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When studying the propagation of VLF and ELF radio waves, Galejs and Row [1964] and Galejs
[1964] took the ionosphere to be a planar stratified magnetoplasma medium. A wave equation was
derived which describes the propagation of vertically polarized waves along the magnetic equator.
It was shown that the wave equation could be solved exactly in closed form for a particular height

variation of the elements of the permittivity tensor in the ionosphere.

The purpose of the present

paper is to give a method of treating the wave equation which enables other exact closed-form solu-

tions to be obtained.

1. Introduction

In a planar continuously stratified isotropic medium,
the general electromagnetic field consists of a super-
position of two independent parts. These correspond
to horizontally and vertically polarized waves, in which
the electric and magnetic vectors respectively are
parallel to the stratifications. The problem of finding
the field distribution reduces to solving two second
order ordinary differential equations. A great deal
of attention has been given in the literature to obtaining
exact closed-form solutions to these equations for par-
ticular profiles of the refractive index [e.g., Bremmer,
1958; Brekhovskikh, 1960; Budden, 1961; Ginzberg,
1961; Wait, 1962; Gould and Burman, 1964].

When a static magnetic field is imposed on an ionized
medium, the medium becomes anisotropic. In an
anisotropic stratified medium the electromagnetic
field cannot, in general, be separated into two inde-
pendent parts. In this case, the problem of finding
the field distribution can be reduced to solving a pair
of coupled second order ordinary differential equations
[e.g., Budden, 1961]. These equations can also be
written in the form of four first-order coupled differ-
ential equations or as a single fourth-order differential
equation [Budden, 1961].

When studying the propagation of ELF radio waves,
Galejs and Row [1964] considered propagation in a
planar continuously stratified anisotropic ionosphere.
The two special cases were dealt with in which the
waves propagate along and perpendicularly across the
magnetic equator. In the case of propagation along
the magnetic equator, the earth’s magnetic field is
transverse to the direction of propagation, as well as
being parallel to the stratifications in the ionosphere.
Galejs and Row [1964] showed that, in this case, the
general field is described by two uncoupled differential
equations. Horizontally and vertically polarized
waves then propagate independently. The present
note will be concerned with this case of propagation
along the magnetic equator.

Following Galejs and Row [1964], the x-axis is taken
to be along the magnetic equator, running from east
to west. The y-direction is vertically upwards and the
z-direction is south to north. With the static magnetic
field in the z-direction the tensor relative permittivity
in the ionosphere can be written

€ — €2 0
[e]l=] e € 0 1)
0 0 €3

where expressions for €, €, and €3 are given, for
example, by Ratcliffe [1959] and Wait [1962]. For
a horizontally stratified ionosphere €, €2, and €; depend
on the y coordinate only. For waves propagating along
the magnetic equator, the fields do not vary with z.

In the case of vertically polarized waves, the wave’s

magnetic field has a z component, H,, only. This
can be written
H.=Y(y) - exp (ik.x —iwt) 2)

where k, is a propagation constant, w is the angular
frequency, and ¢ is the time. It is found that Y(y)
satisfies [Galejs and Row, 1964; Galejs, 1964]

azY dy
dy? +P(y)

In this equation,

+Q(y)Y 0. (3)

Il =

sl e

€ d €
€ dy [log (5% + 5%)] )

where k)= w/c, ¢ being the speed of light in free space.

and

2 2
0= () k- ke ik 2

1
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Writing
Y(y)= ('E “) £) ©)

it is found [Galejs and Row, 1964; Galejs, 1964] that
f(y) satisfies

&f

dyz+K(y)f— (7)
where
1
K(y)=0—35 Z—i—im. @8)

Galejs and Row [1964] showed that (3) could be
solved exactly in closed form when €; and €, have the
following exponential variations:

€1 = aeV

(9a)
and

€2 = beV (9b)
where a, b, and c are independent of y. In this case
€1 and €, are proportional to the same exponential
function of height. The purpose of the present note
is to give a method of obtaining further exact solutions
to (3).

