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The statistical distributions of the angle of arrival, the spot location, the cross section, the ampli-
tude, the carrier phase and the modulation phase of a laser beam traversing an anisotropically turbulent
atmosphere are derived in terms of the space correlation function of the atmospheric index of refraction

and the windspeed.

The limitations imposed by the turbulent atmosphere and the loss of coherence on

the depth and bandwidth of the modulation, on the length of the path and on the aperture of the receiv-

ing apparatus are analyzed.
dependencies are proposed.

1. Introduction

Consider receiving equipment in the form of a
lens and a sensory organ (e.g., a photomultiplier) at
its focus, the voltage across its output terminals
being considered as the received signal. Ina vacuum,
or in a homogeneous atmosphere, the laser beam is
directed along the optical axis and the sensory organ
receives practically the full energy of the beam. A
turbulent atmosphere, on the other hand, will make
the parameters of the beam fluctuate at random and
will distort the beam in one or more of the following
ways:

(a) The angle of arrival will deviate from the direc-
tion of the optical axis and the beam will be focused
at some other point in the focal plane (“image-dancing”,
“quivering”). If the signal is to be received, the area
of the sensory organ has to be increased.

(b) The position of the beam will deviate from its
central position (“illumination dancing”, “spot
dancing”): part of the beam will move out of the aper-
ture. If this is to be prevented, the aperture has to
be increased; part of it will necessarily have to remain
idle and thus the full gain of the receiving apparatus
is not realized.

(¢c) The cross section of the beam will fluctuate
(“breathing”); since the total energy in the beam is
very nearly constant (for practically no energy is lost
by attenuation, and very little is scattered far out of
the beam), this results in fluctuations of intensity
(““scintillation”). If the cross section of the beam
fluctuates beyond that of the aperture, there will be
amplitude fluctuations at the output of the sensory
organ.

(d) Within the beam the direction of the rays will
fluctuate (crumbling of the wave front), causing a
blurred image instead of focusing the rays. The effec-
tive sensitivity of the receiver will thus again be
lowered.

Experiments to obtain numerical parameters and to check functional

(e) For the same reason, the illumination will not
be uniform, but will fluctuate over the illuminated
spot (“boiling™); partial focusing and defocusing will
produce bright regions at the expense of other regions
within the cross section of the beam.

(f) Fluctuations in transit time (due to fluctuations
in the velocity of propagation), or phase fluctuations,
will simulate a modulation; this will interfere with the
true modulation, unless the modulation depth and
bandwith of the latter are correctly chosen.

(g) Fluctuations as in (f) will not only take place
for the entire beam, but will also vary across the cross
section of the beam; since the sensory organ at any
moment integrates over the entire aperture, the indi-
vidual contributions from the elements of the aperture
will, because of their differing phases, add up to less
than their scalar sum. When the transit time differ-
ence across the beam reaches the period of the modu-
lation frequency, the modulation may be obliterated.

The signal degeneration as in (a) to (e) could, in
principle, be eliminated by sufficiently increasing the
aperture and the active region of the sensory organ.
Although the full potential gain of such an apparatus
would not be realized, there would be no amplitude
fluctuations, for the total energy of the beam would
simply be always intercepted regardless of the direc-
tion, location, cross section or internal energy-distri-
bution of the beam. However, not only would this
make no difference to (f), but it would actually enhance
the signal degeneration caused by (g). Thus too
large an aperture will result in the modulation being
averaged out, whilst too small an aperture will result
in the temporary loss of the carrier altogether.

In the following sections the mean square values
and, where possible, the entire distributions of the
fluctuations (a) to (g) will be calculated in terms of
the refractive-index fluctuations of the atmosphere.
Experiments designed to measure these fluctuations
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and to verify the formulas derived below will be pro-
posed; and possible countermeasures against partic-
ular types of signal degeneration will be suggested.

2. Characteristics of a Turbulent
Atmosphere

The index of refraction n of a turbulent atmosphere
is a random function n(r) of the position (vector) r.
We define the random function wu(r) with mean value
zero through

n=(n)+u(r)=1+pur) (2.1)
where the angular brackets denote the mean value
over the whole region: we also assume ergodicity so
that this is also the mean value at any one point over
a long period of time. As we shall be mainly interested
only in the fluctuations w(r), we commit only a negli-
gible error (a few parts in 10°) in setting (n) = 1.

