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The methods of an earlier paper for calculating the radiation from an electric dipole are extended to the case of a mag· 
netic dipole, and numerical data concerning the radiation admittance of such a dipole embedded in an infinite magneto·ionic 
medium are given. 

1. Introduction 

In an earlier paper [Kogelnik 1960a] the radiation resistance matrix of an electric dipole with 
arbitrary orientation with respect· to the magnetic field was calculated in terms of the tensor ele
ments characterizing the medium in which it is embedded. Numerical data concerning the resis
tance matrix we re published in the Proceedings of the Upsala Conference [Kogelnik 1960b]_ The 
extension of the method to the case of a magnetic dipole [Kogelnik, Oxford Thesis, 1960, unpub
lished] was given at the Copenhagen Symposium on Antennas [Kogelnik and Motz 1963]. The 
purpose of this paper is to present numerical data which were not given in that paper, and to briefly 
but completely reformulate the theory. 

2. Definitions and Basic Analysis 

We treat a dipole embedded in an infinite, homogeneous nonmagnetic (J.Lrel = 1) medium. The 
a-c quantities are described by their complex amplitudes. A column vec tor is expressed by a 
symbol a and its transpose, a row-vec tor, by ii. The Hermitian conjugate of a vec tor a is de noted 
by a+ = aX. Symbols like aa, kk, etc. de note dyades; tensor quantities are de noted by symbols 
a, K, etc . In mks units Maxwell's equations take the form 

'\l X E =- jWJ.LoH - M 

'\l X H = jWEoEE (1) 

where the introduction of the magnetic current density M will allow us to represent a small wire 
loop immersed in plasma by the equivalent magnetic dipole, with a distribution of magnetic current 

M(r) = jwpmO(r) (2) 

where o(r) is Dirac's o-function . 
In (1) we have dropped factors eiwl express ing the time de pe ndence and E is of the form 

El; - jE2; 0 
£= jE2; El; 0 (3) 

0; O· , E3 
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encountered in magneto-ionic theory. For the source-free (M = 0) medium one easily finds, from 
Maxwell's equation, the wave equation which, when applied to waves of the form E = Eo exp 
( - jk . r), leads to 

A 

WE(k, ko)E =0, (4) 

where 

(5) 

For non vanishing fields one must have 

A 

det WE (k, k o) = o. (6) 

One can easily show that, with E of the form (3) 

A 

det WE=k~ (E, sin2 0+E3 cos2 0) (k2 -k7)(k2-YI) (7) 

with refractive indices k7lk~, kYI/k~ for the ordinary and extraordinary wave given by 

k7.11_(Ei-E~) sin2 0+EIE3(1+cos2 0)±[(Ei-E~-EIE3)2 sin4 0+4E~E~ cos2 Op/: 
k~ - 2(EI sin2 0 + E3 cos2 0) 

(8) 

3. Dyadic Green's Functions and Their Fourier Transforms 

We want to express the radiation field in terms of a given source distribution. Since Maxwell's 
equations are linear we can certainly write 

E(r) = f dr' GEM(r, r')M(r') H(r) = f dr' GHM(r, r')l\t(r') (9) 

where GEM, GHM are matrices which may suitably be called dyadic Green's functions . Once they 
are known, the problem is solved. We can obtain them by algebraic operations by means of Fourier 
analysis of the fields of the form 

(lOa) 

(lOb) 

We also define matrices gEM, gHM, which are Fourier transforms of the dyadic Green's functions 
defined above: 

CA 
- 1 f dk'" (k) -jk(r-r· ) HM- 87T3 gHM e . 

Introducing (lOa, b) and (11) into (9) we obtain 
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4. Computation of the Dyadic Green's Function Transforms 

We shall reduce the computation of the transforms gUM, gEM to matrix operations. To do this, 
it is convenie nt to defin e a matrix 

0, -k3 , k2 

A 

K= k3, 0, -k, (13) 

-k2 , k" 0 

such that vector products may be written as matrix products, e.g., 

A 

kxE=KE. (14) 

With this notation the Fourier·transforms of Maxwell's equations may be written in the form 

A 

- jKE k = - jWJLoH k - Mk 

(15) 

The determinant of the matrix K is clearly zero and therefore K does not possess an inverse. In 
most cases, however i- ' exists. We solve for Ek and Hk by multiplying equations (15) by l/jwJLo 

and i!jwEo respec tively and obtain 

(16) 

Substituting these results into (15) we obtain 

(17) 

since 
_ A 

KK = kk- (k· k)l. 