2. Method

The procedure is to choose a form for K(y) so that
(7) can be solved exactly in closed form. Some suit-
able forms for K(y) can be found in the work of Rich-
ards [1959] and Kamke [1948]. These forms will
contain arbitrary constants.

The present method reverses the conventional pro-
cedure which would be to choose the profiles and then
find the field distribution. Choosing K(y) in this
manner is equivalent to specifying the functions giving
the field distribution. The problem is then to find
profiles of €, and €» which give rise to the specified
solutions. Such profiles of € and e are related by
the equation

(10)

where K(y) has the chosen form. Equation (10) is to
be regarded as a differential equation which is to be
solved in order to find appropriate profiles of €, and
€>. This equation can be integrated as follows.

First the functions S(y) and T(y) are defined by

S<y>=:—f (11)
and
€
T =gtg (12)

In terms of these functions €; and €. are given by

_ 1
=TI+ )
and
S
“TTI+5Y) (14

where it is assumed that 7" 0.

When S and 7 are substituted into the expressions
for P and Q, (10) becomes

M ke—ik, 5L [log (ST)]
T * dy
1ya d 25
5 galoeD -3 [ L aen =K. 03
This can be rearranged to give
—iks d - 2_@
4 SD=K0) +i=7
log T ! log T - 16
ty o Gog )+ £ G [ a0
Hence, provided k; # 0,
i _K 1 d
S(y) kITfT{K(y)+k2 +2 dy (log T)
1[d 2
+4 [‘—i—}-f (log T)] }dy (17)

Thus the original problem of solving a rather compli-
cated second order differential equation has been
reduced to one of performing a single integration.

The function 7(y) can be taken to be any function
of y. With K(y) and T'(y) chosen, (17) gives S(y) by
a single integration. Then €; and €, can be obtained
from (13) and (14); these expressions will involve the
arbitrary constants contained in the forms chosen
for K(y) and T'(y). For some choices of K(y) and
T'(y) it will be possible to express the integral for S(y)
in closed form.

Any form for K(y) can be chosen for which (7) can
be solved in terms of known functions. By choosing
different forms for K(y) and 7T(y) the method given
above can be used to obtain exact solutions for the
field distribution for many different profiles of €; and €.
In general, the profiles of €, and €, obtained will depend
on the propagation constant k,. For waves incident
from free space onto the anistropic stratified medium,
kr=ko sin 6, where 6 is the angle of incidence. Then
€ and € obtained above will depend, in general, on
the angle of incidence. However, in the examples
given in the next section it will be found that the
dependance on £, of the arbitrary parameters involved
can be chosen so that €; and €, are independent of k.
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3. Some Examples

In this section some particular examples of the
method outlined above will be treated. The function
T(y) can be chosen to be any function of y. Here the
choices T=a, T=ae*, and T=ay" will be made
where a, «, and n are independent of both y and k..
In each of these cases the form of K(y) as a function of
y and k, will be chosen so that S(y) and hence €, and
€> will be independent of k.

3.1. Case T=a

The case in which T=a, where a is a constant
independent of y and k;, will now be considered.
Equation (17) now becomes

2

; k
sn=7 [ {kon+ i~ fay. 18)

Any form for K(y) can be chosen for which (7) can
be solved in terms of known functions. The additional
restriction that K(y) can be written

K(y):bo‘i'bléﬁ}’) (19)
}vill now be imposed. In this equation b, and b, are
independent of y, and g(y) is taken to be independent of
kr. Also, by and b, are taken to depend on k, ac-
cording to the equations
[)(]:k'z)(lil - 'f—Lk,B (20)
and

by=—1iksC 21)

where B and C are independent of k.. Then (18) gives

Sy)=J{B+Cgly)}dy (22)

which is independent of k..

independent of £,.
First example:

Then €, and e> will be

In this example

- £ =0 (23)
which gives
K(y) = bo. (24)
It is seen from (7) that
Ay) = exp (£ ib}y). (25)

Thus the fields are expressed in terms of simple
exponential functions.
Equation (22) now gives
S(y)=A4+ By (26)
where A is a constant of integration and can be taken
to be independent of k,. Hence

. 1
~a[l+(A+By?]