For briefness, let

i) = pa, ) = e 2.2)

then the correlation function of w is defined as
. 1 (7
B(ry, r2)= (@1, p2) =lim ?f Mapeadt = (pu2) Clry, 12)
T— 0
(2.3)

where C is the autocorrelation coefficient.

Throughout the following it will be assumed that
the turbulence is homogeneous (though not neces-
sarily isotropic), i.e., that the statistical distribution
of p is the same at any point throughout the region
traversed by the laser beam. In that case the corre-
lation between two points will be determined only by
the distance and direction between the two points,
i.e., by (ri—r:)=r, but will be independent of the
actual location of the two points, so that B(ri, r»)
= B(r).

Finally the turbulence will be isotropic if B depends
only on the distance between the two considered
points but not on the direction joining them, i.e., only
onr=|ri—rs.

Theoretically derived correlation functions, such
as those derived from the Obukhov-Kolmogorov “2/3
law”, include empirical parameters hard to find by
direct measurement, such as the inner and outer scale
of turbulence, and are mathematically fairly unmanage-
able. Moreover, it is known from tropospheric scatter
propagation (also from the elliptic shape of the laser
spot) that atmospheric turbulence is in general aniso-
tropic; but no practically useful correlation function
describing anisotropic turbulence satisfactorily has so
far been derived from aerodynamic considerations.
We therefore prefer to introduce an arbitrarily chosen
correlation function

B(r)= (u?)C(r) = (p?)e-=m-wly-2z (2.4)

where x, y, z are the rectangular components of r,

and X, Y, Z are the correlation distances along these
directions; for isotropic turbulence X=Y=Z=R)
this reduces to
B(r)= (u*)e-"/F* (2.5)

There is of course no physical reason for choosing
this particular correlation function out of an indenu-
merable set of functions fulfilling the conditions given
above; however, it is plausible to assume that (2.4) is
sufficiently general to provide a satisfactory least-
squares fit of measured data by a proper choice of the
constants ! { u?), X, Y, Z. As against theoretically
derived correlation functions it has the advantage
of being mathematically manageable and providing
for anisotropic turbulence.

The structure function corresponding to (2.4) is

D(r)= (1 — p2)*) =2B(0) — 2B(r)

— 2 ([l =explEx2/X2 92 (Y2 =2272)|5(2:6)

3. Survey of Existing Methods

To solve the problem fully and exactly, one would
have to solve the wave equation

nt 92U _

V2U+C2 ?—0 3.1)

for the random function n(r, t). The variable U stands
for any quantity satisfying the wave equation, e.g., a
rectangular component of the field vectors E or H.
As at present no general and exact analytical method of
solving (3.1) is known, it has to be solved by one of
several approximate methods.

The simplest approximation is that of geometric
optics or ray tracing. It can be derived directly from
(3.1) [Landau and Lifshits, 1959] for sufficiently small
ratios \/a with A the wavelength and a the dimensions
of the inhomogenities (or roughly the correlation dis-
tance). This leads to Fermat’s principle, according
to which the ray path is the curve for which the transit
time is minimum:

L
vt:%j n(x, v, z)dl = minimum (3.2)

0

with L the length and dl an element of length of the
path. Using variational methods, the quantities of
interest and their fluctuations may be found. The
simplicity of the method permits more complicated
phenomena, such as anisotropic turbulence, to be
tackled more easily. Unfortunately the method breaks
down for small inhomogenities on very long paths, as it
neglects diffraction effects.

!If this is not so, one may use (2.4) with different constants for large r and for r — 0, or
any other useful correlation function. The resulting formulas in this paper will be ex-
pressed in terms of a general function B(r) for which (2.4) will be substituted as an example.
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The latter are respected in the “Method of small
perturbations’, which assumes that the amplitude and
phase fluctuations of the wave in the random medium
are small compared to the unperturbed values in a
homogeneous medium. A further refinement of this
method is due to Rytov [Tatarski, 1961; Chernov, 1960].
The method leads to tedious integrations, making
investigations beyond well-known results difficult.
It has also recently been pointed out that the method
may in certain cases not be superior to that of geo-
metric optics [Hufnagel and Stanley, 1964].