Comparing (17) with (12) we find the dyadic Green's fun ction transforms 

(18) 

A A 

where WE is defined by (5) and WI/ is given by 

(19) 

We shall, in the following, only need giIM. For this reason, and alsAo since the expressions for WEI 
have already been given in Kogelnik [1960a], we give below only Wi/. One finds, putting k = kn 
where n is a unit vector 

(20) 
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where 

(20a) 

5. Power Radiated by a Distribution of Magnetic Current 
The power radiated by a volume element dx dy dz of the distribution is given by Poynting's 

dP=- !HxMdx dy dz. (21) 

Hence the power radiated by the magnetic current system is given by the integral 

(22) 

over the magnetic current distribution which, in terms of the dyadic Green's function, transforms 
can be shown to reduce to 

(23) 

by the application of well-known o-function identities. 

6. Radiation Admittance of a Current Loop 
As mentioned in the first section, the magnetic dipole is represented by a magnetic current 

density distribution 

M(r) = jwpmO(r). 

This corresponds to an oscillating current in a small loop such that the dipole moment Pm is given 
by pm = /Lo! a27r, 1 = 10 sin wt where a is the radius of the loop. This has an effect different from 
that produced by a rotating electron in its orbit, which is equivalent to two linearly polarized oscil
lating currents with a phase difference of 7r/2. We have shown in Kogelnik [1960b] that the power 
radiated by two such linearly polarized currents is, in a gyroelectric medium, not equivalent to 
the sum of the power of the separately excited individual antennas (see appendix). 

The spatial Fourier-transform of the magnetic current density is given by 

(24) 

By application of (23) we find that the complex conjugate of the power can be written as a bilinear 
form 

W 2 .. P.c- + -2 p ",ZmPm (25) 
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with 

The elements of Zm are measured in ohm-I m- 2 (admittance-units per unit area.) 
is split into its Hermitian and its anti-Hermitian part 

and the real power radiated is 

We can substitute in (26) for gHM from (18) with the result 

(26) 

The matrix z", 

(27) 

(28) 

A _ - jWEo 1 7T/2 . 100 127T k2[nEnk4 nn -k2k&§ + k~i (d et E)]. 
z'" - 8 3k2 sm 8d8 dk d¢> - A (k2 _ k2) (k2 _ k2 ) 1T 0 0 - 00 0 nEn I " 

(29) 

So far the theory is perfectly general and would also apply to lossy media. We now specialize 
the theory to apply to a lossless medium by assuming that E" E2, and E3 are real. Our numerical 
results apply to thi s case only. The matrices Mm , II are defin ed by 

·28 
A 1 L27T sm ; 

N= - nnd¢> = 0; 
1T 0 0; 

M",=M:;'=- Sd¢> 
A A If27T 

1T 0 

0; 
sin2 8; 

0; 

o 
o 

2 cos2 8 

o 

(30) 

(31) 

Having performed the integra tions with res pec t to ¢> and k, the final results can be written in the 
form 

1T fl duFm 
rm =-2ZoA6 0 kg[EI+(E3-EI)U2](k~-k~I) 

(32) 

with Zo=(p.,o/Eo)1 /2, AO=~: and Fm being the Hermitian part 

(33) 

Thus the matrix 1'1/1 has the form 

Tml , - jrm2, o 
A 

rm = )'1112, Tmt, o 

0, 0, (34) 
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with the elements 

(35) 

where u = cos () 

7. Numerical Data Concerning the Elements of the Admittance Matrix 

Since the expressions (35) for the admittance matrix are rather cumbersome, we have evalu
ated them by means of a digital computer (Ferranti Mercury). Table 1 gives the element rill! . 

Table 2 records values for r lll 2, while r m3 is given in table 3. The entries in these tables must be 

TABLE 1 

x " 0.1 0.2 0.5 0.8 0.% 1.00 
~ - l 

" 
0.001 0.247 0.236 0.165 0.057 0.011 0.003 

.003 .249 .238 . 167 .061 .0 15 .006 

.01 .254 .244 .175 .072 .027 .0 19 

.03 .269 .260 .197 .102 .058 .051 

.1 .322 .315 .264 .188 .IS5 .149 

.3 .473 .469 .438 .39'> .382 .383 

.:1 .624 .621 .603 .583 .583 .588 

1.0 1.000 1.000 1.003 1.019 1.Q43 1.057 

1.8 1.601 1.604 1.627 1.680 1.727 1.750 
3 2.502 2.508 2.549 2.637 2.708 2.739 

10 7.754 7.767 7.8056 8.032 8.162 8.216 
30 22. 756 22.7705 22.909 23. 168 23.355 23.429 

100 75.2059 75.284 75.467 75.817 76.064 76.161 
300 225.26 2205.29 225.52 225.905 226.25 226.379 

1000 750.26 750.30 750.058 751.10 751.46 751.608 
3000 22050.3 2250.3 2250.6 2251.2 2251.6 2251.8 

