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The sta ti s ti cal di s tributi ons of th e a ngle of arrival, th e s pot location, the cross section, th e amp li . 
tude , th e carrier phase and the modulation phase of a lase r bea m tra ve rs ing an anisotropicaliy turbule nt 
at mos phere are de rived in terms of the s pace corre la tio n fun c tion of th e at mosph eri c index of refractio n 
a nd the windspeed. The Limit a ti o ns imposed by the turbule nt atm osp he re and the loss ,of cohe re nce o n 
the de pth and bandwidth of the modulation , on the le ngth of the path a nd on the a pe rture of the rece iv· 
ing appara tus are a na lyzed . Experim e nt s to ob tai n num e ri ca l param e ters a nd tn c hf'c k fun c tional 
depe nde ncies are proposed. 

1. Introduction 
Consider receiving equipment in the form of a 

lens and a sensory organ (e .g., a ph oto multipli e r) a t 
its foc us, the voltage across it s outp'ut terminals 
be ing co nside red as the received signal. In a vacuum, 
or in a homogeneous atmosphe re, th e lase r bea m is 
direc ted along the optical ax is and th e se nsory organ 
rece ives prac ti cally th e fuJI e ne rgy of the beam. A 
turbulent a tmosphe re, on the oth er hand , will make 
the parameters of th e bea m flu c tuate a t ra ndom and 
will di s tort the beam in one or more of th e following 
ways: 

(a) The angle of a rri val will dev iate from the direc· 
tion of th e opt ical axis and the beam will be foc used 
at so me oth er poi nt in the focal plane (" im age-danci ng", 
" quivering") . If the signal is to be received, the area 
of the se nsory organ has to be increased. 

(b) Th e pos ition of the beam will deviat e from its 
central posJltOn (" illumin a ti on danc ing", "spot 
dancing"); part of the bea m will move out of the aper­
ture. If this is to be preve nted, the aperture has to 
be inc reased; part of it will necessarily have to re main 
idle and thus the full gain of the receiving apparat us 
is not realized. 

(c) The cross sec tion of the beam will fluc tuate 
("bre athing"); s ince the total energy in the beam is 
very nearly co nstant (fo r prac t icall y no e nergy is los t 
by attenuation, and very little is sca ttered far out of 
the beam), thi s results in flu c tuations of inte nsity 
("scintillation"). If the cross section of the beam 
flu c tuates beyond that of the aperture, the re will be 
amplitude fluctuations at the output of the sensory 
organ. 

(d) Within the beam th e direc tion of the rays will 
fluc tuat e (c rumbling of the wave front), causing a 
blurred image ins tead of fo cus ing the rays. The effec­
tive sensitivity of the rece iver will thu s again be 
lowered . 

(e) For the sa me reaso n, th e illumina tion wi ll not 
be uniform , but will flu c tu a te over the illumi'nated 
s pot (" boiling"); partial fo cus in g a nd de focus in g will 
produce bright regions a t th e ex pe nse of o th e r regions 
within th e c ross sec ti on of the beam. 

(f) Fluc tuation s in trans it tim e (due to flu c tu at ions 
in t he veloc ity of propagation), or phase flu c tuat ions, 
will s imula te a modulation ; thi s will inte rfe re with th e 
true modulation, unless th e modulation de pth a nd 
bandwith of the latter are correc tl y c hose n. 

(g) Fluc tuations as in (1) will not only take place 
for the e ntire bea m, but will also vary across th e cross 
sec tion of the beam; s ince the sensory organ at any 
mom e nt integrates over the e ntire ape rture, the indi ­
vidu al co ntributions from th e e le me nts of th e ape rture 
will, because of the ir diffe ring phases, add up to less 
than the ir scalar sum . Whe n th e tran sit tim e differ­
e nce across the beam reaches the period of th e modu­
lation freq ue ncy, the modulation may be obliterated. 

The signal degeneration as in (a) to (e) could , in 
principl e, be e limina ted by suffi c ie ntl y inc reas in g th e 
aperture and the active r egion of the se nso ry organ. 
Although the full pot e nti al gain of s uc h an apparatus 
would not be reali zed, the re would be no amplitude 
fluctuations, for the total e ne rgy of the beam would 
simply be always interce pted regardless of the direc­
ti o n, loca tion , cross sec ti on or inte rnal energy-di stri ­
bution of the beam. However, not only would thi s 
make no diffe rence to (f), but it would actually enhance 
the signal degeneration caused by (g). Thus too 
large an aperture will result in the modulation being 
averaged out, whilst too small an aperture will res ult 
in the temporary loss of the carri e r altogether. 

In the following sections the mean square values 
and, where poss ible, the e ntire di s tributions of th e 
fluctua ti ons (a) to (g) will be calculated in terms of 
the refractive-index flu c tua tions of the atmosphere. 
Exper im e nts des igned to me asure these fluc tuations 
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and to verify the formulas derived below will be pro­
posed; and possible countermeasures against partic­
ular types of signal degeneration will be suggested. 

2. Characteristics of a Turbulent 
Atmosphere 

The index of refraction n of a turbulent atmosphere 
is a random function nCr) of the position (vector) r. 
We define the random function f-L(r) with mean value 
zero through 

(2.1) 

where the angular brackets denote the mean value 
over the whole region; we also assume ergodicity so 
that this is also the mean value at anyone point over 
a long period of time. As we shall be mainly interested 
only in the fluctuations f-L(r) , we commit only a negli­
gible error (a few parts in 105) in sett ing (n) = l. 

For briefness, let 

(2.2) 

then the correlation function of f-L is defined as 
1fT B(rl, r z)= ( f-Ll , f-L2) = lim -T f-Llf-LZdt = ( f-L2 )C(rl, r2) 

T~oo 0 

(2.3) 

where C is th e autocorrelation coefficient. 
Throughout the following it will be assumed that 

the turbulence is homogeneous (though not neces­
sarily isotropic), i.e., that the statistical distribution 
of f-L is the same at any point throughout the region 
traversed by the laser beam. In that case the corre­
lation between two points will be determined only by 
the distance and direction between the two points, 
i.e., by (rJ - r z) = r , but will be independent of the 
actual location of the two points, so that B(rl , rz) 
=B(r). 