A third method developed in the past few years by
Wolf, Beran, Parrent, Zucker, and others [Beran and
Parrent, 1964] is the “theory of partial coherence”,
which in essence by-passes solutions in terms of the
usual electromagnetic field vectors, but rather directly
investigates the ““mutual coherence function”, a correl-
ation function of an analytic signal that can be shown
itself to obey a wave equation. This approach has
been used in connection with the present problem by
Hufnagel and Stanley [1964]; however, their derivation
includes the assumption of very small scattering
angles —apparently so small that no widening of the
beam sets in, for setting p;=p: in eq (4.6) of their
paper, one finds the amplitude undiminished for any
length of path (z), which does not agree with the experi-
ment and seems to be a coarser approximation than
that of geometric optics. Nevertheless, since the
method aims directly at the function of immediate
interest, it evidently holds much promise for the future.

4. Choice of Method

Confronted with the lack of a general method of
solution, we make the following compromise:

We first investigate the distortions caused by large
inhomogenities (outer scale of turbulence). If they
are much larger than the cross section of the beam,
they are evidently responsible for modifying the beam
as a whole, i.e., displacing it, changing its angle of
arrival and varying the transit time of the wave front
as a whole; they are also responsible for amplitude
fluctuations, as far as these are caused by refractive
broadening of the beam cross section (cf. below).
These inhomogenities may safely be assumed large
enough to satisfy the criterion for the applicability
of geometric optics, and the calculation of the resulting
distortions is simple enough to permit investigation
of the more complicated problem of anisotropic
turbulence.

This method neglects diffraction effects and there-
fore the results obtained (as above) are then checked
against those obtained by wave optics. This com-
parison seems to indicate that geometric optics have
been unduly spurned (possibly by extrapolating from
conditions in the microwave band, although this con-
cerns frequencies 10° times smaller): the results differ
insignificantly for amplitude fluctuations; for phase
fluctuations they lead to practically the same result,
whilst for other cases wave optics have not led to
any explicit results at all (particularly where aniso-
tropic turbulence is concerned). In what follows

we therefore primarily use geometric optics and only
check the results against those that can be obtained
by wave optics.

5. Basic Relations

To apply geometric optics, the dimensions of the
inhomogenities [, have to be sufficiently large to satisfy
the criterion [Tatarski, 1961; pp. 120—121]

lo>> VLA

where L is the pathlength and A the wavelength.
Starting with (3.2) one may then use the Euler-Lagrange
equation to derive the “ray equation” [Chernov, 1960;
pp. 12-15]

(5.1)

dns)
o (5.2)

where s is a unit vector tangent to the ray.
Since

dl=Vdx*+ dy* + dz* = dx V1 + (dy/dx)* + (dz|dx)?,

then for a ray starting out in, and never strongly deviat-
ing from, the x-direction, (dy/dx)* and (dz/dx)*> will be
small compared to unity, so that we may set dl = dx
and (5.2) becomes

d(ns)
— ___0.
i Vn
Integration yields
n(r)sr) | = J "V ndx. (5.3)
0 0

Since the value of n at the end points of a sufficiently
long path obviously cannot affect its direction, we set
it equal to its mean value unity. Also s(0, 0, 0) = x,,
a unit vector along the x-axis; hence

L
s(L, 0, 0)= X()"‘f V wdx (5.4)
0

or decomposing s into its components,

L (:) L a L a
s,=l+f B dx; s,,=J 2B g s;=f B dx.
0o 0x 0 Hy 0

(5.5)

The random values of the three components are not
quite independent, as they are related by the condition
s2+s2+s2=1.