=il

(27a)

and
A+ By
al[l-+ (A + By)?]

€2 —

(27b)

which are independent of k,. For these profiles, the
field distribution is given by (25) where b, is related

to @ and B by (20).
If B=0, then
. 1
‘T a1+ 4y
and
4
©T a1+ A4

corresponding to a homogeneous ionosphere. If fur-
ther 4A=0, then €, =a ! and € =0, corresponding to
a homogeneous, isotropic ionosphere.

Second example: In this example

gy =y
which gives

K(;V) =bo+ biy. (29)

When b, =0, this example reduces to the previous one.
On writing

g =— b?z/:;([)() SIS b IY) (30)
(7) becomes
& |
e £f=0 (31)
which is the Airy or Stokes equation. Thus
J=4iQ),  BiQ) (32)
where Ai({) and Bi({) are Airy functions.
Equation (22) now gives
S(y)=A+ By+ 1Cy2. (33)
Hence
_ 1
ST A[1+A+ By + 3Cy)] (34a)
and
A+ By+ Cy?
&= Ll (34b)

a[l+ A+ By+ :Cy?»?]
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Third example: In this example

gy= y+z—f y? (35)
or
K(y) =bo+ biy+ b2y? (36)
where
by =—1ik.D, (37)
D being independent of k,. Thus
Cg(y)=Cy+ Dy (38)

When b, =0, this example reduces to the previous one.
After writing

u b
Y= 2T 2, (39)
equation (7) becomes
&f 1wy 40
- <y +t377 ) =0 (40)

du?

where

e O -

2 (—dby)? 4b,).

Equation (40) is Weber’s equation. Thus [Magnus

and Oberhettinger, 1949]
fy) =Dy (u), D-,-1(iu)

where the D’s are Weber parabolic cylinder functions.
Equation (22) now gives

(42)

1 1.,
S(y)=A+By+35 Cy*+3 Dy’ (43)
Hence
. 1
G = 1 1 (44a)
a [1+<A +By+§ Cy2+§ Dy3>2 }
and
1 ., 1, .
A +By-+—§ Cy2+§ Dy?
€= 1 1 (44b)
a [1 " (A +By+3 Cyt+3 Dy")‘z ]
Fourth example: In this example
2=l (45)

or
K(y) = b() + bleay (4-6)

where « is independent of y and k;. On writing

2b1/2
2
o

9 (47)
(7) becomes
&f 1df < _ﬁ) - (48)
du2+udu+ 1 u? f=0
where
V2 =— (4bo)/a?. (49)
Equation (48) is Bessel’s equation. Thus
f»=2Z,w (50)

where Z, represents any Bessel function of order v.
In this case

S(y)=A+ By + (Cla)ev. (51)
Hence
€ = 1
' G+ A+ By + (Cla)e}?] ()
and
. A+ By—+(Cla)e*y
© e+ {A+By+ Cljewys]  OD)
Fifth example: In this example
8(y) = cos (ay) (53)
or
K(y)=bo+ b cos (ay). (54)

In this case (7) can be solved in terms of Mathieu func-

tions. Equation (22) gives
S(y)=A+ By+ (Cla) sin (ay). (55)
Hence
o — 1
" a[14+{4+By+(Cla) sin (@)}*]  (56a)
and
e A+ By+ (Cla) sin (ay) (56b)

“a[1+ {4 +By~+(Cla) sin (@)}?]
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3.2. Case T(y)=ae*

The case in which

T(y) = ae™v (57)

where a and « are independent of both y and £, will
now be considered. In this case (17) becomes

e~

e

2 2
S(y) f e {K(y)—%1 e—“y+ki+%} dy. (58)

