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This study commences by demonstrating the important role played by the dispersion surfaces
in the determination of the far fields of an infinitesimal dipole in a lossless, cold magneto-ionic medium.
The dispersion surfaces are then classified, according to their shapes, for different ranges of the
plasma parameters. A comprehensive group of radiation patterns is then given including far fields
for each of the fourteen classified ranges of the plasma parameters.

1. Introduction

In recent years considerable attention has been directed towards the study of radiation from
sources in anisotropic media of an infinite homogeneous nature. It is of great interest to study
the case of a cold lossless medium for different combinations of electron density and applied steady
magnetic field. The Appleton-Hartree equation constitutes the mathematical description of the
“plasma” that is often used in this analysis. This problem has been studied extensively [Bunkin,
1957; Kuehl, 1960; Arbel, 1960; Arbel and Felsen, 1963; Kogelnik and Motz, 1963; Wait, 1964].
Of more specific interest are the far fields of an infinitesimal dipole. Analytic expressions for the
asymptotic fields have been available for some time in the literature cited above but no extensive
numerical calculations have been made for the far field patterns of a short dipole. It should be
noted that Arbel and Felsen [1963] have numerically computed the “pattern factors” of the indi-
vidual ray contributions for the longitudinal electric dipole. The “pattern factors” were calcu-
lated for 8 different sets of the parameters X and Y in the general vicinity of X=1, Y=1 and the
ordinary and extraordinary ‘‘patterns” are shown, but not the total field patterns.

The purpose of this study is to briefly summarize Kuehl’s method of calculation, to demonstrate
the important role the dispersion surfaces play in the calculation of the far fields and to classify
these various types of dispersion surfaces according to specific ranges of the plasma parameters.
Explicitly, these parameters are the electron density, applied steady magnetic field and frequency,
which may be conveniently represented in terms of the dimensionless parameters X and Y, to be
defined later. The study embraces infinite, anisotropic, homogeneous media and treats only the
lossless case of a cold plasma. 'The paper includes a brief description of numerical calculation
techniques, and the study concludes with the presentation of the far field patterns of an infini-
tesimal, longitudinal electric dipole calculated for several different combinations of the plasma
parameters. The far field patterns are shown in spherical coordinates for the ordinary and
extraordinary wave contributions, as well as the total field patterns.
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2. Theoretical Considerations
Maxwell’s equations in an anisotropic homogeneous medium with a relative permittivity
dyadic K and free space permeability u, are

where E and H are electric and magnetic field vectors, J is the current density, and  is the angular
frequency. A harmonic time dependence of e is assumed.

In a plasma with a z-directed steady magnetic field, the relative permittivity dyadic K is of
the form

K=2iK' +jiK" — j53K" + 75K" + 23K, 3)
where
X XU ., XY
L=l-p k=l p—w X ="pr—p
2

x==1

(1)2

(1)]]’ Ne eB

Y= w}=—"—"wy=—"(a positive number).
® me m
U=1—jZ=1 —ji (v=collision frequency).

N =electron density.
Bo=d-c magnetic flux density.
e =magnitude of electron charge.
m = electron mass.
ko= 2m/\o = free space wave number.
Ao =free space wavelength.

Taking curl of (2) and using (1), obtain

V XV X E — w*uoeKE =—jw;L0I (4)

A general solution of (4) may be expressed as
= [Fe - Jeha 5)

where I'(r, r') is the dyadic Green’s function, the integration being performed over the volume v
containing the source currents. Note that

J(r) =f UI)s(r=1)dv' (6)
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where U is the unit dyadic, and 8(7) is the three-dimensional Dirac delta function. Substituting
(5) and (6) into (4) and using some well-known vector identities we obtain the following equation
satisfied by the dyadic Green’s function:

(= V2U + V V — 2 ptoeoK)T () =— joopsold(0). (7)

Now define the three-dimensional Fourier transform pair:

o ===

f f(De*-rdr, f(r)= 27T)3 S Je =i Tdk.

Transforming (7) and letting
ﬁ(?) =k-kU—Kik— wz,uoe(,l——(: 8)

one obtains

MET(R) =—jopol.

