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The methods of an earlier paper for calculating the radiation from an electric dipole are extended to the case of a mag-
netic dipole, and numerical data concerning the radiation admittance of such a dipole embedded in an infinite magneto-ionic
medium are given.

1. Introduction

In an earlier paper [Kogelnik 1960a] the radiation resistance matrix of an electric dipole with
arbitrary orientation with respect-to the magnetic field was calculated in terms of the tensor ele-
ments characterizing the medium in which it is embedded. Numerical data concerning the resis-
tance matrix were published in the Proceedings of the Upsala Conference [Kogelnik 1960b]. The
extension of the method to the case of a magnetic dipole [Kogelnik, Oxford Thesis, 1960, unpub-
lished] was given at the Copenhagen Symposium on Antennas [Kogelnik and Motz 1963]. The
purpose of this paper is to present numerical data which were not given in that paper, and to briefly
but completely reformulate the theory.

2. Definitions and Basic Analysis

We treat a dipole embedded in an infinite, homogeneous nonmagnetic (e = 1) medium. The
a-c quantities are described by their complex amplitudes. A column vector is expressed by a
symbol a and its transpose, a row-vector, by a. The Hermitian conjugate of a vector a is denoted
by g*Z&I. Symbols like aa, kk, etc. denote dyades; tensor quantities are denoted by symbols
a, K, etc. In mks units Maxwell’s equations take the form

VX E=—jouH—M
V X H=jwecE (1)

where the introduction of the magnetic current density M will allow us to represent a small wire
loop immersed in plasma by the equivalent magnetic dipole, with a distribution of magnetic current

M(I‘) =jwpm(3(l‘) (2)

where 8(r) is Dirac’s d-function.
In (1) we have dropped factors e’ expressing the time dependence and € is of the form

&g "‘jG;g; 0
€= ||jes; €; O 3)
0; 0; e
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encountered in magneto-ionic theory. For the source-free (M =0) medium one easily finds, from
Maxwell’s equation, the wave equation which, when applied to waves of the form E=E, exp
(—jk - r),leads to

We(k, koE =0, @)
where
Wk, ko) =k k — (k - k)1 + 2¢. 5)
For nonvanishing fields one must have
det W (k, ko) =0. ©)

One can easily show that, with € of the form (3)
det We=k? (e, sin? 0+ e; cos? 6) (k2— k2) (k2 —?2, ™

with refractive indices k%/k2, k% /kZ for the ordinary and extraordinary wave given by

k2, (€2— € sin? O+ €1€3 (1 + cos® 0) =[(e2 — €3 — e1€3)® sin? § + deZe? cos? 0] 1/2'
K2 2(e: sin? B+ €3 cos? )

@)

3. Dyadic Green’s Functions and Their Fourier Transtorms

We want to express the radiation field in terms of a given source distribution. Since Maxwell’s
equations are linear we can certainly write

E(r)= [ dr'Ceylr, t’)M(r')  H)= [ dr'Cuy(r, v)M(r’) ©)
where Ggy, Guy are matrices which may suitably be called dyadic Green’s functions. Once they

are known, the problem is solved. We can obtain them by algebraic operations by means of Fourier
analysis of the fields of the form

E(I‘)ZfdkEke*f“‘“) (10a)
E = A drE(r)e’* v 10b
KT g : (10b)

We also define matrices &gy, guy, which are Fourier transforms of the dyadic Green’s functions
defined above:

A 1 ~ - .
GHM:@J' dkguu(k)e ke (11)

Introducing (10a, b) and (11) into (9) we obtain

E, = &M,
Hk: gyMMk. (12)
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4. Computation of the Dyadic Green's Function Transforms

We shall reduce the computation of the transforms 2uy, gga to matrix operations. To do this,
it is convenient to define a matrix

0, _k:;, /n
K=|| ks, 0, —k (13)
K, kO

such that vector products may be written as matrix products, e.g.,
k XE=KE. (14)
With this notation the Fourier-transforms of Maxwell’s equations may be written in the form