It £ is long enough to traverse very many inhomo-
genities (as we assume), then it follows from the Central
Limit Theorem and (5.5) that, regardless of the dis-
tributions of dw/dx, du/dy, Oum/dz, the components
Sry Sy, S are all normally distributed. Obviously
(sy)=(s:)=0.
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The small perturbation method consists in replacing
the solution of (3.1)

U') = Al)e‘i((ut—l\u‘)

which is valid for a plane wave propagating along the
x-axis through a medium with n=const, by

U(r)= A(r)e-ile=Fwl (5.6)
where 4 and F are unknown functions whose standard
deviation is assumed small compared to the unper-
turbed values A4, and kx. Rytov’s refinement of this
method essentially consists in writing (5.6) as

U(r) :Aoe"i[“"‘(‘w)la
making

Q) =F —1i log [A(n]A].

It may then be shown [Chernov, 1960] that under
certain conditions that are well satisfied for optical
frequencies, the fluctuating part of 4, i.e., V=0 — kx,
is given by

\I}:_;_Ij; l‘%eik[rf(.l'ff)]“(g’ n, g)d’l}

(5.7)
where r is the distance from an element dv with co-
ordinates &, m, { to the observation point x, y, z and
the integration is carried out over the entire volume
from which waves arrive at the receiving point.

The following investigation will be based on (5.5);
the results will then be checked against those obtained
from (5.7).

At this point we also insert formulas for certain
double integrals that very frequently occur in propa-
gation through a random medium.

The formula

L L L
fo dx; L f(x;—acZ)dngZJ0 (L—x)flx)dx (5.8)

where f(x) is an even function, is obtained by partial
integration; quite similarly one obtains the more
general relation

J’Ll dxl jLz f(x)dxz:fll (Ll —x)f(x)dx
0 0 0
L2

Li—L2

+f (Lg-—x)f(x)dx—j (Li+Ls—x)f(x)dx, (5.9)
0

0

of which (5.8) is a special case for L, =L,.

In all cases to be considered, f(x) is a correlation
function having significant values only for x << L,, L»;
we may therefore replace the upper limits by o« and

neglect x compared with L; this leads to

L1 L2
f dx; f flx)dx
0 0

~(L1+Ly) f " fdr— L+ L) | fda
0 0

20!

:(LH‘Lz)f flx)dx.  (5.10)

fon=lLs

6. Fluctuations of the Angle of Arrival
("'Quivering’’)
Let 6 and ¢ be the (small) deviations of the beam

from its original direction xy, so that by transforming
to spherical coordinates

1 1 .
Sr=co0s 0 cos ¢ = (1-50-)(1 —5(1)2) (6.1)
. 1.
Sy=sin 6 cos ¢ = 0(1—§¢>2) (6.2)
s:=sin¢ = ¢ - (6.3)

Neglecting second-order terms and recalling the
remarks following (5.5), the probability densities of
6 and ¢ are therefore

(— 6%/2(6?)) (6.4)

]
O)=——
L) 2oy "

—_— —b2/2( 2
PP = RN

MS/hSere (62) = (s2) and (¢?) = (s2) are determined from

L , L B T
<02>:<85>:< f au(xé,)x,m) dx, flali(x-e)’-,zz) dxﬁ)
0 N 0 dy2

(L (L 02 < ) du, d
jo fo 9y10y2 bt i e {661

Introducing relative coordinates x=x;—2x, ¥
=1vy1—Yy2, 2=21— 22, we have
92 92
A, A oS =2y @
Byidysaye (M) = (u) ) (6.7)
and applying (5.10) we find
(62) =— 2L (u2) f" <SC> dx.  (6.8)
0 Y /y=2=0

For C given by (2.4) we have

(éﬁ; __2
Y7 y=:=0 Y

e—r3/Xx2
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so that
(6°) :2L<’"LY—>A——\G (6.9)
Similarly,
(d*) =L’§>X—\§T (6.10)