K(y) can be chosen to be any function of y for which
(7) can be solved in terms of known functions. Here
the form of K(y) as a function of ¥ and k, will be re-
stricted so as to obtain a function S(y) which is inde-
pendent of k;. Thus, K(y) will be chosen to have the
form

K(y)=bo+ bire=¥+ bogly) (59)
where g(y) is independent of k. Also by, bi, and b,
are taken to depend on k; in such a manner as to
satisfy the equations

az

bo=—Fk2— 1 ik.B, (60)
and
by=—ik.D (62)
where B, C, and D are independent of k.. Then (58)
becomes
S(y)=e f {Be®¥+ C + Devg(y)} dy (63)
which is independent of k.
First example: In this example
gly)=0 (64)
which gives
K(y)=bo+ biev. (65)
On writing
2112 ay
B D) w
(7) becomes
B (1
du®> u du+ L u? y=u (67)
where
vr=—(4bo)/a*. (68)

Hence

fy)=2.(u) (69)

where Z, represents any Bessel function of order v.
In this case (63) gives
S(y)=(Bla)+ (A + Cy)e~¥ (70)

where A is a constant of integration, which can be

taken to be independent of k.. Thus
€1=ae“"[1+{(B/a)Jlr(A+Cy)e—<w}2] (71a)
and
- (Bla) + (4 + Cy)e~v -

ae¥[14+{(B/a)+ (4 + Cyle¥}?]

When 4=0 and C=0, the profiles (71) become

B 1
T 2e 1+ (Bla)]

and

_ (Bla)
€@=— .

ae®V[1+ (B/a)?]

These have the same form as the profiles (9) consid-
ered by Galejs and Row [1964].

Second example: In this example

8ly)=e 2 (72)
or
K(y) = b0+b167ay+b2€_zay. (73)
After writing
2ibl?
B (74)
and
fy)=exp <_a2_y> - W(u) (75)

equation (7) gives

W (=1, b (b 1)1
du2+[ ; +<ZZ+Z)E]W:°' @3]

4 2ibiPan

This may be compared with Whittaker’s confluent
hypergeometric equation [e.g., Richards, 1959]

2 — 2 — 2
dW+l: a* ak 1—4m

dx? 4 +?+ 4?

] W=0 (77)
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which has linearly independent solutions Wi, m(ax)
and W_j m(—ax). Hence
f(y)—exp( ) Wk, m(* u) (78)
where
b
2ib} (79)
and
2 bo
m== (80)

Either sign can be taken for m since Wi, +m(x)
=Wy, -m(x) [Magnus and Oberhettinger, 1949].

In the present problem, (63) gives

S(y)=(Bla)+ (A + Cy)e~¥ — (D] a)e=2¥ (81)
where A4 is a constant of integration. Thus
_ L (82a)
€17 2eV[1+ {(Bla) + (4 + Cy)e~¥ — (D]a)e—22¥}?]
and
(Bla)+ (A + Cy)e=¥ — (D] a)e—2¥ (82b)

" ae[1+ {(Bla)+ A+ Cy)e-=v— (D]a)e2}?].

When b,=0 and hence D=0, these profiles reduce to
those of the previous example.

3.3. Case T(y)=ay"
When T(y)=ay", (17) becomes

S =gy | o {Kon— g+ + 22 f e e

The quantities a and n are taken to be independent
of both y and k.. When n=0 the function T'(y) con-
sidered here reduces to T(y) = a, which case was dealt
with in section 3.1.

K(y) is now chosen to be of the form

by | bs

K(y)= b()+y Bin- +b¥g(J’) (84)

where g(y) is independent of k,. Also by, b1, b2, and
b; are taken to depend on k; through the equations

bo=— k.zr —ik.B, (85)
bi=k}a'—ik:C, (86)
b» =—711.n(n—2)—LkID (87)

and
bs=—1ik.E (88)

where B, C, D, and E are independent of k,. Hence
S(y)= f {By"+C+Dy"*+Ey'gly)} dy (89)

which is independent of £,.