Premultiplying by M~' and taking the inverse Fourier transform one obtains:

T(H=—12E0 f y M-te-rdx 9)

873

l"ull

where M—'=

=

Removing P outside the integral in its operator form, D, we have

I(n=12&p J " L oiidi, (10)
Bt "o )
Now | M| =— ewpoeoKo(k2 — s2)(k2 — t2)
(11)

where s, and ¢, are the roots of |M_| =0 [Allis et al., 1963]. Next consider the asymptotic evaluation
of the integral appearing in (10). Let

—]K T
In= j_x f_x J_x (k2 — s2)(k2 — )dKJ-dedKz (12)

Integrate the above equation over k. using the calculus of residues and transform the x, v, z
system to a r, 0, ¢ spherical coordinate system. Also the transform variables k., and k, can be
transformed into a polar coordinate system, p, 3. After integrating over 3 the remaining integral
can be evaluated using the saddle point method for large kor, the result being that asymptotically

- 1 2 )
— — 1)A ~IXmn(Okor (13
I(r) for ,"2: 'E 1)"Apn(6)e 0 )
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e Amn(6)=_< 21% cos 0 )

kg Vsin 6 cos (lllmn—’o) Ccos ll’m"

o nm Sin Yimn
[(K' —KoPrt, Sin® Y — 4KoK "2(n2,, Sin®Ymn— Ko] "
[ — ron) Cos (mn — 6= 201, Sin (Yma—6)] 149
and
Xmn(0) = Nnn(Ymn) Cos (Ymn—6). (14b)

Note that if n,, is imaginary, e*mn¥ko" decays exponentially and there will be no far field; n'n. and
n,., denote the first and second derivative of n,, respectively, evaluated at ¢ms. Here

s oy [K'(K'—K))—K'"?] Sin? y + 2K'Ko + V[K'(K'— Ko) —K]* Sin* ) + 4K3K™ cos’(y).
nZ, (¢) 2(K’ Sin? Y+ K, Cos? ) o)

nm(¥), m=1, 2 (ordinary, extraordinary), are the two dispersion curves and the saddle point condi-
tion is
d _ _ . d _
EE [nm(Pm) Cos (bm—6)] =0, m=1, and 2, i.e., d—w(nm) =n,, tan ( — 6). (16)
Equation (16) may have more than 1 solution, and these solutions can be identified by Ymn
where n may be 1, 2, or 3, depending on the shape of the nn curves. The details of this evaluation
are to be found in Kuehl [1960]. The dyadic operator D must now be evaluated in the coordinate
system (r, 0, ¢), to finally yield F(;), the Green’s dyadic, which can be regarded as a 3 X 3 matrix.
To calculate the far fields of a Z-directed infinitesimal dipole only three of these 9 components
need be calculated. They are

F..=G i 2 ((_. 1)™n2,, Sin Ymn Cos dlm,,,[(n?,m—K') Cos ¢ —jK'’ Sin ¢0]an) 17)

m=1 n

2
Fe=GY ¥ ((— 1)™n2,, Sin Ymn Cos Ymn [(n},—K') Sin ¢ +jK" Cos ¢] F ) (18)
m=1 n

2
r.=C3 S ((—nm [(n2,—K') (r2,, Cos? Yn—K') —K"™] F > (19)
m=1 n
where
4 3
G =J“a§5‘§f4’ and Fun=Amn(6) € —jxam®)kor . 20

The infinitesimally small dipole of dipole moment p located at the origin yields an electric field
given by

- = 21
E(r) =juT (NP o
This equation may be employed to calculate the far field patterns after inserting the asymptotic
form of I'(r) in (21).

3. Refractive Index Surfaces

As was demonstrated in the previous section the refractive index surfaces, nm@), m=1, 2,
play an important role in the determination of the far fields of a source in a plasma. It is neces-
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sary to have a description of the refractive index surfaces for each mode of propagation. The
shape of these surfaces is a function of the dimensionless parameters X and Y which are used to
describe the lossless (Z=0) medium. These surfaces are surfaces of revolution about an axis
parallel to the direction of the imposed steady magnetic field. Thus two-dimensional plots of the
curves, which are cross sections of the surfaces in an axial plane, serve to describe the complex
refractive index surfaces. Another form of (15) in terms of X and Y is

Svsieo [ [2ysineo): 1] -1
n2 (=1—X| 1— T—% =+ T—% + Y2 Cos? 0 ° (22)