The mean square of the total deviation is
1 1
(&)= () + () = 2L XV (354 72) 6.1

which for isotropic turbulence (X =Y =27 =R) reduces
to

{ef)=

a formula already derived by Chernov [1960; p. 17,
eq (33) and (35)]. The distributions of 6 and ¢ are
both normal as already explained after (5.5); their
mean values are zero and their respective variances
are given by (6.9) and (6.10) in terms of the fluctuations
of the atmosphere and the path length. It follows
that there must be a mutually perpendicular pair of
axes that will make 6 and ¢ statistically independent;
it is these two axes that we choose as the y- and z-axes.
It should be noted that their directions need not neces-
sarily be horizontal and vertical, although for physical
reasons this is probably their most common orientation.
It also follows that the total deviation € from the unper-
turbed angle of arrival, related to # and ¢ by €>=6?
+ ¢2, is Hoyt-distributed: *

(e >0)
(6.13)

(O@=—=1 (ﬂ ) <_A+B )
PeOI=37p " \a4B €) P\ T auB €

where for the sake of briefness we have put (6?) =4,
(¢*)=B. For isotropic turbulence, A =B, and (6.13)
reduces to the Rayleigh distribution:

pe(e):i—; exp (—e%/(€?)). (6.14)
From (6.9) and (6.10) the anisotropy ratio is
Y 2
Yo i) (6.15)

Z (62)

To measure (0?) and (¢?) the following experiment
is proposed. Let the beam pass through a telescope
focused at infinity and take a time exposure of the
image long enough to ensure appropriate averaging.

2 Curves of (6.13) will be found in [Hoyt, 1947]. Curves of the integral distribution of
(6.13) are given by Beckmann [1963], pp. 208-212; substitute € for r, set B=0 and k equal
to the anisotropy ratio (6.15).

Deviations of the image from the center corresponding
to the optical axis are proportional to deviations of
the angle of arrival and may easily be calibrated. The
density of the photographic record will then be de-
termined by the distribution p(8, ¢)=pe(O)ps(p) as
given by (6.4) and (6.5). The distributions may then
be evaluated densitometrically; a particularly con-
venient method is to process the equiprobability curves
directly.? For isotropic turbulence, the equiprobabil-
ity curves should be circles; for anisotropic turbulence
they will be ellipses, and the ratio of major to minor
axes directly measures (6.15). The values of (6?)
and (¢$?*) may again be obtained by densitometry along
the major and minor axes. This yields the distribu-
tions p(A, 0) and p(0, ¢), from which the mean
squares are easily derived by standard methods.

7. Displacement of the Spot (“'Dancing’’)

The displacements 1 and { of the beam along the
y and z axes from its unperturbed position are ob-
viously given by

L L
7)=f Sy @ {Zf s.dx,
0 0

where the random quantities s, and s. are given by
(5.5). They are, as we have seen, normally distrib-
uted and hence n and { are distributed normally also.
It follows from (s,) = (s.) =0 that

(=)= 0:

To find the mean square of n we first find the cor-
relation function for § = s, at distances L,, L» from the
source. In analogy to (6.6) and using (6.7) we now have

(7.1)

(7.2)

Bo(L1, Ls) = (0(L)0(L2)) =— (u) j"'f”ﬁdx.dxg.
0 0 a}/'
(7.3)
Applying (5.10), this yields

BolLa, La)=— (u2)(Ly + L) f

Ly—Lg

9%C
(W)}':yro gz e

Substituting from (2.4) and integrating we obtain the
correlation function

=

L+ L)X (u2) V7 L,
(L ) 2<,u) 7Ter - % (1.5)

(O(L1)O(L2)) = %

fc

Similarly,

1+ L 2 1— Ly
(GLp(Ley) =L L VT e L <

(7.6)

3 By reversing negative A onto negative B; the print made through the combined nega-
tives A and B will then (owing to the logarithmic sensitivity of the emulsion) show up the
curves of equal density, i.e., the equiprobability curves. Details of the procedure may be
found in [Lau and Krug, 1957].
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In the last two formulas erfc is the error function
complement,

9 x
erfcx=1—erf x=1 ——J e *dt.
Vo

From (7.1) we have, for path length L,

L= f ' f * (OO dLadL

o\\/— (L (L -
:XM f f (L] +Ll) erfc Ll XL
0 0

2
= dLdL,.

(7.8)

By a procedure analogous to obtaining (5.10), this
leads to

L2X%( z>\/_ LIX
2

(n?) = B o erfc tdt.