Finally the turbulence will be isotropic if B depends 
only on the distance between the two considered 
points but not on the direction joining them, i.e ., only 
on r = I rl-r.2l · 

Theoretically derived correlation functions, such 
as those derived from the Obukhov-Kolmogorov "2/3 
law", include empirical parameters hard to find by 
direc t measurement, such as the inner and outer scale 
of turbule nce, and are mathematically fairly unmanage­
able. Moreover, it is known from tropospheric scatter 
propagation (also from the elliptic shape of the laser 
spot) that atmospheric turbulence is in general aniso­
tropic; but no practically useful correlation function 
describing anisotropic turbulence satisfactorily has so 
far been derived from aerodynamic considerations. 
We therefore prefer to introduce an arbitrarily chosen 
correlation function 

where x, y, z are the rectangular components of r, 

and X, Y, Z are the correlation distances along these 
directions ; for isotropic turbulence (X = Y = Z = R) 
this reduces to 

(2.5) 

There is of course no physical reason for choosing 
this particular correlation function out of an indenu­
merable set of functions fulfilling the conditions given 
above; however, it is plausible to assume that (2.4) is 
sufficiently general to provide a sati sfactory leas t­
squares fit of measured data by a proper choice of th e 
cons tants I < f-L2), X , Y, Z. As against theoretically 
derived correlation functions it has the advantage 
of being mathematically manageable and providing 
for anisotropic turbule nce. 

The structure function corresponding to (2.4) is 

D(r) = ((f-Ll - f-LZ)2> = 2B(0) - 2B(r) 

= 2( f-L2 )[1 - exp (- X 2 /X2 - y2JY2 - Z2 /Z2)]. (2.6) 

3. Survey of Existing Methods 
To solve the problem fully and exactly, one would 

have to solve the wave equation 

(3.1) 

for the random function nCr, t). The variable U s tands 
for any quantity satisfying the wave equation , e.g., a 
rectangular component of the field vectors E or H. 
As at present no general and exact analytical method of 
solving (3.1) is known, it has to be solved by one of 
several approximate methods. 

The simplest approximation is that of geometric 
optics or ray tracing. It can be derived directly from 
(3.1) [Landau and Lifshits, 1959] for sufficiently small 
ratios A./a with A. the wavelength and a the dimensions 
of the inhomogenities (or roughly the correlation dis­
tance). This leads to Fermat's principle, according 
to which the ray path is the curve for which the transit 
time is minimum: 

Vt=l J Ln(X, y, z)dl=minimum (3.2) 
c 0 

with L the length and dl an element of length of the 
path. Using variational methods, the quantities of 
interest and their fluctuations may be found. The 
simplicity of the method permits more complicated 
phenomena, such as anisotropic turbulence, to be 
tackled more easily. Unfortunately the method breaks 
down for small inhomogenities on very long paths, as it 
neglects diffraction effects. 

I If thi s is not so, one may use (2.4) with different cuns tants for large r and for 1'- 0, or 
any other useful correlation fun ction. The res ulting formulas in th is paper will be ex­
pressed in terms of 1:1 general function B(r) for which (2.4) wi ll be substituted as an example. 
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The latter are respected in the "Method of small 
perturbations", which assumes th at the amplitude and 
phase fluctuatio ns of th e wave in th e random medium 
are small compared to the unperturbed values in a 
homogeneous med ium. A furt her refin e men t of thi s 
method is due to Rytov [Ta tarski , 1961; Chernov, 1960]. 
The method leads to tedious integrations , making 
investigations beyo nd well-known res ults difficult. 
It has also recen tly been pointed out that the method 
may in certain cases not be supe rior to that of geo­
metric optics [Hufnage l and Stanley, 1964]. 

A third method developed in the pas t few years by 
Wolf, Beran, P arrent, Zucker, and others [Beran and 
Parrent , 1964] is the "theory of partial coherence", 
whic h in essence by-passes solutions in terms of the 
usual electromagneti c fi eld vectors, but rather direc tly 
inves tigates the " mutual coherence function", a correl­
ation function of an analytic signal that can be shown 
itself to obey a wave equation. Thi s approach has 
been used in connect ion with th e present problem by 
Hufnagel and S ta nley [1964] ; however, their derivation 
includes the assumption of very s mall scatte ring 
angles -apparently so small that no wid enin g of the 
beam sets in , for se tting PI = P~ in eq (4.6) of the ir 
paper, one finds the amplitude undimini s hed for a ny 
le ngth of path (z), which does not agree with th e experi ­
ment and seems to be a coarse r approximation than 
that of geometric optics. Nevertheless, since the 
method aims directly at the fun ction of immediate 
interest , it eviden tly holds much promise for the future. 

4. Choice of Method 
Confronted with the lack of a general method of 

so lution, we make the following comp romise: 
We first investigate the di stortions caused by large 

inhomoge niti es (outer scale of turbule nce). If they 
are muc h larger than the cross sec tion of the beam, 
they are e vidently responsible for modify ing the beam 
as a whole, i.e., di splac ing it, c hanging its angle of 
arrival and varying the tran sit time of the wave front 
as a whole ; they are also responsible for amplitude 
fluc tuations, as far as these are caused by refract.ive 
broade ning of the beam cross sec tion (cf. below). 
These inhomogenities may safely be assumed large 
enough to sati sfy the criterion for the applicability 
of geometric optics, and the calculation of the resulting 
distortions is simple enough to permit investigation 
of the more complicated problem of anisotropic 
turbulence. 

This method neglects diffrac tion effects and there­
fore the results obtained (as above) are then checked 
against those obtained by wave op ti cs. This com­
parison seems to indicate that geo metri c optics have 
been unduly spurned (possibly by extrapolat ing from 
conditions in the mi crowave band, although this co n­
cerns frequencies 105 times smaller): the results differ 
insignificantly for amplitude fluctuation s; for phase 
fluctuations they lead to prac ti cally the same result, 
whilst for other cases wave optics have not led to 
any explicit results at all (parti cularly where aniso­
tropic turbulence is concerned) . In what follows 

we the refore primarily use geometric optics and only 
check th e res ult s against those that can be obtained 
by wave opti cs. 

