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The waves supported by a warm plasma slab are investigated. The transverse reso na nce equa· 
tion describing the modes on the slab is obt.ained and, for cert.ain ranges of plasma freque ncy, excit. a· 
tion frequency and plasma te mperature , it is shown to be convenie nt to find the root.s of t.hi s equation 
by the intersection of two loci. Using these loci the surface waves and leaky waves supported by the 
slab are described. 

1. Introduction 
A plasma slab serves as an appropriate idealized 

model for many practi cal situations of interes t involv· 
ing wave propagation through ionized layers . In 
partic ular, the re·entry communication problem is 
concerned with such a slab . This paper investigates 
the waves supported by a plasma slab whic h has finit e 
temperature and no d· c magnetic field. Under these 
conditions a closed se t of hydrodynamic equations 
can be written whic h, together with Maxwell's equa· 
tions, indi cate that two waves, viz, transverse and 
longitudinal, propagate independently in the plasma 
and couple only a t the boundaries of a finite plasma 
region. Such a description is valid for wavele ngths 
which are large by comparison with the Debye le ngth 
in the plas ma. When thi s conditi on is not sati sfi ed 
a treatment using the linearized Boltzm a n equation 
is required. The proble m of a line source near a 
semi·infinite plasma described by the hydrod yna mi c 
approximation has been solved [Hessel e t aI., 1962] 
and the coupling between the two wave types has 
been discussed . 

The di spersion equation for the plasma slab is easily 
written. The zeros of thi s equation describe th e 
waves supported by the plas ma slab. For certain 
ranges of the ratio of plas ma to excitation freque ncy, 
electron tempe rature and slab thi ckness, many roots 
of the determinant are found. These roots describe 
the propagation constants of the waves and it is found 
convenient to locate these roots by the intersection of 
two loci. The loci are easily characterized, and with 
their use, the variation of the propagation constants 
with the pertinent parameters is clearly displayed. 

These same loci are also obtained from the trans· 
mission line analog of the proble m by a suitable 
approximation, and it is s hown that the waves sup· 
ported by the slab are approximately de termined by 
the transverse r esona nce of the plas ma wave. Th e 
transmission line analog also s hows that the modes can 
be subclassified into modes with even or odd transverse 
field variations . The sam e tec hniques are used to 
investigate damped modes on the slab, that is, modes 
which contribute to the radi ation field. These are 
usually called "leaky waves." 

2. Dispersion Equation 
It is a simple matter to obtain the dispersion equa· 

tion for the waves supported by a warm plas ma slab. 
The TM waves , which are the waves of most interes t, 
may be excite d by a magne ti c line so urce near the 
slab. Figure 1 shows such a geome try. The formal 
procedure [Caron and S tewart , 1964] in volves writing 
down the wave equ ations for the longitudinal (plas ma) 
and transverse (elec tromagneti c) waves in the slab, 
solving these to unknown coeffi cie nts and the n using 
the bound ary co nditions whic h couple these waves 
to obtain a se t of linear equations in the unknown 
coeffi cie nts . The di spersion equation is obtained by 
the require ment that th e de termin a nt of these equ a· 
ti ons be ze ro. 

The di spersion equ ation can also be obtained vi a 
a tran s mission line analog a nd thi s analog will late r 
be of help in the di scussion of th e waves supported 
by the sla b. This a nalog is obtained by de finin g 
voltages and c urrents rela ted to the tra nsverse and 
longitudinal fi elds and by express ing the boundary 
co nditions in te rm s of these new quantiti es [Hessel 
e t aI. , 1962; Caron a nd S tewa rt , 1964]. The res ulting 
ana log is represented by fi gure 2. In thi s fi gure, 
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FIG URE 1 . Geometry of the problem. 
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FIGURE 2 . Schematic of the transmission line analog. 

where 

Z. =K./WE, 

Za = JJ-oW (1- W;/W2) , 
Ka 

(3) 

(4) 

The roots found by setting, ~ = 0, determine the 
propagation constants of the modes supported by the 
warm plasma slab. The roots with kx real describe 
surface waves whereas if kx is complex the roots 
describe what are generally termed "leaky waves." 
The equation for the roots can be written in the con· 
venient form 

(5) ~ = L {- 2Xe(l- CaG.)- [X2e+ {3~ {/3; 

(6) + (1-e)(l- X)} ] SaSE + 2i (1- X) 

(10) 

(8) where 

a is the electron sound speed and kx is the propagation 
constant along the slab. Certain features such as the 
independence of the longitudinal and transverse modes 
in the body of the plasma with coupling only at the 
boundaries are easily seen to be incorporated into 
the analog. The coupling mechanism is associated 
with the transformer of turn ratio N: 1 as well as with 
the impedance of each transmission line. This analog 
will later be used in discussing the waves supported 
by the slab. 