First example: In this example g(y)=0 and n=2.
Thus
bi+ b
K(y)=by+= e (90)
On writing
u=>by*y (91)
and
S =y"2h(u) (92)
equation (7) gives
d*h | 1dh vy,
du2+udu+(l_ﬁ>h_0 (93)
where
Al
1% :Z_(bl + bs). (94)
Equation (93) is Bessel’s equation. Hence
f»)=y"1Z.(bj*y) (95)

where v is given by (94).
Equation (89) gives

1
Sy)= 3 By+(C+ D)y '+ Ay? (96)
where A4 is a constant of integration. Hence
o= et (97a)
ay? [l + {g By+(C+ D)yy—'+ Ay‘2}2]
and
%By-f-(C—FD)y“ + Ay2
& ~ (OTh)
ay? [l s {§ By+(C+ D)y—'+ Ay'z} ]
Second example: In this example g(y)=0 and n=1.
Thus
b
K(y)= bo+y T (98)
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Equation (7) can now be compared with Whittaker’s

equation (77). Thus
f) =Wk, m (= 2ib(1)/2}’) (99)
where
k= e (100)
and
m?= L b (101
4= )
Equation (89) gives
1
Sy =5By+C+ A+ Dlogyy™! (102)
where A is a constant of integration. Hence
1
G = 1 ; (103a)
ay[l 4 { EBy-f—C-Jr-(A + D log y)y*’} ]
J
and
%By-i— C+(A+Dlogy)y!

2
ay[l +{%By+ C+(A4 +Dl()gy)y"} ]

Third example: In this example g(y) =0 and n=—2.
Thus

,  bs
K(y)=bo+ b1y* +F (104)
After writing
u=1ibll2y? (105)
and
fy)=y""h(w) (106)
equation (7) gives
&h [—1, by 3+4b],
o +[ 7 T T Tew ] h=0.(07)

This may be compared with Whittaker’s equation
(77). Thus

fO) =y V2W .y, m( % 1b}/2y?) (108)

where
k= bo(4ib}/?)~1 (109)
and
, 1/1
mz:z(a—bz)' (110)
Equation (89) gives
1
S(y)=Cy*+Ay*—By——= Dy 1.
»=Cy*+4y*—By—3 Dy (111)
Hence
€= 1
! ] , 4 (112a)
ay™? [l+<Cy3+Ay2—By—§ Dy") ]
and
Cy*+Ay*—By—1% Dyt
€= (112b)

ay? [l A (C}/‘+Ay2 —By-—%l)J/”)2 ]

4. Conclusion

When studying the propagation of ELF and VLF
radio waves Galejs and Row [1964] and Galejs
[1964] took the ionosphere to be a continuously
stratiied magnetoplasma with the imposed magnetic
field parallel to the stratifications. A wave equation
was derived which describes the propagation of ver-
tically polarized waves for the case of propagation
transverse to the imposed magnetic field. This case
corresponds to waves traveling along the magnetic
equator. The present paper is concerned with ob-
taining solutions to the wave equation.

By the method given in section 2 of this paper, the
problem of solving the wave equation has been reduced
to one of performing a single integration. In section
3 a number of examples have been given showing how
the method can be used to obtain exact closed-form
wave functions for various profiles of the elements
€; and € of the permittivity tensor in the magneto-
plasma.

Most of the wave functions given in these examples
were obtained by using the table given by Richards
[1959, pp. 349-350]. This table gives solutions to
differential equations of the form y”+1I(x)y=0. Fur-
ther wave functions can easily be found by using the
same general procedure.

Finally it will be noted that results for the case of
an isotropic stratified medium can be obtained from
the examples given by choosing the arbitrary pa-
rameters concerned so that the function S(y)=0.

Then (13) and (14) give ,=1/T(y) and €2=0.
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