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The waves supported by a warm plasma slab are investigated. The transverse resonance equa-
tion describing the modes on the slab is obtained and, for certain ranges of plasma frequency, excita-
tion frequency and plasma temperature, it is shown to be convenient to find the roots of this equation

by the intersection of two loci.
slab are described.

1. Introduction

A plasma slab serves as an appropriate idealized
model for many practical situations of interest involv-
ing wave propagation through ionized layers. In
particular, the re-entry communication problem is
concerned with such aslab.  This paper investigates
the waves supported by a plasma slab which has finite
temperature and no d-c magnetic field. Under these
conditions a closed set of hydrodynamic equations
can be written which, together with Maxwell’s equa-
tions, indicate that two waves, viz, transverse and
longitudinal, propagate independently in the plasma
and couple only at the boundaries of a finite plasma
region. Such a description is valid for wavelengths
which are large by comparison with the Debye length
in the plasma. When this condition is not satisfied
a treatment using the linearized Boltzman equation
is required. The problem of a line source near a
semi-infinite plasma described by the hydrodynamic
approximation has been solved [Hessel et al., 1962]
and the coupling between the two wave types has
been discussed.

The dispersion equation for the plasma slab is easily
written. The zeros of this equation describe the
waves supported by the plasma slab. For certain
ranges of the ratio of plasma to excitation frequency,
electron temperature and slab thickness, many roots
of the determinant are found. These roots describe
the propagation constants of the waves and it is found
convenient to locate these roots by the intersection of
two loci. The loci are easily characterized, and with
their use, the variation of the propagation constants
with the pertinent parameters is clearly displayed.

These same loci are also obtained from the trans-
mission line analog of the problem by a suitable
approximation, and it is shown that the waves sup-
ported by the slab are approximately determined by
the transverse resonance of the plasma wave. The
transmission line analog also shows that the modes can
be subclassified into modes with even or odd transverse
field variations. The same techniques are used to
investigate damped modes on the slab, that is, modes
which contribute to the radiation field. These are
usually called ‘‘leaky waves.”

Using these loci the surface waves and leaky waves supported by the

2. Dispersion Equation

It is a simple matter to obtain the dispersion equa-
tion for the waves supported by a warm plasma slab.
The TM waves, which are the waves of most interest,
may be excited by a magnetic line source near the
slab. Figure 1 shows such a geometry. The formal
procedure [Caron and Stewart, 1964] involves writing
down the wave equations for the longitudinal (plasma)
and transverse (electromagnetic) waves in the slab,
solving these to unknown coefficients and then using
the boundary conditions which couple these waves
to obtain a set of linear equations in the unknown
coefficients. The dispersion equation is obtained by
the requirement that the determinant of these equa-
tions be zero.

The dispersion equation can also be obtained via
a transmission line analog and this analog will later
be of help in the discussion of the waves supported
by the slab. This analog is obtained by defining
voltages and currents related to the transverse and
longitudinal fields and by expressing the boundary
conditions in terms of these new quantities [Hessel
et al., 1962; Caron and Stewart, 1964]. The resulting
analog is represented by figure 2. In this figure,
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FIGURE 1. Geometry of the problem.
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a is the electron sound speed and k, is the propagation
constant along the slab. Certain features such as the
independence of the longitudinal and transverse modes
in the body of the plasma with coupling only at the
boundaries are easily seen to be incorporated into
the analog. The coupling mechanism is associated
with the transformer of turn ratio N:1 as well as with
the impedance of each transmission line. This analog
will later be used in discussing the waves supported
by the slab.

Using the formal procedure the following system
determinant is obtained:

2
A= (“’_50> e2ifoh { —2(w2/w?) K K-

no€
(1—-cos 2 Kcd cos 2 K,d)
= [(wf,/(uz)2 k2+K2E2{K2+ K3 (1 — w?/w?) }]

sin 2 Ked sin 2 K,d +2i (1 —wf)/wz) KK,

|:K1Z£<€ cos 2 Kd sin 2 Kqd
’ 9)
+ (wi/w?) sin 2 Kd cos 2 Kad]

e e S —_

Z=d

Schematic of the transmission line analog.