These are the curves which describe the above surfaces for a lossless anisotropic cold plasma.
It is common practice [Ratcliffe, 1962] to associate the subscript m=1 with the + sign and the
nomenclature ‘ordinary wave’, and m=2 with the — sign and the ‘extraordinary’, in the loss-
less case. For the lossless case n%(ys) is always real for all values of . It should also be noted
that n,()=nn(m—¢) and nu(y)=nm(—y). Consequently one need only calculate n,() for
0 < ¢ < /2, the rest of the curve being obtained from the above relations. From the last section
it is seen that the asymptotic far fields on an infinitesimal dipole are expressible in terms of n,,(\),
and its first and second derivatives evaluated at the saddle points. Deschamps and Kesler [1964]
have recently shown that the far fields of a source in a magnetoplasma may be expressed by
F(n=Y —h (H, )Fx(r) (23)
< Adrr "

where A is the Gaussian radius of curvature of the refractive index surfaces, #is a single vector
representing electric and magnetic source current densities, H,, is the magnetic eigenvector and
Fi(r) is the characteristic (source-free) field vector. The important point to note is that the
Gaussian radius of curvature of the refractive index surfaces is a dominating factor in the determi-
nation of the far fields [see also Lighthill, 1960].

It is thus desirable to have a general knowledge of the characteristic shapes of the n, ()
curves that will be generated by different combinations of electron density and imposed steady
magnetic field.

Clemmow and Mulally [1955], have classified the refractive index curves into eight distinct
types, according to certain features of their shapes. These will henceforth be referred to as the
characteristic shapes. The regions of the X-Y plane to which these characteristic shapes cor-
respond were given analytically. This classification is extended and clarified somewhat in this
study.

The graph of figure 1 shows the division of the X-Y plane into fourteen separate regions (note
that X and Y are plotted on logarithmic scales). Each region is numbered according to the kind
of characteristic shape of the refractive index surface that exists for those ranges of values of X
and Y. The numbers therein refer to the characteristic shapes shown in the lower right hand
part of the graph. The numbers are subscripted 0 or E, indicating whether the characteristic
shape is associated with the ordinary or extraordinary wave. Only the real parts of the n,()
curves are shown. The region where the curves are completely imaginary for all y has not been
numbered (i.e., X > 1+Y, Y<1). There are no far fields generated when the medium parameters
(X, Y) are in this region.

It should be noted that characteristic shapes numbered 2, 4, 6, and 8 have points of inflection
for some values of {s, while the remaining 4 curves have not. Furthermore, curves 1, 2, 3, and 4
are associated with both ordinary and extraordinary waves while characteristic shapes numbered
5, 6, 7, and 8 are associated exclusively with extraordinary waves.
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FIGURE 1. Subdivision of the X-Y plane according to the characteristic shapes.

Some examples of specific values of (X, Y) will now be given:

(a) X=100, Y=10. This falls within the region marked 8;. This means that only ns({) is
real and has the characteristic shape shown by curve 8. Thus only an extraordinary wave exists
in the far field. Since ni() is entirely imaginary for all ¢ the ordinary wave does not contribute
to the far field.

(b) X=1.5, Y=10 lies in the region marked 4¢ and 7. The ordinary wave is associated with
characteristic shape 4 and the extraordinary wave with shape 7.

For a given value of m there may exist more than one saddle point, that is, more than one
solution to (16). There can be either one, two, or three saddle points for a given m. The existence
of more than one saddle point occurs for some values of 6 only for curves containing points of in-
flection, i.e., those curves numbered 2, 4, 6, and 8. When these curves are encountered there
will be a merging of two saddle points at the point of inflection for some value of 6 and the single
saddle point asymptotic evaluation is no longer valid; one must resort to the double saddle point
method of evaluation which involves the Airy integral type of representation [Arbel and Felsen,
1963].

It is to be noted that the present study extends Clemmow and Mulally’s [1955] description only
in that the ordinary and extraordinary waves are associated with the characteristic shapes of the
refractive index curves of each of the 14 regions of the X-Y plane. Furthermore, the diagram of
figure 1 facilitates easy identification of the characteristic shape of the dispersion surface for any
value of X and Y.
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4. Numerical Calculations

The numerical calculation of the far fields of a z-directed dipole, i.e., J =28(r), was carried out
in four separate stages, for seventeen different sets of (X, ¥) as shown on the graph of the X-Y
plane embracing all the fourteen regions.

(a) Computation of refractive index curves was done on the University of Illinois IBM 7094
computer using (22). The curves ni() and no(y) were then plotted. The real values of n, ()
indicate propagation while imaginary values indicate cutoff, as seen in (14b).

(b) Computation of the saddle points was accomplished by using a geometrical construction
[Mittra and Deschamps, 1963] for the solution of (16) and then iterating to obtain more precise
solutions by the Newton-Raphson method. The iterated saddle points were then used as input
data to the program for the computation of the far fields.