10000 7499.4 7499.4 7499.8 75005 70501.0 7501.1 

TABLE 2 

x " 0. 1 0.2 0.5 0.8 0.95 1.00 

" -- 1 

" 
0.001 0.985 0.941 0.650 0.217 0.031 0.000 

.003 .985 .941 .650 .217 .031 .000 

.01 .985 .941 .651 .219 .033 .00 1 

.03 .985 .941 .654 .225 .038 .005 

.1 .986 .943 .663 .243 .058 .023 

.3 .987 .947 .686 .289 .113 .078 

.5 .987 .950 .702 .329 .161 .129 

1.0 0.989 0.955 0.737 0.408 0.264 0.238 

1.8 0.990 0 .962 0.777 0.505 0.393 0.377 
3 .992 .970 .822 .613 .539 .537 

10 .998 .992 .962 .960 1.017 1.060 
30 1.005 1.018 1.124 1.370 1.588 1.691 

100 1.013 1.051 1.327 1.884 2.310 2.490 
300 1.021 1.082 1.523 2.386 3.017 3.272 

1000 1.029 !.l18 1.745 2.953 3.815 4.156 
3000 1.038 !.lSI 1.949 3.476 4.553 4.974 

10000 1.047 1.187 2.174 4.052 05.3605 5.874 
100000 1.064 1.258 2.621 05.1905 6.977 7.660 
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TABLE 3 

~ f, 0. 1 0.2 .05 0.8 0.95 1.00 
E!I 
-- I 
f , 

0.001 0.001 0.001 0.003 0.004 0.004 0.003 
.003 .001 .003 .006 .008 .007 .006 
.01 .003 .007 .016 .021 .020 .018 
.03 .008 .016 .038 .051 .051 .048 
.1 .019 .038 .090 . 127 .1 33 . 13 1 
.3 .039 .077 .184 .269 .293 .295 
.5 .052 .103 .249 .369 .408 .415 

I 0.075 0.149 0.363 0.546 0.615 0.630 

1.8 0.099 0.198 0.483 0.735 0.837 0.864 
3 .123 .246 .604 .929 1.066 1.104 

10 .192 .383 .946 1.474 1.714 1.785 
30 .264 .527 1.306 2.050 2.401 2.509 

100 .349 .697 1.732 2.734 3.212 3.363 
300 .429 .858 2. 134 3.378 3.977 4.169 

1000 .519 1.036 2.581 4.094 4.827 5.064 
3000 .601 1.201 2.991 4.751 5.607 5.885 

10000 .691 1.381 3.442 5.472 6.464 6.787 
100000 .869 1.738 4.335 6.902 8.161 8.574 

multiplied by 

2 17 3/2 h / 2 
3Zo.\.~ EI m os m 

where Zo n 120 17 ohm, and .\.0 is the free space wavelength. The values so obtained are expressed 
In mhos/m - 2• We also give graphs of these quantities (figs . 1, 2, 3, 4, 5, 6). 1 

The power can be co mputed from the formula 

2 
P _ w + ~ "-2 Pili rill Pili. 
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F IGURE 1. Matrix element rOll as a function of ~l - 1 F I GURE 2. Matrix element rml as a function of ~- 1 
EI with E2/ EI as a parameter. E, 
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The z-axis (3-axis) was chosen throughout as the direction of the applied magnetic fi eld so that In 

the special case of a dipole oriented parallel to the magnetic field, p is given by 

and the expression for the power reduces to 

8. Conclusion 

The data of this paper should be used with caution. When the refractive index of the cold 
plasma theory tends to infinity, the wavelength tends to zero, thus invalidating the assumption 
that the current loop is small. The reactive power, in any case, diverges. It has no meaning 
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for an elementary dipole or for a ny a-function di s tribution of c urre nt over a conducting surface. 
When there is no propagation, the radiation admittance is zero. 
The author thanks Mrs. R. Baumberg for carrying out the computing and Mr. E. Gilbert for 

c hecking results. 
The research re ported in this document has been sponsored in part by the United States Air 

Force, under Grant 63-33 a nd monitored through the European Office, ARDC. 

9. Appendix 1 

It was shown in Kogelnik [1960a, 1960b] that the real power radiated by an elec tri c dipole with 
mome nt p is given by an expression 

-)Ty 

rx 
o 

o 
~ o p. 

Thus for the special case of dipoles which are linearly polarized in directions parallel to x or to y 

the power is give n by 

2 

or Py= ~ rylpyl 2 respectively. 

On the other hand, for the case of a ci rc ul arly polarized mome nt with 

Pz= O, ±jpx= Pu 

we ob tain 

and thi s is not th e sum of the powers rad iated by two aerials when each is excited in the abse nce of 
the other. Th e radiation of the aerials s hows 'interfere nce' caused by the coupling du e to the 
medium. 
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