5. Basic Relations 
To apply geome tri c optics, the dimensions of the 

inhomogenities to have to be sufficiently large to satisfy 
the criterion [Tatarsk i, 1961; pp. 120- 121] 

(5 .1) 

where L is the pathlength and A. th e wavele ngth. 
Starting with (3 .2) one may then use the Euler-Lagrange 
equation to derive the "ray eq uation" [C he rnov, 1960; 
pp. 12- 15] 

d(ns) -\7n=O 
dl 

where s is a unit vec tor tangent to the ra y. 
Since 

(5.2) 

dl = v' dx~ + dy~ + dz~ = dx VI + (dy/dx)2 + (dz/dxF, 

then for a ray s ta rting out in , and never s trongly deviat­
in g from, the x-direc tion, (dy/dx)~ and (dz/dxF will be 
small compared to unity, so that we may se t dt = dx 
a nd (5 .2) becomes 

d~:s) _ \7 n = O. 

Integration yields 

n{r)s(r ) /'- JI. 
o = 0 \7 ndx . (5.3) 

Since the value of n at the e nd points of a suffi cientl y 
long path obviously cannot affect its direction, we se t 
it equal to its mean value unity. Also s(O, 0, 0) = Xo, 
a unit vec tor along the x-axis; he nce 

(5.4) 

or decomposing s into its components, 

S = -dx' 1'- af-L 
y 0 ay , 

(5.5) 

The random values of the three components are not 
quite independent , as they are related by the condition 
s~ + s; + s; = l. 

If L is long enough to traverse very many inhomo­
genities (as we assume), then it follows from the Central 
Limit Theore m and (5.5) that, regardless of th e di s­
tributions of af-L/ax, af-L/ay, af-L/az, the co mponents 
SJ" Sy, Sz are all normally di s tributed. Obviously 
< Sy > = < Sz > = O. 
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The s mall perturba tion method co ns ists in replacing 
the solution of (3. 1) 

which is valid for a plane wave propagating along th e 
x-axis through a medium with n = co nst, by 

U(r) = A(r)e- i[wI - F(1'/1 (5.6) 

where A and F are unknown functions whose stand ard 
de viation is assumed small compared to the unper­
turbed values Au and kx. Rytov's refinement of thi s 
me thod essentially consists in writing (5.6) as 

U(r) = Aoe- il wl - Q(rJI, 

making 

Q(r ) = F - i log [A(r) /A o]. 

It may then be shown [Chernov, 1960] that under 
certain conditions that are well sati sfi ed for optical 
frequencies, the fluctuating part of A , i.e ., 'l' = Q - kx, 
is given by 

(5.7) 

where r is the di s tance from an element dv with co­
ordinates ~, T), ~ to the observation point x, y, Z and 
the integration is carried out over the entire volume 
from whic h waves arrive at the receiving point. 

The following inves tigation will be based on (5 .5); 
the results will then be c hec ked against those obtained 
from (5.7). 

At thi s point we also insert formulas for certain 
double integrals that very frequently occur in propa­
gation through a random medium . 

The formula 

( L (1~ (L Jo dXI Jo f(xi - x2)dx2 = 2 Jo (L - x)f(x)dx (5.8) 

where f(x) is an even function, is obtained by partial 
integration; quite si milarly one obtains the more 
general relation 

i L, dXI f2 f(x)dxt = f~ ' (L I - x)f(x)dx 

+ fo L\L2-x)f(X)dX-i L, - L2 (LI + L2 - x)f(x)dx, (5 .9) 

of which (5.8) is a special case for LI = Lt . 
In all cases to be considered, f(x) is a correlation 

function having significant values only for x « L I , Lt ; 

we may therefore replace the upper limits by 00 and 

neglec t x compared with L; this lead s to 

iL' dXI f 02 f (x)dx2 

= (L I +L{X f(x)dx-(L I + Lz)'1:' f(x)dx 

=(L I + L z) L~- '~2 J{x)dx. (5 .10) 

6. Fluctuations of the Angle of Arrival 
("Quiveringll) 

Le t 8 and <I> be the (sm all) deviations of the beam 
from its original direc tion xo, so that by transforming 
to spherical coordinates 

SJ = cos 8 cos <I> = (1 - ~ 82) (1 - ~ <1> 2) 

Sy = sin 8 cos <I> = 8 (1-~ <1>2) 

Sz = sin 1> = <I> . 

(6.1) 

(6.2) 

(6.3) 

Neglecting second·order terms and recalling the 
remarks following (5.5), th e probability densities of 
8 and <I> are th erefore 

where ( 82 ) = ( s~ ) and (<1>2 ) = (s;) are determined from 
(5.5): . 

( 82) = (st) = / (L a/-L(Xl, YI, ZI) dXI J L a/-L(Xt, yt, zz) dxt) 
\Jo ayl 0 aY2 

(6.6) 

Introducing relative coordinates x = XI - X2, Y 
=Yl-YZ, Z= ZI-Z2, we have 

az at 
-a a =- a,.,2;(/-LI/-LZ) =( /-L2)C(r) (6.7) 

YI Yz .r 

and applying (5 .10) we find 

(6.8) 

For C given by (2.4) we have 

(a:~; y~z~: - ~ e- x2/x' 

632 



so that 

(6.9) 

Similarly, 

(6.10) 

The mean square of the total deviation is 

which for isotropic turbule nce (X=Y=Z=R) reduces 
to 

( 6.12) 

a formula already derived by Chernov [1960 ; p. 17, 
eq (33) and (3.5)]. Th e di s tributions of () and 4J are 
both normal as already expla in ed after (5 . .5); th eir 
mean values are zero and th ei r respec tive var iances 
are given by (6.9) and (6.10) in te rms of the fluctuation s 
of the atmosphere and the path length. It follows 
that there mu s t be a mutually pe rpendi cular pair of 
axes that will mak e () and 4J s tati s ti cally inde pende nt ; 
it is these two axes that we c hoose as the y- and z-axes. 
It should be noted that the ir direc tions need not neces­
sarily be horizontal and vertical, although for physical 
reasons thi s is probably their mos t common orientation. 
It also follow s that the total de viation E from the unper­
turbed angle of arrival, relat ed to () and 4J by E2 = ()2 