_]KEk =—jw/.u)Hk— Mk
o (15)
—JjKH, = jweoeE >

The determinant of the matrix K is clearly zero and therefore K does not possess an inverse. In
most cases, however €' exists. We solve for E, and H, by multiplying equations (15) by 1/jouo

and €/jwe, respectively and obtain

:—_ — (e 2=
Hk o UKE M) E € /jwé()]KH (16)

Substituting these results into (15) we obtain
(kk —(k - k )1+ k26 E, =—jKM, (Ké-1K + k)H, = jweM, 17)
since
KK =Kk — (k - K)1.
Comparing (17) with (12) we find the dyadic Green’s function transforms
gy = —jlifg‘lz, gy =jwe W ;! (18)
where l%p is defined by (5) and fVH is given by
Wu=KeR+ k2. (19)
We shall, in the following, only need guy. For this reason, and also since the expressions for W L

have already been given in Kogelnik [1960a], we give below only W 1. One finds, putting k=/n
where n is a unit vector

-1 nénkinn — k23S + kil(det &
H — A
det Wg (20)
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where

Sll =€1€3+n§(€%—e§) Sg] :jn§€z€:;+n1nz(€%—€§)
S12 =— jnZe:€3 + nins(e? —€3) S22 = €163+ n¥(€?— €2)
513 =jn2n3€2€3 + ninge €3 st = N2Ng3€1€3 _jn1n3€2€3
(20a)
Sa :_jn2n3€2€3 + ninze €3

ng — N2N3€1€3 +jn1n362€3

533 = 277%6163 ar (nf ar n%)(e% - Gg)

5. Power Radiated by a Distribution of Magnetic Current

The power radiated by a volume element dx dy dz of the distribution is given by Poynting’s
dP=—1H*Mdx dy dz. (21)

Hence the power radiated by the magnetic current system is given by the integral
P=— %Jdr'fdrM*(r’)G,*,MM(r) (22)

over the magnetic current distribution which, in terms of the dyadic Green’s function, transforms
can be shown to reduce to

P=—an [ kM, ) (23)
by the application of well-known 8-function identities.

6. Radiation Admittance of a Current Loop

As mentioned in the first section, the magnetic dipole is represented by a magnetic current
density distribution

M(r) =jwpmd(r).

This corresponds to an oscillating current in a small loop such that the dipole moment py, is given
by pm=wola*mw, [ =1, sin ot where a is the radius of the loop. This has an effect different from
that produced by a rotating electron in its orbit, which is equivalent to two linearly polarized oscil-
lating currents with a phase difference of /2. We have shown in Kogelnik [1960b] that the power
radiated by two such linearly polarized currents is, in a gyroelectric medium, not equivalent to
the sum of the power of the separately excited individual antennas (see appendix).

The spatial Fourier-transform of the magnetic current density is given by

_JoPm
M, = 873 (29)

By application of (23) we find that the complex conjugate of the power can be written as a bilinear
form

2 -~
Pr=25Pyiinpn (25)
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with
Zm= 87T3fdkg1m (26)

The elements of Z,, are measured in ohm~! m~2 (admittance-units per unit area.) The matrix z,

is split into its Hermitian and its anti-Hermitian part
2m = ;rn + jxm (27)

and the real power radiated is

2

) -~
Pr=? P TmPm. (28)
We can substitute in (26) for guy from (18) with the result

. —Jjoe [T? . = o k2[nénk'nh —k2k3S + kil (det &)
In=g L sin 6d0 J:x dkL do hén(E— B2 (B — k2 ) (29)

So far the theory is perfectly general and would also apply to lossy media. We now specialize
the theory to apply to a lossless medium by assuming that €, €, and €; are real. Our numerical
results apply to this case only. The matrices M,,,, N are defined by