(c) The saddle point solutions {5, for a fixed angle § were used in (17) through (21) to compute
the electric field which was then transformed into spherical components.

(d) In certain cases (where Y, =0) at 6=0 and 7/2 (14a) is an indeterminate form. A
modified approach for the calculation of 4,,, as given by Kuehl [1960] is then employed.

Throughout the calculation kyr=100 was used. It should be pointed out that in general the
total fields may be quite dependent on the magnitude of kor since it affects the phase between the
ordinary and extraordinary waves. This is seenin(13). Insome cases the individual ordinary and
extraordinary components of the electric field behave in a peculiar fashion, but the vector sum
yields total fields of a familiar behavior. This is especially true in the case of a near-isotropic
plasma (set No. 3, fig. 2).
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FIGURE 2. Calculated radiation patterns for different medium parameters.
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5. Far Field Patterns

At the end of this study the far fields of a 2-directed dipole are given for 17 different combina-
tions of the plasma parameters X and Y. These 17 points are shown in figure 1; corresponding
calculated patterns are plotted in figure 2.

The real part of the dispersion surfaces is shown for m=1 and m =2, calculated by (22). If
one or the other of the dispersion surfaces is imaginary for all 6, it is omitted completely and only
the dispersion surface and the far fields for the other value of m are shown. These fields are also
the total fields. Such is the case in sets numbered 12 to 17 inclusive (fig. 2). Under each disper-
sion curve are the corresponding ordinary or extraordinary components of the electric field, given
in spherical coordinates. They are designated Egi, Eg1, and Eg4; for the ordinary wave components
and similarly for the extraordinary wave components. Broken lines indicate that this computation
yields infinities. These infinities occur either when the dispersion curve contains points of
inflection or when it has an open branch that goes to infinity. It should be pointed out that the
double saddle point method of evaluation was not used at these points of inflection. The total far
fields for kor =100 are shown in the right hand column. All the field patterns are shown only for
0 < 0 < 7/2, the rest of the pattern being found through symmetry properties.

It is interesting to note the behavior of Egr at 6= /2 in set no. 4 (fig. 2), which is fairly close to
the free space condition. This result should be compared with set no. 3 (fig. 2). Although the
plasma parameters of set no. 4 (fig. 2) are still near-isotropic, the far-field pattern differs interestingly
from the isotropic pattern.

The behavior of Eg in set no. 11 (fig. 2) is interesting in that the ordinary and extraordinary
contributions are smooth while their vector total is “modulated’ quite severely. This is a direct
contrast to Ey in set no. 3 (fig. 2) and emphasizes the importance of knowing both ordinary and
extraordinary components as well as the total fields.

As a final comment, it should be observed that the infinities which arise in this evaluation are
removable. As pointed out earlier, the correct evaluation of fields at the points of inflection in
terms of the Airy Integrals does yield large but finite fields. At the open branches of the dispersion
curves, the infinities in the field evaluation may be removed only by assuming a finite size of dipole
with a reasonably smooth current distribution. Some discussion along this line has recently
appeared in an article by Staras [1964].

6. Conclusions

This study has presented Clemmow and Mulally’s [1955] comprehensive classification of the
dispersion curves, and figure 1 offers a useful graphical representation of this classification.
Since the shapes of these curves play an important role in the calculation of the far fields, this classi-
fication permits a rough prediction of some of the pattern characteristics of the far fields of a dipole
for any choice of the plasma parameters X and Y. It can also be useful in the selection of plasma
parameters in practical cases where only the ordinary or extraordinary wave is desired. This
may find application in the study of pattern synthesis for sources in anisotropic media.

It can be seen from (14a) that, when the refractive index curve has open branches, Y, =6
for some 6, and A, goes to infinity. Furthermore, if a curve contains points of inflection, the
Gaussian radius of curvature is zero and again field infinities will occur in this asymptotic evalua-
tion. However, these infinities are removable as pointed out in the previous section. We can
also note that if the refractive index curve is closed and has no points of inflection the corresponding
fields will be finite for all . These observations are borne out by the calculations.

Another interesting observation is that the total field pattern in many cases turns out to be
considerably different from the individual component patterns. It should be repeated that in
general the total field pattern is dependent on the distance of the point of observation from the
source because of interference between the two components. Exceptions occur when the in-
dividual patterns are highly directive and their main directions of radiation do not overlap and, of
course, when one component is either absent or is largely dominated by the other.
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