+ ¢2, is Hoyt -di s tributed : 2 

) E I (A - B) (A + B ") P.(E = vAS 0 4AB E exp - 4AB E- (E > 0) 

(6.13) 

where for the sake of brie fness we have put «()2) = A, 
( 4J2 ) = 8 . For isotropic turbule nce, A = B, and (6.13) 
reduces to the Rayl e igh di stribution: 

(6.14) 

From (6.9) and (6.10) the anisotropy ratio is 

(6.1.5) 

To measure «()2) and (4J2) the following ex pe rime nt 
is proposed. Let the beam pass through a telescope 
focused at infinity and take a time exposure of the 
image long e nough to ensure appropriate averaging. 

2 Curves of (6. 13) will b e found in IHoyt , 1947]. C urves of the integral di s trib1ltio n of 
(6.1 3) are given by Hec kmann 11%3J, pp. 208- 212: subst itute E for r. scI 8 = 0 and k equal 
to the anisotropy ratio (6. 15). 

Deviation s of the image from the center corresponding 
to the op ti cal axis are proportional to dev iations of 
the angl e of arrival and may easily be calibrated. The 
density of the photographic record will then be de­
term ined by th e distribution p((), 4J) = po(())P<t>(¢) as 
given by (6.4) and (6.5). The distributions may then 
be eva luat ed densitometrically; a particularly con­
venient me thod is to process the equiprobability curves 
directly.3 For isotropi c turbul e nce, the equiprobabil­
ity curves should be circles; for anisotropic turbulence 
they will be ellipses, and the ratio of major to minor 
axes directly measures (6.15). The values of UP) 
and (¢2) may again be obtained by densitometry along 
the major and minor axes. Thi s yields th e di s tribu­
tions p((), 0) and p(O, 4J), from which t he mean 
squares are easily derived by standard met hod s. 

7. Displacement of the Spot ("Dancing") 
The di s place me nt s Y} and ~ of th e beam along th e 

y and z axes from its unperturbed position are ob­
viously given by 

[to 
Y} = )o sydx, (7.l) 

where th e random quantit ies Sy and Sz are given by 
(5.5). They are, as we have see n, normally dist rib­
ut ed and he nce Y} and ~ are distributed normally also. 
It follow s from (Sy) = (sz) = 0 that 

(7.2) 

To find the mean square of Y} we first find the co r­
relation fun c tion for () = Sy at di stances L 1 , L2 from the 
source. In analogy to (6.6) and using(6.7) we now have 

Substituting from (2.4) and integrat ing we obtain the 
correlation fun c tion 

Similarly, 

:l By revers ing negat ive A o nt o negat ive 13: the print madl' through the combined nega­
tives A and B wilJ then (owi ng tn the logarit hm ic !'en $. itivit y of the eln ul s io n) s how up tht' 
curves of equal dens ity, i.e ., the t'quiprulJahility curves. Details of the procedure may be 
found in [Lau and Kru g, 1957]. 
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In the last two formulas erfc is the error function 
compleme nt, 

erfc x = 1- erf x = 1--- e- t'dt. 2 I X 
V; 0 

From (7.1) we have, for path length L, 

(7.8) 

By a procedure analogous to obtaining (5 .10), thi s 
leads to 

(7.9) 

The integral equals twice the upper limit, so that 
finally 

(7.10) 

Similarly, 

(7.11) 

F or isotropic turbule nce , X = Y = Z = R, so that in 
this case the las t two relations reduce to 

2V ( p,2) V; 
R (7 .12) 

A similar formula was derived for this special case 
by a more complicated method by Chernov [1960; 
p. 26, eq (67) - square and substitute from eq (35) on 
p. 17.]; it differs from (7.12) in the numerical factor, 
which is 4/3 and not 2 as above. 

Since YJ and ~ are normally distributed, p will be 
Hoyt-distributed as E was in (6. 13), and for [he same 
reasons; only the mean square values along the axes 
now depend on the path-length L in a strikingly dif­
ferent manner (proportional to V). 

The proposed measurements are therefore also 
similar to the ones in the previous section. For 
measuring the dis tributions of YJ and ~, however, the 
time exposures s hould be made by photographing a 
screen (refl ecting or translucent) illuminated by the 
laser beam. 

The anisotropy parameters may be measured analo­
gously to (6.15); the inner scale of turbulence may 
be estimated by finding the di stance up to which the 
3d-power dependence on L re mains valid and the 
result may be compared with (6.16). 

It is probable that in this measurement the dis­
placement of the beam ("dancing") will be partially 

masked by expansions and contrac tions of its cross 
section ("breathing"). To separat e the two effects, 
it is suggested to use two pairs of photocells, one for 
each of the two (YJ and ~) axes. If the two cells are 
mounted s traddling the central (unperturbed) point of 
illumination and connected to a differential amplifier, 
the output will be affected by deflections of the beam, 
but the arrangement s hould not react to simultaneous 
c hanges of intensity caused by " breathing". It should 
thus be possible to investigate the distributions of YJ 
and ~. 

8. Fluctuations of the Beam Cross Section 
and Amplitude 

Consider a slice of the laser beam of width dx, with 
the front and back surfaces (possibly curved) of area 
5 and 5 + dS normal to the rays, i.e., to the unit vec tors 
s. Then it follows from the Divergence Theorem that 

\l ·s5dx = d5 . (8.1) 

Re writing (5.5) as 

1+1 x afL d I I I X afL d I Sx = -a I x = ,Sy = - x, 
o x 0 ay 

S = ~dX' 1, a 
z 0 az (8.2) 

we find div s and substitute in (8.1), obtaining 

(8.3) 

where I , the energy flow per unit area, is the intensity 
or power density of the beam. Integrating, we find 

log -=- log -=- 2 log - = dx \l~' fLdx' 5 1 A lL I X 
So 10 Ao 0 0 

where A is the amplitude and \l~, denotes the trans­
verse Laplac ian as applied in the integrand of (8.3) . 
Since by assumption L :3> R, it follows again that log A 
is normally distributed, and hence A is lognormally 
dis tributed. 