Using the formal procedure the following system 
determinant is obtained: 

( 1 - cos 2 Ked cos 2 Kad) 

- [(W~/W2)2 k~ + K~/k~. {K; + K~ (1- W~/W2)}] 

sin 2 K.d sin 2 Kad + 2i (1- W~/W2) KoKa 

[K'kf' cos 2 K.d sin 2 Kad I 
+ (W~/W2) sin 2 Ked cos 2 Kad] 

(9) 

{3a= Yy2_gz, 

5 = sin a{3a 
a {3a' 

5 = sin a{3. 
E: f3e' 

Ca = , cos a{3a, 

C. = cos a{3., 

a=2kod. 

(lla) 

(llb) 

(llc) 

(lId) 

(lle) 

(llD 

(llg) 

(llh) 

(lli) 

(llj) 

(11k) 

It is easily argued that no surface waves exist on the 
real ~ axis for -1 ~ ~ ~ 1. Thus all surface waves 
are slow waves. However, it will later be shown that 
complex poles occur very near to this section of the 
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real aXIs. For It I > 1, interesting surface waves 
allied wit h warm plasma effects occur only for small 
values of y2. Since in general c2/a2 ~ 1, this requires 
X to be very near one. We therefore assume 

I -X ~ ] 

whi c h, to a good approximation, yields the following 
expression for the location of the roots of ~: 

2e [1- cos (0: Yy2 - e) cos h (o:t) ] 

+e [e -(y2-e)] 

sin (o:y~) sinh (o:t) = 0. (12) 

\l~ t 
With the definitions 

it can be shown that t he zeros of (12) may be located 
by the intersections of the following two loci in the 
w, z plan e: 

I- coswcoshz =-2I (w2-z2)sinwsinhz, (13) 
zw 

(4) 

In thi s w, z plane (3) appears as s hown in fi gure 3. 
Thus the locus consists of an infinite number of 
branches I whic h for large z are asymptotic to w 
= n77, n = 1, 2, 3. .. . The intersection s of th ese 
branches with the circle described by (14) give the 
values of z and hence k:r which define the propagation 
co nstants for the s urface waves . 

I Note Ihal ()nly the first ..,ix brunche!o; an' s huwn ill figun' 3. 
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F IGURE 3. Locus in the w, z plane used 10 locate sUI/a ce wave poles 
and complex poles. 

3. Discussion of Surface and Leaky Waves 

Figure 3 can be used to discuss some properties of 
the surface waves. For the special case y2 = 1 so .that 
1} = 0:, it is apparent that as 0: increases from zero, 
no surface waves exist unti l 0: approaches 277, that is, 
until the slab thickness approaches the free space 
wavelength, which for y2 = 1 equals the wavelength 
of the plasma mode. For other values of y2 it is clear 
that surface waves do not exis t unless the slab thick· 
ness is near the wavele ngth of the plas ma wave. 
Clearly, the surface waves are like guided acoustic 
waves with so me anomalous be havior whic h will not 
be discussed. 

It turns out that as o:y---'> 277, two surface waves 
exi st. That is, the firs t branc h of the locus in figure 3 
intersec ts th e circular loc us of (14) twice for o:y 0;; 277. 
These intersec tion s will later be shown to describe a 
backward and a forward wave. For o:y > 277 but not 
in the vic in ity of 377 the re is only one s urface ~ave 
whic h, as will be shown later, is a forward wave. 
Near o:y= 3 we are conce rn ed with the int ersec tion 
of the seco nd branch of figure 3 with the circle of 
radiu s o:y. Thi s branc h has a w interce pt which is less 
than 377 and never intersects the circular loc us more 
than once. Furthermore, thi s intersec tion describes 
a forward wave . As O:y-----72n77, (n= 2,3,4 ... ), 
and as o:y ---,> 2(n + 1/2)77, (n = 2, 3, 4 . . .), th e be· 
havior is quantitatively like th e respective be hav ior for 
n = 1. The refore, the surface waves are muc h lik e 
guided acoustic waves but the coupling of these waves 
to the e lec tromagne ti c fi elds both inside and outside 
the plas ma slab produces certain anomalies like : 

0) no reso nance appears for o:y near 77 ; 
(2) near o:y = 2n77, (n = 1, 2, 3 ... ), there are two 

surface waves, one forward and one backward ; 
(3) near o:y=2(n+I/2)77, (n=I, 2, 3 ... ), the s ur­

face wave exis ts for the slab thickness sli ghtly 
less than an integral numbe r of acous ti c wave­
le ngths. 

More insight into the behavior of these surface waves 
may be obtained by using the tran smi ssion line analog 
shown sche matically in figure 2. Under the assump­
tions used in this paper, it is clear that Z. is imaginary, 
i.e., reactive . Also it is easily shown that the su m of 
this impedance plus the impedance of the plas ma 
transmission line reflected through the transfo rm er 
is much greater in magnitude than the free space 
line impedance except when this su m is very near 
the resonances . Therefore, to a good approximation, 
the resonances can be found by co ns idering the 
sy mmetri cal circuit co nsi sting of the plasma line 
terminat ed by a purely imaginary load at each e nd. It 
is ev ide nt that the resonances can the n be described 
in terms of even and odd modes on the line . With 
the use of elem e ntary transmi ssion line theory and 
the definition of z, 1} , and w given previou sly, the 
reson a nce conditions are re presen ted by th e inte r­
sec tion of the loci, 