The roots found by setting, A=0, determine the
propagation constants of the modes supported by the
warm plasma slab. The roots with £, real describe
surface waves whereas if k; is complex the roots
describe what are generally termed ‘leaky waves.”
The equation for the roots can be written in the con-
venient form

A=LA{—2X(1 — C.Co— [X*6*+ B {B?
+(1=&)(1—=X)} 1SaSe+2i(1—X)

V1-—£[X2¢28eCo+ B2S,Ce] } =0, (10)
where

L=8kj (%“) €9k B,Be, (11a)
X=w}jw?, (11b)
&= kzlko, (11c)
Be=VI1—-X—-§, (11d)
Ba=Vy*—&, (11e)

S,= sin af3, ’
Ba (119

sin of3e

Se=—p. > (1g)
Co=cos af3q, (11h)
Ce=cos af3e, (11i)
y*=(c*a?’ (1—=X), (11j)
o= 2kod. (11k)

It is easily argued that no surface waves exist on the
real ¢ axis for —1<¢<1. Thus all surface waves
are slow waves. However, it will later be shown that
complex poles occur very near to this section of the
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real axis. For || >1, interesting surface waves
allied with warm plasma effects occur only for small
values of y2.  Since in general ¢*/a*> 1, this requires
X to be very near one. We therefore assume

1-X<1

which, to a good approximation, yields the following
expression for the location of the roots of A:

2821 —cos (@ Vy>— &%) cosh (aé) |
+E (8- -]

sin (@Vy?> —&?) sinh (aé) =0.

V= ¢
With the definitions

(12)

z =aé,
n?=ady?,
wr=m2—22,
it can be shown that the zeros of (12) may be located

by the intersections of the following two loci in the
w, z plane:

1 —cos wcosh z= (w?— 22) sin w sinh z,

2zw (13)

w?+2z2=mn2. (14)
In this w, z plane (13) appears as shown in figure 3.
Thus the locus consists of an infinite number of
branches' which for large z are asymptotic to w
=nm, n=1, 2, 3. .. The intersections of these
branches with the circle described by (14) give the
values of z and hence k, which define the propagation
constants for the surface waves.

! Note that only the first six branches are shown in figure 3.
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FIGURE 3. Locus in the w, z plane used to locate surface wave poles
and complex poles.

3. Discussion of Surface and Leaky Waves

Figure 3 can be used to discuss some properties of
the surface waves. For the special case y>=1 so that
m=c, it is apparent that as « increases from zero,
no surface waves exist until @ approaches 27, that is,
until the slab thickness approaches the free space
wavelength, which for y>=1 equals the wavelength
of the plasma mode. For other values of 2 it is clear
that surface waves do not exist unless the slab thick-
ness is near the wavelength of the plasma wave.
Clearly, the surface waves are like guided acoustic
waves with some anomalous behavior which will not
be discussed.

It turns out that as ay — 27, two surface waves
exist. That is, the first branch of the locus in figure 3
intersects the circular locus of (14) twice for ay < 27.
These intersections will later be shown to describe a
backward and a forward wave. For ay > 27 but not
in the vicinity of 37 there is only one surface wave
which, as will be shown later, is a forward wave.
Near ay=3 we are concerned with the intersection
of the second branch of figure 3 with the circle of
radius awy. This branch has a w intercept which is less
than 37 and never intersects the circular locus more
than once. Furthermore, this intersection describes
a forward wave. As ay—2nm, (n=2,3,4 . . .),
and as ay—>2(n+1/2)w, (n=2, 3,4 . . .), the be-
havior is quantitatively like the respective behavior for
n=1. Therefore, the surface waves are much like
cuided acoustic waves but the coupling of these waves
to the electromagnetic fields both inside and outside
the plasma slab produces certain anomalies like:

(1) no resonance appears for ay near ;

(2) near ay=2nmw, (n=1, 2,3 . . .), there are two

surface waves, one forward and one backward;

(3) near ay=2(n+1/2)w, (n=1, 2, 3 . . .), the sur-

face wave exists for the slab thickness slightly
less than an integral number of acoustic wave-
lengths.

More insight into the behavior of these surface waves
may be obtained by using the transmission line analog
shown schematically in figure 2. Under the assump-
tions used in this paper, it is clear that Z¢ is imaginary,
i.e., reactive. Also it is easily shown that the sum of
this impedance plus the impedance of the plasma
transmission line reflected through the transformer
is much greater in magnitude than the free space
line impedance except when this sum is very near
the resonances. Therefore, to a good approximation,
the resonances can be found by considering the
symmetrical circuit consisting of the plasma line
terminated by a purely imaginary load at each end. It
is evident that the resonances can then be described
in terms of even and odd modes on the line. With
the use of elementary transmission line theory and
the definition of z, m, and w given previously, the
resonance conditions are represented by the inter-
section of the loci,

z tanh (z/2) + w tan (w/2)=0, even modes, (15a)
z coth (z/2) —w cot (w/2)=0, odd modes, (15b)
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with the circular locus, w?+2z*>=mn2% It is a straight-
forward matter to show that (15a) and (15b) are equiva-
lent to (13). However, these equations show that
the branches of figure 3 are subdivided into two sets —
even modes and odd modes—and these sets corre-
spond to the cases previously considered where
resonance occurred for ay near 2nmw, (n=1, 2,3 . . .),
and near 2(n+1/2)w, (n=1, 2,3 . . .), respectively.
Therefore, the different characteristics of these cases
must be allied with the even and odd character of
the modes. The neglect of the free space line im-
pedance is equivalent to the neglect of the terms in
(10) with the factor (1—X).