The mean square value of log (A/Ao) is derived by 
the usual integrations as before and leads to 

For the correlation function (2.4) we have 

[ \l~ \l~ B(x, y, z)]y=z=o =4(fL2) (~+_2_+~) e- x'!X' 
y4 PZ2 Z4 

and the integration yields 

/ (1 ~)2\_ ( 2)VX V; (~+_2 +~) . 
\ og Ao / - fL 3 y4 PZ2 Z4 (8.5) 
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For isotropic turbule nce thi s reduces to 

(8.6) 

in agreement with Chernov [1960; p. 34]. For sim­
plicity we keep to iso tropic turbulence for the rest 
of this section, but th e results are easily generalized 
to anisotropic tW'bule nce by us ing (8.5) rather than (8.6). 
Taking the mean value of (8 .4) we find, si nce obviously 
( V' ~'f-L) = 0, 

(log ff) = (lOg :2&) = ~.( V'~, f-L)U = O. (8.7) 

It is easily shown that if y= log x is di stributed 
normally with mean value a and variance a 2 , then x 
is lognormally di s tributed with mean value 

(x) =exp (a+! (T2). (8.8) 

He nce it follows from (8.7) that 

(~o)= exp [ - ~ (log2 (A/Ao) J (8.9) 

and 

(8.10) 

Substituting from (8,4), thi s yields 

/ S) [V roc J \So = exp 3' Jo (V'~,V'~B)y=z =odx (8.11) 

and 

/ ~) - [ - V ( '" (0202B) d J \Ao - exp 12 Jo V ,/, V ,/ y=z=O X • 

(8.12) 

Specifically for the correlation function (2.4) we 
obtain 

(8.13) 

(8.14) 

(8.15) 

with obvious modifications for anisotropic turbulence 
based on (8.5). 

Equation (8.11) or (8.13) allows us to de fin e an effec­
tive angle of divergence a eff: a laser beam of equal 
power propagated in an homoge neous atmosphere 
would produce the sam e mean cross sec tion , ampli­
tude and intensity at a distance L if in stead of being 

parallel, it had a divergence a eff, obviously given by 

(8.16) 

Judgi ng from measure me nts in the microwave 
spectrum, (f-L2) is at most of th e order of 10- 10, there­
fore the exponents of (8.11) throu gh (8.15) will all be 
small against unity, so that we may expand the expo­
nentials, obtaining generally and s pec ifically 

(B- 17) 

Note that aeCf was defined in terms of equivalent 
intensity; the equivale nt "divergence of arrival" , de­
fin ed as the vertex angle of the cone tangent to the 
s urface of th e tube of rays at the rece iving end of th e 
path L , is obviously given by 

(8 .18) 

Any of th e relations (8.11) through (8.15) may again 
be used to es timate the important parameters ( f-L2) 
and to , which are cos tly and diffi cult to meas ure by 
refractometer run s (airborne or otherwise). This is 
again done by meas uring the depe nde ncies of one or 
more of th e left-hand sides of (8.11) through (8.15) 
on L and comparing them to the theoreti cal formulas. 

Meas ureme nts of (SISo ) and (log2 (SISo) and, if 
desired, of the e ntire di stribution of SISo may be made 
by ph otographin g the laser spot on a scree n (tra ns ­
lucent or by illumination). The photographs should 
be in s tantaneous and made in rapid success ion (film ­
ing) to prevent averaging effects. The corresponding 
measure ments of I and A must be made through an 
optical instrument with aperture much smaller than 
(S) to prevent integrating effects 4 and amplitud e 
fluctuations due to perturbed phases over the aperture. 
A photomultiplier with no or small-aperture optics 
will achieve this; but measurements of S, though more 
exacting, will probably be more reliable. 

Further discussion of amplitude fluctuation s , in 
particular, degeneration of amplitude modulation, is 
delayed to section 10. 

9. Phase Fluctuations 
All of the distortions hitherto considered may be 

overcome by a s ufficie ntly large aperture collec ting 

4 A typical int egrating e ffec t sels in when vi e wing stars thro ugh la rge telescopes : they 
will twinkJe less (but qu iver more) than when obse rved by naked eye . 
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the beam as explained in sec tion 1; unfortunately, the 
phase fluc tua tions le ad to the opposi te requirement, 
for their de trimental effect increases with growing 
aperture. 

In a homogeneo us atmosphere a plane wave arriving 
in the direction of the optical axis will at any moment 
have the same phase over the e ntire be am cross sec· 
tion; thi s phase will change linearly with time. The 
phase fluc tuations caused by a turbulent atmosph ere 
are of three diffe re nt kinds. 

First , the phase may change its value, at anyone 
time, linearly over the aperture. This case is equi va· 
lent to , and in fact indi stin gui shable from , a plane 
wave arriving at a finite angle with respect to the opti cal 
axis . This case has already been dealt with in sec tion 
6 ; as a result the beam will be foc used elsewhere in 
the focal plane of the lens. The resulting "quivering" 
of the image can be overcome by increasing the area 
of the sensory organ ; the size of the aperture is im­
material. 

Second, the phase may at an y ins tant be constant 
ove r the aperture, but may not vary linearly with time. 
Thi s is caused by the fluc tuations in trans it ti me of 
the individual c res ts of the wave . The res ult is a 
paras itic phase-modulation tha t c annot be eliminated 
by c hoice of the aperture or s ize of the sensory organ. 

Third, the phase may change irregularly over the 
aperture at any one ins tant. This is caused by fluc tu­
a ting diffe re nces be tween the transit times of the 
individual rays within the beam (crumbling of the phase 
front). Since the phase is ra ndom , but continuous, 
s mall phase changes over the aperture c an be ensured 
only by a s mall aperture. 