A ] [ sin2 60; 0; 1]
N=— f nndp = 0; sin? 6; 0
i 0; 0: 2 cos* 0 (30)
it =11 f Sdd
26165+ (€32 —€3) sin? 0; — 2jes€3 cos® 0 2 0
=|| 2je2€3 cos? 6 : 2€1€3 1+ (€3 — €3) sin? 6; 0
0; 0; deie; cos® O+ 2(e?2 —€) sin® 0
(31)

Having performed the integrations with respect to ¢ and k, the final results can be written in the
form

™ ! duF w 32)
2Z\3 )y Kileit+ (e —eyu](k —k3)

'm=——
. . 2 = . ..
with Zo= (wo/€0)"/2, )\ozk— and F),, being the Hermitian part
0

F,,=Herm {nén(k? —k")N P =5 )M,,,+2k0(k, k“)i(det €) Be (33)

Thus the matrix 7, has the form

A .
I'mi, —JIm2, 0

A 3

I'm=— jrmz, I'mi1, 0
0, 0, 'm3 (34‘)
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with the elements

T ! dufmi(u)
" 2Z0N2 Jo Ki[er+ (63— en)ur] (k2 — k%)

35)
where u=-cos 6

fmi=Re {nén(k} — k) sin® 0 — k3(k} — k3)[2€1€3 + (€2 — €2) sin?® 0] + 2ki(k;— kyy) det €}

Sfmz=Re {—2k3(k} — k})ez€3 cos® 6 }

fms=Re {2nén(k} — k7)) cos? 60— 2k(k} — k) [ 2€.1€5 cos® 0+ (€] — €3) sin® 6] + 2ki(k;— kyy) det € } .

7. Numerical Data Concerning the Elements of the Admittance Matrix

Since the expressions (35) for the admittance matrix are rather cumbersome, we have evalu-
ated them by means of a digital computer (Ferranti Mercury).
Table 2 records values for rys, while rp3 is given in table 3.

Table 1 gives the element ryu.
The entries in these tables must be

TABLE 1
T'm1
e .
€1 0.1 0.2 0.5 0.8 0.95 1.00
=
=1
€
0.001 0.247 0.236 0.165 0.057 0.011 0.003
.003 249 .238 167 .061 015 .006
.01 .254 244 175 072 .027 .019
03 1269 .260 197 102 .058 .051
1 .322 315 264 .188 155 149
3 473 469 438 .395 .382 .383
5 624 621 .603 .583 .583 .588
1.0 1.000 1.000 1.003 1.019 1.043 1.057
1.8 1.601 1.604 1.627 1.680 1.727 1.750
3 2.502 2508 2.549 2,637 2.708 2.739
10 7.754 7.767 7.856 8.032 8.162 8.216
30 22.756 | 22775 | 22909 | 23.168 | 23.355 23.429
100 75.259 75.284 | 75.467 75.817 76.064 76.161
300 22526 | 22529 | 22552 | 225.95 | 226.25 226.379
1000 750.26 | 750.30 | 750.58 | 751.10 | 751.46 751.608
3000 2250.3 | 2250.3 | 2250.6 | 2251.2 | 2251.6 2251.8
10000 7499.4 | 7499.4 7499.8 | 75005 7501.0 7501.1
TABLE 2
T'm2
0.1 0.2 0.5 0.8 0.95 1.00
0.001 0.985 0.941 0.650 0.217 0.031 0.000
.003 .985 941 650 217 .031 .000
01 .985 941 651 219 .033 .001
03 .985 941 654 1225 .038 .005
1 .986 943 663 .243 .058 .023
3 .987 947 .686 .289 113 078
5 .987 950 702 .329 161 129
1.0 0.989 0955 0.737 0.408 0.264 0.238
1.8 0.990 0.962 0.777 0.505 0.393 0.377
3 992 970 822 613 .539 537
10 998 992 962 960 1.017 1.060
30 1.005 1018 1.124 1.370 1.588 1.691
100 1.013 1.051 1.327 1.884 2.310 2.490
300 1.021 1.082 1.523 2.386 3.017 3.272
1000 1.029 1118 1.745 2.953 3.815 4.156
3000 1.038 1.151 1.949 3.476 4.553 4.974
10000 1.047 1.187 2.174 4.052 5.365 5.874
100000 1.064 1.258 2.621 5.195 6.977 7.660
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multiplied by