(7.9)

The integral equals twice the upper limit, so that
finally

3 2 \/_
(n2) :Q«#_>z, (7.10)
Similarly,
3 2 \/_
<§2>=”<§#~ (7.11)

For isotropic turbulence, X=Y=Z=R, so that in

this case the last two relations reduce to
3 2
(y= () + gy =KV

A similar formula was derived for this special case
by a more complicated method by Chernov [1960;
p. 26, eq (67)—square and substitute from eq (35) on
p. 17.]; it differs from (7.12) in the numerical factor,
which is 4/3 and not 2 as above.

Since m and { are normally distributed, p will be
Hoyt-distributed as € was in (6.13), and for the same
reasons; only the mean square values along the axes
now depend on the path-length L in a strikingly dif-
ferent manner (proportional to L?).

The proposed measurements are therefore also
similar to the ones in the previous section. For
measuring the distributions of m and ¢, however, the
time exposures should be made by photographing a
screen (reflecting or translucent) illuminated by the
laser beam.

The anisotropy parameters may be measured analo-
gously to (6.15); the inner scale of turbulence may
be estimated by finding the distance up to which the
3d-power dependence on L remains valid and the
result may be compared with (6.16).

It is probable that in this measurement the dis-
placement of the beam (“dancing”) will be partially

masked by expansions and contractions of its cross
section (“breathing”). To separate the two effects,
it is suggested to use two pairs of photocells, one for
each of the two (n and () axes. If the two cells are
mounted straddling the central (unperturbed) point of
illumination and connected to a differential amplifier,
the output will be affected by deflections of the beam,
but the arrangement should not react to simultaneous
changes of intensity caused by “breathing”. It should
thus be possible to investigate the distributions of 7
and (.

8. Fluctuations of the Beam Cross Section
and Amplitude

Consider a slice of the laser beam of width dx, with
the front and back surfaces (possibly curved) of area
S and S+ dS normal to the rays, i.e., to the unit vectors
s. Then it follows from the Divergence Theorem that

V -sSdx=dS. 8.1)

Rewriting (5.5) as

T @
sI=l+J B_,u’ dx' =1, s,,:f In dx’,
0 Jdx : o dy
32=f 8_@ dx'  (8.2)
0 0z
we find div s and substitute in (8.1), obtaining

ds_ _dl _ P | )
S I—dxﬁ) (82 >d

where I, the energy flow per unit area, is the intensity
or power density of the beam. Integrating, we find

(8.3)

loggz—log;Z—Qlog R J dxf Vi wdx'

where A4 is the amplitude and V3 denotes the trans-
verse Laplacian as applied in the integrand of (8.3).
Since by assumption L > R, it follows again that log 4
is normally distributed, and hence A is lognormally
distributed.

The mean square value of log (4/A4o) is derived by
the usual integrations as before and leads to

AN\ /B = =
(e ) )== | @3 VBds. (Bt
0 0

6

For the correlation function (2.4) we have

Sy ~r 2 .
[ V3 V2 B(x, y, 2)ly=2=0 =4(u*) <—+ +§“> gras
Y4 YZZ2 Z4

and the integration yields

A\ e N (3 2+ 3
( (1oe 20) )= wx 57 (i i) 05
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For isotropic turbulence this reduces to

AN\ 8Va(u?)L3
(22 g
in agreement with Chernov [1960; p. 34]. For sim-

plicity we keep to isotropic turbulence for the rest
of this section, but the results are easily generalized
to anisotropic turbulence by using (8.5) rather than (8.6).
Taking the mean value of (8.4) we find, since obviously

(Viu)=0,

S A3
(o)~

It is easily shown that if y=log x is distributed
normally with mean value a and variance o2, then x
is lognormally distributed with mean value

(ViwL2=0. (8.7

(x)=exp (a+ 3 0?). (8.8)
Hence it follows from (8.7) that
A 1 N
< 0} exp [~ 3 (log? (A/Ay)) ] (8.9)
and
S 1 e
5, )= exp | 5 (logt (10 | .10
Substituting from (8.4), this yields
S LC{ %
<S—0>=exp [—2— j() (V%V%B)y:g:odx] (8.11)
and
A I3 [~
<:4—0>=exp [_EL (V%V%B)_,,:;;odle-
8.12)

Specifically for the correlation function (2.4) we
obtain

e S
(Ay=Ao exp (_%L_’)

16V (/.L2>L3>

(8.14)

3R (8.15)

=l exp (-
with obvious modifications for anisotropic tu1bulence
based on (8.5).