The transit time of the signal is 

1 JL t=- n (x,y,z) dx 
e 0 

(9.1) 

a nd hence the deviation from the mean IS 

1 JL i:lt = t -(t) =- /-t (x , y , z) dx. 
e 0 

(9.2) 

If t/J' = wt + t/J is the total phase, the phase fluc tua­
tions of the carri er and modulation a re given respec­
tively by 

t/J = wi:ll , \[I = ,OM (9.3) 

where w is the carri er , and ,0 the modulation fr equency. 
It again follows from the Cent ral Limit Theo re m 
(for L ~ R) that the phases of both the ca rrier and the 
modulation are di stribut ed normally with mean zero. 
The variance will then be 

(9.4) 

where k = w/e is the phase cons tant. A similar ex-

Applying (5. 10) for L ~ R, thi s yields 

( t/J2) = 2( /-t 2 )k2L io''' C(x, 0, O)dx (9.5) 

wh ere we have gone over to relative coordina tes x 
=X , -X2 , Y=Y'-Y2, z = z,-zz. In particular , for the 
corre la tion function (2 .4), thi s yi elds 

(9.6) 

T he relation will also hold for the modulation phase 
if we re place t/J and k by 'I' and K. 

Formula (9.6) desc ribes the second of the above 
effects at the point (L , 0, 0); fo r the third effec t we ha ve 
to find th e correlation of the phase fluc tuations in the 
plane x = L; 

In partic ular, for C gIven by (2 .4), thi s becom es 

(9.8) 

reducing to (9.6) for t/JI = t/J2, i.e. , for y= z = 0. For 
iso tropic turbulence , i.e ., X = Y = Z = R, thi s re duces to 

where 

(9. 10) 

This c hecks with the result obtained in thi s special 
case by using a formula derived by Tatars ki [1961 ; 
p. 100, (6.28)] in terms of struc ture fun c tio ns. 

It may be see n from (9.8) that ( t/JZ) is proportional to 
the correlation di s tance X. The latter is a me asure of 
the size of the inhomogeneities that are mainly respon­
sible for the phase flu c tuations , which lead s one to 
beli eve that for calculating phase fluctuati ons, the 
validity of geom etric opti cs may be extended to lon g 
paths L. This beli ef is furth er strengthe ne d by the 
fac t that calcula tions of ( t/JZ) by phys ic al opti cs le ad 
to the sam e depe ndence (except for a nume ri cal 
fac tor 112); more evide nce still is provided by Fried 
and Cloud [1 964b] , wh o find small-scale turbulence 
rela tively in s ignifIcant for ph ase fluc tuations. 

Formula (9.8) solves the problem for space fluc tu­
ations; however, for time flu c tuations the interesting 
quantity is not t/J , but dt/J /dt . We therefore introduce 
the ins tantaneous freque ncy [Downing, 1964, p . 60] 

dt/J ' -=w+ u 
dt (9.11) 

pression will hold for 'I' with K = 'o le subs tituted for k. where u = dt/J/dt is a ne w random variable with mean 
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zero. Let U (T) and F (T) be the time-correlation func· 
tions of u and t/J re spectively; the n 

hence 

rFF(T) 
U(T) = ( u(r , t )u(r, t + T) =-~ (9.12) 

(9.13) 

The problem thus reduces to findin g F (T). Now if 
it is assumed that the time variation of J.t at any point 
is primarily due to drift, and only to a negligible degree 
to turbulence, diffusion, etc., so that the field of 
inhomogenities is "froze n" and carried across the 
path by the wind as a whole , then using the principle 
of relativity it is easily shown that 

B (r) = B(VT), (9 .14) 

where v is the velocity of the wind. Thus for the 
crosswind compone nts V y and Vz we have directly 
from (9.8) 

( tJ!(O)t/J(T) crosswind = F c(T) 

= (J.t2) k2LX y:;; exp [- (~+ ;2) T2] . (9.15) 

To apply the same method to upwind or downwind, 
we firs t find by applying (5.10) 

( tJ!(L, 0, O)tJ!(L + t:.L, 0, 0) 

y:;; t:.L 
=(2L + t:.L)( J.t2) k2 X - erfc -. 

2 X 
(9.16) 

Hence , setting t:.L = VxT 

(9.17) 

From (9.15) and (9.13) 

((~~) )crosswind = 2(J.t2) k2 LX y:;; (~+ ;2)' (9.18) 

and from (9.17) 

(9.19) 

As might be expected from physical reasoning, 
the fluctuations caused by upwind or downwind drift 
are negligible compared to the crosswind fluctuations; 
(9.17) and (9.19) should be used only if no crosswind 
is present. 

The standard deviation of u is, from (9.18) 

(9.20). 

where W s ta nds for the round bracket in (9.18). 
As may be see n from (9.11), thi s kind of fluctuation 

is in effect a parasitic modulation of the instantaneous 
freque ncy of the carrier. Thi s modulation is normal 
with mean zero and variance (9.18). 

If the signal is amplitude modulated with frequency 
0, the carrier with the two sidebands will fl oat in 
accordance with u(t). The receiver bandwidth (optical 
filters) will therefore have to be widened [rom 20 
to 2[1 + t:., where t:. must be large enough to accom­
modate u(t) for most of the time. Its value for a 
given probability of accommodation is given by the 
Laplace function, e.g., for the signal to be accom­
modated for 99.7 percent of the time , t:. must equal 6 
times the standard deviation (9.20). The resulting 
widening of the bandwidth incr eases the noise in 
proportion, so that the signal-to-noise ratio will de· 
crease by 

(51 N) homOg - (51N) turbu 

(9.21) 

where we have taken t:. = 6CT". Alternatively, one may 
calc ulate the ba ndwidth limitation for a given signal­
to-noise ratio; a sys te m with bandwidth 20 will 
demodulate frequencies up to 0 in a homoge neous 
atmosphere, but this value will decrease to 

(9.22) 

in a turbulent atmosphere. 
If the signal is frequency-modulated, 

(9.23) 

where t:.w is the freque ncy de viation. The de modula· 
tor will recover the instantaneous freque ncy u(t) 
+ t:.w cos Ot; if u(t) is to produce no appreciable dis­
tortion, we must have 

or from (9.6), 

I t:.w)2 
( u2 ) ~ ( t:.w cos Ot)2) ---

2 (9.24) 

(9.25) 

leading once more to the require me nt of a wide-band 
system. 