We shall now determine whether the surface waves
are forward or backward waves. The phase velocity
of these waves along the slab is v, =w/k; and the
group velocity is vyy=dw/dk;. Therefore, the wave
is forward or backward if vs, and vsy have the same
or the opposite sign respectively. We assume the
phase velocity to be positive and investigate the
sign of

dk: _ dkz dn _ dks ay).

dks _ ( de | dv)
do  dn do dn \' do ' do 1)
For the assumptions of this paper it is not difficult
to show that

and using (11j) along with the definitions of z and 7,
dk. _1 1 dz

do a~N1—xdn

Therefore, if dz/dnm is positive or negative the wave is
forward or backward. From the previous discussion
backward waves exist only when a <2nm. For this
condition there are two intersections of the loci in
the w, z plane and the backward wave is determined
by the intersection at smaller z.

The reader has probably noticed that for certain
values of n=ay some of the intersections of the locus
of figure 3 with the circular locus, w?+ 22 =72, occur in
the range 0 < ¢ < 1, which is contradictory to previous
statements. However, inspection of (10) shows that
the neglected terms containing (1 —X) will move these
poles off the real axis in the ¢ plane. On the other
hand, the poles for which & > 1 are displaced along the
real axis by these terms. This behavior is even more
clearly visualized via the transmission line analog.
With this analog the resonances were obtained by
neglecting the coupling to the free space lines, and
from the expression for Z,, the characteristic imped-
ance of these lines, it is clear that Z, is real or imag-
inary when ¢ <1 or £ >1. Hence, for £ <1 the free
space lines will contribute a small real impedance
to the otherwise reactive impedance terminating the
plasma transmission line whereas for ¢ >1 the con-
tribution will be a small additional reactance. There-
fore, to a good approximation, the analysis used so

(17)

far completely describes the surface and leaky waves
except for the small attenuation factor of the leaky
waves as they propagate along the slab.

A general case is depicted in figure 4 where y2> 1
has been assumed. Since z=af, the roots z; and
2> correspond to leaky waves whereas the roots zj
and z; represent surface waves. One notes that for
v>=1 all the roots represent leaky waves and as 2
increases from one with fixed @ more and more roots
are obtained but now the roots are divided between
those which determine leaky waves and those which
determine surface waves. This phenomenon can be
explained in terms of the optics of the various waves.
For y=1, the propagation constant of the plasma wave
equals the free space constant, and therefore, the
plasma wave couples to propagating electromagnetic
waves at the two interfaces and hence energy leaks
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FIGURE 4. Example of the location of surface wave poles and

complex poles using the loci in the w, z plane.
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Dispersion curves: z versus 7.
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FIGURE 6. Dispersion curves: { versus 7.

from the slab. Conversely, for y>> 1, the transmission
angle of the electromagnetic waves at each interface
is greater than the incidence angle of the plasma wave
and therefore the plasma waves with the largest in-
cidence angles may lead to complex transmission
angles or attenuating electromagnetic waves thus
defining a surface wave. Similar behavior occurs
for y> <1 but in this case, the plasma wave is also
allowed to attentuate in the transverse direction.
The previous discussion of the backward and forward
nature of the waves also holds in an approximate
sense for the leaky waves but now the waves have a
small attenuating factor in the direction of energy
propagation.

It is useful at this point to draw some “‘dispersion”
curves for the surface and complex waves. Using the
locus of figure 3 and the circular locus of radius 7,
the curves shown in ficure 5 giving z as a function of
mn are drawn. These are called “dispersion” curves
for the modes represented by the various branches. It

761-367 O-65—5

is also of use to draw corresponding curves of &, the
normalized propagation factor along the slab, versus
mn and these are shown in figure 6. In these two fig-
ures, y2>1 has been assumed. Some of the points
already discussed such as the existence of both a
forward and a backward wave for certain values of 1
are even more clearly understood from figures 5 and 6.
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