Equation (8.11) or (8.13) allows us to define an effec-
tive angle of divergence a.q: a laser beam of equal
power propagated in an homogeneous atmosphere
would produce the same mean cross section, ampli-
tude and intensity at a distance L if instead of being

parallel, it had a divergence a.g, obviously given by

_V(S)—VS,
DT

Judging from measurements in the microwave
spectrum, (u?) is at most of the order of 10-1°, there-
fore the exponents of (8.11) through (8.15) will all be
small against unity, so that we may expand the expo-
nentials, obtaining generally and specifically

2( 112
a(ff_L_<_”'_> \/S—Of vzv C)!I . de__16\/z‘_1>§f‘<,“v>

Meff =

(8.16)

(8.17)

Note that aeg was defined in terms of equivalent
intensity; the equivalent “divergence of arrival”, de-
fined as the vertex angle of the cone tangent to the
surface of the tube of rays at the receiving end of the
path L, is obviously given by

1 /—
ﬁl‘ff \/—' dL

<H~">L3 S() * ¢ ;
=MIE VO | (72720 0de =3y (8.18)
2\/; 0 rer "

Any of the relations (8.11) through (8.15) may again
be used to estimate the important parameters (u?)
and ly, which are costly and difficult to measure by
refractometer runs (airborne or otherwise). This is
again done by measuring the dependencies of one or
more of the left-hand sides of (8.11) through (8.15)
on L and comparing them to the theoretical formulas.

Measurements of (S/S¢) and (log? (S/So)) and, if
desired, of the entire distribution of S/Sy may be made
by photographing the laser spot on a screen (trans-
lucent or by illumination). The photographs should
be instantaneous and made in rapid succession (film-
ing) to prevent averaging effects. The corresponding
measurements of I and 4 must be made through an
optical instrument with aperture much smaller than
(S) to prevent integrating effects* and amplitude
fluctuations due to perturbed phases over the aperture.
A photomultiplier with no or small-aperture optics
will achieve this; but measurements of S, though more
exacting, will probably be more reliable.

Further discussion of amplitude fluctuations, in
particular, degeneration of amplitude modulation, is
delayed to section 10.

9. Phase Fluctuations

All of the distortions hitherto considered may be
overcome by a sufficiently large aperture collecting

4 A typical integrating effect sets in when viewing stars through large telescopes: they
will twinkle less (but quiver more) than when observed by naked eye.
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the beam as explained in section 1; unfortunately, the
phase fluctuations lead to the opposite requirement,
for their detrimental effect increases with growing
aperture.

In a homogeneous atmosphere a plane wave arriving
in the direction of the optical axis will at any moment
have the same phase over the entire beam cross sec-
tion; this phase will change linearly with time. The
phase fluctuations caused by a turbulent atmosphere
are of three different kinds.

First, the phase may change its value, at any one
time, linearly over the aperture. This case is equiva-
lent to, and in fact indistinguishable from, a plane
wave arriving at a finite angle with respect to the optical
axis. This case has already been dealt with in section
6; as a result the beam will be focused elsewhere in
the focal plane of the lens. The resulting “quivering”
of the image can be overcome by increasing the area
of the sensory organ; the size of the aperture is im-
material.

Second, the phase may at any instant be constant
over the aperture, but may not vary linearly with time.
This is caused by the fluctuations in transit time of
the individual crests of the wave. The result is a
parasitic phase-modulation that cannot be eliminated
by choice of the aperture or size of the sensory organ.

Third, the phase may change irregularly over the
aperture at any one instant. This is caused by fluctu-
ating differences between the transit times of the
individual rays within the beam (crumbling of the phase
front). Since the phase is random, but continuous,
small phase changes over the aperture can be ensured
only by a small aperture.