It should be pointed out that for technical reasons it 
is almost impossible to keep w in a contemporary 
laser constant ; the thermal fluctuations alone cause 
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a frequency drift which is probably much greater than 
(9.18). Also, the bandwidth of contemporary optical 
filters is still so wide that the reduction (9.22) will 
have no practical effect. Thus at the present the time­
phase fluctuations are hardly dangerous. 

As for phase fluctuations in space, i.e., over the 
aperture, which may be considered rectangular (area 
4yz), elliptic (1TYZ) or circular (1Tp2), if no significant 
distortion is to set in, we must have 

where y may be replaced by z or p. The windspeed is 
immaterial for this type of fluctuation (except in as far 
as it determines X, Y, and Z) . From (9.8) and (2.6) 
we therefore have 

(9.26) 

where y and Y may be replaced by z and Z, and for 
isotropic turbulence one may set X = Y = Z = R. 
This determines the size of the aperture or else the 
permissible bandwidth of the modulation: assuming 
y ~ Y and expanding the exponential, we find the condi­
tion on the aperture size for coherence of the carrier 
phase fronts: 

y ~ AY . z ~ AZ 
2V ( JL2) Vir LX' 2V (p.,2) Vir LX' (9.27) 

For A=6xl0- 7 m, X=Y=Z=60 m, L=lO km, 
(JL2) = 10- 10 and permitting a standard phase deviation 
of 0.11T, we find an aperture radius of only 0.32 mm, 
so that unless the path is 'short and the atmosphere 
stable, there is not much hope of keeping the carrier 
wave fronts coherent. 

For the modulation frequency n = cK the situation is 
much better. Without assuming y« Y, and assess­
ing a permissible standard phase deviation Ll'l' (e.g., 
0.11T), we have from (9.26) the maximum aperture 
dimension 

=10-10, X=lO m, Ll'V=O.I1T) this still provides for a 
modulation frequency of the order of 700 kc/s. It 
would therefore appear that in designing a laser com­
munication system, one should start with the largest 
aperture technically or economically feasible (so as 
to reduce amplitude fluctuations to a minimum) and 
then compromise on modulation bandwidth versus 
path length. On the other hand, if the path length and 
bandwidth are prespecified, the aperture may be de­
termined from (9.28). In all cases the result must be 
checked against the spectrum of the parasitic ampli­
tude modulation given by (10.10). 

To measure the phase fluctuations in time and space 
it is evidently best to use the apparatus described by 
Read [1964], in which the laser beam is divided by a 
beam splitter; one beam goes through the atmosphere 
and returns to the receiver after being reflected by a 
corner reflector, the other goes to the receiver directly 
and provides a standard. The two beams are reunited 
by a second beam splitter before striking the receiver 
the beam is split into two parallel beams with varying 
distance between them and after traversing the atmos­
phere, the phase difference between the two beams is 
measured at the receiving end of the path for various 
separations. These experiments should be repeated 
with a modulated beam and the measurements should 
be performed on the modul~tion phase; this will enable 
the measurements to be carried out also on long paths 
(Read worked with path lengths of only up to 270 m). 

10 . Comparison With Wave-Equation 
Solutions 

To take account of the effects of small inhomoge­
neities, wave optics as mentioned in section 5 must be 
used_ This has been done by Tatarski [1961], Chernov 
[1960] and others; recently the present problem has 
been investigated by further development of the 
Rytov method by Fried and Cloud [1964a, b, c] and' 
Fried [1964]_ The reader is referred to these authors 
for derivations; only the results will be stated here 
(unfortunately they are confined to isotropic turbu­
lence). 

(9.28) Angle of arrival: No explicit solution by wave 

or alternatively, for a given aperture the maximum 
modulation frequency is given by 

optics is known to the author; however, this reduces 
in essence to finding the geometrical shape of the per­
turbed phase front, the normal to which determines 

C2(Ll'V)2 n 2 = -----='---'------
2 ( JL2 ) LX V; [1- exp (- y2/Y2)] 

this angle at any point. The geometry of the per­
(9.29) turbed phase front is considered by Fried and Cloud 

[1964b, c], and Fried [1964]. 

with obvious modifications for z or p. 
Formula (9.29) shows that even if the aperture diam­

eter far exceeds the correlation distance of the turbu­
lence (y » Y) the permissible modulation bandwidth 
remains finite: 

Spot location: Again, as far as the author is aware, 
no formulas equivalent to (7.10) and (7.11) have been 
derived by wave optics. 

n = CLl'V 
V 2 (JL2) LX V; 

Beam cross section: From the wave optics point of 
view the "spot" can no longer be regarded as illumi­
nated by a tube of rays ; its diameter is given by the 
closed curve of equal mean amplitudes and therefore 
(as in geometric optics) tied up with the amplitude 

(9.30) fluctuations. Since no significant energy is diverted 
from the beam, the beam cross section must vary 

Even under extreme conditions (L = 100 km, (p} > inversely as the square of the amplitude. 
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Amplitude fluctuations: For 4LlkR2 ~ 1, a condition 
always fulfilled in the op tical band, wave optics yield 
[Chernov 1960] 

((log :J) =~3 f ox [ 'Vfv~BJu=z=odx (10.1) 

whic h is ide nti cal with (8.4); he nce fo r the correlation 
function (2.4), th e express ions (8.5) or (8.6) will hold 
as before. 