TABLE 3

T'm3
(_-z
.. €@ 0.1 0.2 .05 0.8 0.95 1.00
=-1
€
0.001 0.001 0.001 0.003 0.004 0.004 0.003
.003 .001 .003 .006 .008 .007 .006
.01 .003 .007 016 .021 .020 018
.03 .008 016 .038 .051 051 .048
1 019 038 .090 127 133 131
3 .039 077 184 .269 .293 .295
5 052 .103 .249 .369 .408 415
1 0.075 0.149 0.363 0.546 0.615 0.630
1.8 0.099 0.198 0.483 0.735 0.837 0.864
3 123 246 604 .929 1.066 1.104
10 192 .383 946 1474 1.714 1.785
30 264 527 1.306 2.050 2.401 2.509
100 349 697 1.732 2.734 3.212 3.363
300 429 858 2.134 3.378 3.977 4.169
1000 519 1.036 2.581 4.094 4.827 5.064
3000 .601 1.201 2.991 4.751 5.607 5.885
10000 691 1.381 3.442 5.472 6.464 6.787
100000 869 1.738 4.335 6.902 8.161 8.574
== €32 mh 2
~ €¥2 mhos/m
3ZoA3 !

where Z, () 120 7 ohm, and A is the free space wavelength. The values so obtained are expressed

in mhos/m~2.

The power can be computed from the formula

P,~:?p

(1)2

mi

€2/€1=10

L

0-01

65/€|_I

0l

5 a €3
FIGURE 1. Matrix element "mi as a function of? —1
1

with €€, as a parameter.

IOOOF' =

100

+ A
m I'm Pm-

We also give graphs of these quantities (figs. 1, 2, 3, 4, 5, 6).

€3/5[

ALL €,/€,

100

1000

- 5 - €3
FIGURE 2. Matrix element ™mi as a function of ——1
€

in the range where it does not depend on the ratio
€2/€.
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The z-axis (3-axis) was chosen throughout as the direction of the applied magnetic field so that in
the special case of a dipole oriented parallel to the magnetic field, p is given by

p: O p+=(03 Ovpz)
0
Pz

and the expression for the power reduces to

2
Pl'z% r3 (Pz)z-

8. Conclusion

The data of this paper should be used with caution. When the refractive index of the cold
plasma theory tends to infinity, the wavelength tends to zero, thus invalidating the assumption
that the current loop is small. The reactive power, in any case, diverges. It has no meaning
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for an elementary dipole or for any §-function distribution of current over a conducting surface.

When there is no propagation, the radiation admittance is zero.

The author thanks Mrs. R. Baumberg for carrying out the computing and Mr. E. Gilbert for
checking results.

The research reported in this document has been sponsored in part by the United States Air
Force, under Grant 63-33 and monitored through the European Office, ARDC.

9. Appendix 1

It was shown in Kogelnik [1960a, 1960b] that the real power radiated by an electric dipole with
moment p is given by an expression

5 Iz —jry 0
P= w—;* 12y P 0 F
0 0 Ty

Thus for the special case of dipoles which are linearly polarized in directions parallel to x or to y
the power is given by

w? w? .
Pr=— rz|pz|? or P_,,=? ry|lpy|? respectively.

2
On the other hand, for the case of a circularly polarized moment with

p-=0,%jp-=py
we obtain

P.= w2|p,|2(r_,~'_" ry)

and this is not the sum of the powers radiated by two aerials when each is excited in the absence of
the other. The radiation of the aerials shows ‘interference’ caused by the coupling due to the
medium.
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