z tanh (z/2) + w tan (w/2) = 0, eve n modes, (l5a) 

z co th (z/2)-w co t (w/2)=0, odd modes , (I5b) 
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with the circular locus, w2 + Z2 = 1)2. It is a straight­
forward matter to show that (ISa) and (ISb) are equiva­
lent to (13). However, these equations show that 
the branches of fi gure 3 are subdivided into two sets ­
even modes and odd modes - and these sets corre­
spond to the cases previously considered where 
resonance occurred for ay near 2n7T, (n = 1, 2, 3 ... ), 
and near 2(n+ 1/2)7T, (n= 1, 2, 3 ... ), respectively. 
Therefore, the different characteristics of these cases 
must be allied with the even and odd character of 
the modes. The neglect of the free space line im­
pedance is equivalent to the neglect of the terms in 
(10) with the factor (I-X). 

We shall now determine whether the surface waves 
are forward or backward waves. The phase velocity 
of these waves along the slab is Vxp = w/kx and the 
group velocity is Vxg = dw/dkx . Therefore, the wave 
is forward or backward if Vxp and Vxg have the same 
or the opposite sign respectively. We assume the 
phase velocity to be positive and investigate the 
sign of 

dkx = dkx d1) = dkx ( da + a dy ). 
dw d1) dw d1) y dw dw (6) 

For the assumptions of this paper it IS not difficult 
to show that 

dy da 
a-py-

dw dw' 

and using (llj) along with the definitions of z and 1), 

dkx 1 1 dz 
dw -~ YI-X dY}' (7) 

Therefore, if dz/dY} is positive or negative the wave is 
forward or backward. From the previous discussion 
backward waves exist only when a 'E 2n7T. For this 
condition there are two intersections of the loci in 
the w, z plane and the backward wave is determined 
by the intersection at smaller z. 

The reader has probably noticed that for certain 
values of Y} = ay some of the intersections of the locus 
of figure 3 with the circular locus, w2 + Z2 = 1)2, occur in 
the range 0 ~ { ~ 1, which is contradictory to previous 
statements. However, inspection of (10) shows that 
the neglected terms containing 0-X) will move these 
poles off the real axis in the {plane. On the other 
hand, the poles for which { > 1 are displaced along the 
real axis by these terms. This behavior is even more 
clearly visualized via the transmission line analog. 
With this analog the resonances were obtained by 
neglecting the coupling to the free space lines, and 
from the expression for Zo, the characteristic imped­
ance of these lines, it is clear that Zo is real or imag­
inary when { < 1 or { > 1. Hence, for { < 1 the free 
space lines will contribute a small real impedance 
to the otherwise reactive impedance terminating the 
plasma transmission line whereas for {> 1 the con­
tribution will be a small additional reactance. There· 
fore, to a good approximation, the analysis used so 

far completely describes the surface and leaky waves 
except for the small attenuation factor of the leaky 
waves as they propagate along the slab. 

A general case is depicted in figure 4 where y2 > 1 
has been assumed. Since z = a{, the roots Zl and 
Z2 correspond to leaky waves whereas the roots Z3 

and Z4 represent surface waves. One notes that for 
y2 = 1 all the roots represent leaky waves and as ')12 

increases from one with fixed a more and more roots 
are obtained but now the roots are divided between 
those which determine leaky waves and those which 
determine surface waves. This phenomenon can be 
explained in terms of the optics of the various waves. 
For y = 1, the propagation constant of the plasma wave 
equals the free space constant, and therefore, the 
plasma wave couples to propagating electromagnetic 
waves at the two interfaces and hence energy leaks 
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FIGURE 4. Example of the location of surface wave poles and 
complex poles using the loci in the w, z plane. 
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FIG URE 6. Dispersion curves: 1: versus T). 

from the slab . Co nversely, for y2 > 1, the transmission 
angle of the elec tromagneti c waves at each interface 
is greater than the incide nce a ngle of the plasma wave 
and therefore the plasma waves with the largest in­
cidence angles may lead to complex tran smiss ion 
angles or a tte nuating elec tromagneti c waves thus 
defining a surface wave . Similar behavior occ urs 
for y2 < 1 but in thi s case, th e plas ma wave is also 
allowed to attentua te in the transverse direction. 
The pre vious disc ussion of the backward and forward 
nature of the waves also holds in a n approximate 
se nse for the leaky waves but now the waves have a 
s mall atte nuating factor in the direc tion of e nergy 
propagation. 

It is useful at thi s point to draw so me " di spersion" 
curves for th e surface and complex waves. Using the 
locus of fi gure 3 and the circular locus of radiu s T} , 

the c urves shown in fi gure 5 giving z as a fun ction of 
YJ are drawn. These are called "dispers ion" c urves 
for the modes represe nted by the various branches . It 

is also of use to draw correspo ndi ng curves of g, the 
normalized propagation fac tor along th e slab, versus 
YJ and these are s hown i n fi gure 6. In these two fig­
ures , y2 > 1 has been assumed. Some of the points 
already discussed such as the existe nce of both a 
forward and a backward wave for certain values of YJ 
are eve n more clearly understood from fi gures 5 and 6. 
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