Let us now se t A = (A) (1 + a), where aCt) is a random 
variable with mean zero that will be de tec ted by an 
AM demodulator. It is easily shown that 

(A2 )_ 1+( 2) 
(A)2- a. (10.2) 

An AM signal orginially modulated with modulation 
depth m will thus be di storted by the turbule nt atmos­
phere to 

v = Ao[ 1 + m cos flt + a(t)]e iwt . (10.3) 

The mean s ignal power to mean noise power is thus 
m 2/2( ( 2 ); to prevent the modulation being di storted 
by the amplitude fluctu ations, we must therefore have 

(10.4) 

where we have substituted for (a2 ) from (10.2). Since 
A is, as in section 8, lognormally di s tributed with 
(log A) = 0 (we have for simplicity set Ao= 1), we have 

Apart from overcoming the parasItI c amplitude 
modulation by sufficient modulati on depth, it can 
also be di sc riminated agains t on the basi s of its s pec­
trum. The tim e co rrela tion function of the fluctu­
ations, assuming (2.5), is found by C hernov [1960] 
to be 

(log A(O) log A(T) = (log2 A(O) )e- r2rr' (10.8) 

where T= R IVe with Ve the crosswind veloc ity. The 
spec tral density of the fluctuations is the Fourier 
transform of thi s time-correlation ; performing the 
integration, we obtain 

where fl" is the angular frequency of the parasiti c 
modulation . Integra ting (l0.9) over fl", we find (fro m 
tables of the error fun c tion) that 99 percent of the 
parasitic spectrum lies below the frequency 

(fl ) = 3.64v~ 
" 99% R (10.10) 

(A) = e 1/2 (log' A ). (10.5) 

Even assuming a n improbably small correlation 
distance of R = 2 mm and a hurricane windspeed of 
75 mph (33 m/sec), thi s gives (fl")99% = 0.6 Mcls, 
which is s till well below the value of an intercarrier 
frequency likely to be adopted in a wide-band commu­
nication system, although approaching the limit se t 
by (9.30). Frequency discrimination thus appears 
more effective than fortifying the signal by increased 
modulation depth. For more reasonable values of 
Rand Ve we find (fl,,)g9% of the order of tens or hun­
dreds of cycles; similar resul ts may be derived from 
Tatarski's analysis [1961]_ 

Substituting this in (10.4) and using (8.6), we obtain 
after ele mentary manipula ti ons the condition for the 
signal to be high above the noi se: 

m2 ~ 2 [ exp (~~~J V; (fL2») -1]. 
(10.6) 

S ince m 2.s; 1, the signal will be above the noise 
only for 

( 2) V 3V; l ~- O 2696 fL K l < 8 n 2-· . (10.7) 

It may be seen from (l0.6) that the mean SIN ratio 
(more precisely the ratio of mean signal power to 
mean noi se power) depends sensitively on ( fL2), i.e., 
on the inte nsity of atmospheric turbulence. For 
L = 200 km, R = 100 m, '11. = 6,000 A, and (an improb­
ably high value of) ( fL2) = 10- 10, we find (10.7) satisfied 
with a s afety factor of over 200, but the SIN ratio is 
only (20 loglOm-17.72) dB, i_e ., the modulation depth 
must be at leas t 81.5 percent for the mean signal to 
be above the noise; whereas for the more likely value 
of ( fL2) = 10- 12 a modulation de pth of only 30 percent 
will keep the signal about 8 dB above the noise. 
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The frequency spec trum of the amplitude fluc tua­
tions does not depe nd on the freque ncy of the carrier 
(unless fL and R s hould themselves be freque ncy­
dependent); hence the limitations imposed by 
turbulence-induced amplitude fluctuations in laser 
co mmunications s hould be no worse than in the case of 
microwave links. On the contrary, since a significant 
part of, or eve n the entire cross section of th e beam 
may be intercepted by the receiving aperture (whi c h is 
not the case for microwave links), amplitude fluctua­
tions may be further decreased by increasi ng the aper­
ture, for in the limit the whole energy of the beam will 
be intercepted so that only the amplitud e fluctuations 
correlated with the phase fluctua tions (and due to 
"compression" and "expansion" of the carrier by th e 
varying transit time) re main. Also, " boiling" will be 
averaged out at the receiver output if the aperture is 
large and will not be further considered. 

Thus, in general, the signal degeneration due to 
amplitude fluc tuations may be counterac ted by hi gh 
modulation depth, frequency discrimination and a large 
receiving aperture . 

Phase fluctuations: For co nditions in the optical 
frequency band , wave op ti cs yi eld [Chernov , 1960, 
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p. 75, eq (141)] 

(10.11) 

which differs from (9.6) only by a factor of 1/2. Thus 
in the case of phase fluctuations, by using wave optics 
one gains a meager 3 dB in accuracy 5 and loses the 
advantage of considering anisotropic turbulence with· 
out unduly cumbersome mathematics. When, in 
addition the arguments following (9.10) are considered, 
it therefore seems that geometric optics are preferable 
in this case and all others following from it (sec. 9). 

11. Conclusion 

The statistical distributions of the angle of arrival, 
the spot location, the cross section, the amplitude, the 
carrier phase and the modulation phase of a laser beam 
traversing a turbulent atmosphere have been derived 
in terms of the space correlation function of the atmos· 
pheric index of refraction and the winds peed. The 
fluctuations of these quantities impose limits on the 
depth and bandwidth of the modulation, on the length 
of the path and on the aperture of the receiving appara­
tus; these limits are interdependent and may be indi­
vidually improved at the expense of the others. 
Experiments are proposed to find more exact numerical 
values affecting the above limits . Unless these experi­
ments yield data far off the order assumed in this 
report, it appears that turbulence-induced signal 
degeneration can in general be effectively counteracted 
by choosing the aperture and the band and depth of the 
modulation as dictated by the path length and the 
atmospheric parameters to keep the modulation phase 
constant over the aperture. On the other hand, the 
coherence of the carrier wave fronts is, for reasonable 
apertures and path lengths, entirely determined by the 
turbulence of the atmosphere and thus out of the 
designer's hands. 

The above inv.es tigation was sponsored by the 
Boulder Laboratories of the National Bureau of Stand­
ards. The author is very grateful to E. Barrows for 
his thorough and helpful comments. 

!> Even tltis is not certain, for the derivation of (10. J 1) by wave optics is marred by many 
assumptions, neglections and 81)proximations. 
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