(—Ter). (30
1+y

The ordinary cold-plasma results are again obtained by

setting a =0, which leads to y=V1—w2/w?. It can
easily be verified that |T|2+|R|2=1, 1ndlcat1ng that
there is no net exchange of energy between the field
and the electrons in the zero temperature limit,
but that the zero-temperature limit of transmission
and reflection coefficients for the slab obtained from
kinetic theory differ from those obtained from the cold
plasma formalism due to the presence of « in the
definition of 7.

7. Discussion

We have explored the consequences of the relativ-
istic form of the Vlasov equation when specular
reflection of electrons at boundaries is assumed.
This problem has been formulated for a half-space
by Felderhof [1963], who used a nonrelativistic normal
mode analysis of the type introduced by Van Kampen
for the study of longitudinal waves. Although
Felderhof did not obtain results in closed form, he
was able to conclude that the electromagnetic field
can exchange energy with the plasma electrons, and
that there is an unattenuated propagating wave in the
plasma at sufficiently high frequencies, as we have seen
in section 5. When the problem is solved for the
plasma slab, however, we have seen that the net
energy exchange between the field and the electrons is
zero as long as the plasma is rigorously collisionless.

It is interesting to note that the actual temperature
dependence of our coefficients is of order (K7/mc?)!/2,
so that temperature effects are usually negligible, but
that the transition to the zero temperature limit is
nonuniform.

It can easily be shown that the coefficients of trans-
mission and reflection for a plasma in a uniform
magnetic field are the same as those we have derived
if the electric field vector of the incident wave has the
same orientation as the fixed magnetic field.

738



Part of this work was performed while the author
was a graduate student at the University of California,
Los Angeles. It is a pleasure to acknowledge stimu-
lating discussions with Professor Burton D. Fried.

8. Appendix

To obtain the approximate eq (13) from the exact
eq (12), we must evaluate the expression I(n). The
technique given here is a generalization of the work of
Clemmow and Willson [1956] for the case of longi-
tudinal waves. Transforming to spherical coordinates,
we have

I— J’ duf d0f dd)u smsﬁcosz(ﬁﬁdfo

n Bu cos 6 —

(AD)

Now we make the transformation &€= cos 6 to obtain

_ » dfo 1—-¢& .
I—'n'f) du u? T fq Lfn:f—l/,Bu (A2)
We define the functions
2h(u) = J' §— l/Bu
(A3)
] oo 1 &
Zmu%_ﬁuhﬁ4d§5537ﬁﬁ
and obtain
d =B
duh(u) 1+ u?(1 — n?)
(A4)
d _ Bur
du s 14+ u*(1 —n?
Now we define
d _ L dfw)
duH(u)_u du
(A5)
L Giy= (1 + u2) G0l
du du
so that
1= [ [ (4 Hw) i + 6w ) etw) |
_770u duu (u (du u)u (A6)

Integration by parts leads to

(1+u* Hw) — u*G(u)
(14 w2321+ (1 — n*u?]

I=27‘rfxdu (A7)
0

Now we take the electron distribution function to be

- A 3/2 )\u2 _n—](—z
f"_<277> e""( 2)’)‘_KT

Expanding the denominator of the integrand and re-
taining the first two terms we have

I=2wjxdu
0

Partial integration and use of (A5) lead to

=47 [ du folu) [u2+(§—5/6)u4l' (A10)

(A8)

[H(u) M =F(@?=8&%) &

—u*G(w [1+(n*—5/2) u2]] : (A9)

Evaluating the integrals we have
3KT

I=1+(n2—5/2) e?

(A11)

and insertion of this expression into (12) yields eq (13).
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