The transit time of the signal is

1 (L
tz—f n(x,y,z) dx 9.1)
C Jo
and hence the deviation from the mean is
=¢—(t) ——f (x,5,2) dx . (9.2)
0

If ' =wt+ is the total phase, the phase fluctua-
tions of the carrier and modulation are given respec-
tively by

U= wAt, V=0QAt (9.3)
where o is the carrier, and () the modulation frequency.
It again follows from the Central Limit Theorem
(for L > R) that the phases of both the carrier and the
modulation are distributed normally with mean zero.
The variance will then be

W)= (ke [ [t

where k=w/c is the phase constant. A similar ex-
pression will hold for ¥ with K= Q/c substituted for .

X2y Y1 Y2,21 Zz) dxz

(9.4)

Applying (5.10) for L > R, this yields

W =2 kL [T 0,00 05)
where we have gone over to relative coordinates x
=X1—X2, Y=Y1—Y2, 2=2;— 2. In particular, for the
correlation function (2.4), this yields
W) = () FLX V- (9.6)

The relation will also hold for the modulation phase
if we replace ¢ and £ by ¥ and K.

Formula (9.6) describes the second of the above
effects at the point (L, 0, 0); for the third effect we have
to find the correlation of the phase fluctuations in the
plane x = L;

(WL, y1, 2L, y2, 22)) = (Pufr)
‘quJ'nf

0

= 2<,u,2>/r2fo Clx, y, 2)dx.
0

Clx, y, z)dx»

9.7)

In particular, for C given by (2.4), this becomes

(i) = (u*) k2L X V' exp <—%/_7—§i.’) ,

(9.8)
reducing to (9.6) for Y =1y, ie., for y=z=0. For
isotropic turbulence, i.e., X=Y = Z R, this reduces to

(Yathe) = (u2)k2 L RV exp (—p3/RY,  (9.9)

where

pr=y*+2z% (9.10)
This checks with the result obtained in this special
case by using a formula derived by Tatarski [1961:
p. 100, (6.28)] in terms of structure functions.

It may be seen from (9.8) that (y*) is proportional to
the correlation distance X. The latter is a measure of
the size of the inhomogeneities that are mainly respon-
sible for the phase fluctuations, which leads one to
believe that for calculating phase fluctuations, the
validity of geometric optics may be extended to long
paths L. This belief is further strengthened by the
fact that calculations of (¥*) by physical optics lead
to the same dependence (except for a numerical
factor Y2); more evidence still is provided by Fried
and Cloud [1964b], who find small-scale turbulence
relatively insignificant for phase fluctuations.

Formula (9.8) solves the problem for space fluctu-
ations; however, for time fluctuations the interesting
quantity is not s, but dyy/dt. We therefore introduce
the instantaneous frequency [Downing, 1964, p. 60]

dy’

g etu (9.11)

where u=dy/dt is a new random variable with mean
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zero. Let U(7) and F(7) be the time-correlation func-
tions of u and ¥ respectively; then

d?F(7)

Ulr) = (ulr, tulr, t+1)) =—=—7 (9.12)
dr
hence
d¢2> d2F(0)
g/ LCE L\ _ .
(u?) < o) = V0 p (9.13)
The problem thus reduces to finding F(7). Now if

it is assumed that the time variation of u at any point
is primarily due to drift, and only to a negligible degree
to turbulence, diffusion, etc., so that the field of
inhomogenities is “frozen” and carried across the
path by the wind as a whole, then using the principle
of relativity it is easily shown that

B(r) = B(v7), (9.14)
where v is the velocity of the wind. Thus for the
crosswind components v, and v. we have directly

from (9.8)
<d’(0)¢(7)> crosswind = Lic(T)

= (u*)kLX Vr exp [— (ﬁ-f-ﬁ) 72] .

e (9.15)

To apply the same method to upwind or downwind,
we first find by applying (5.10)

(W(L, 0, O)Y(L +AL, 0, 0))
Vo AL

=Q2L+AL){(u*)k* X 3 erfe & (9.16)
Hence, setting AL =v,7
(w(o)l’l('r))upwind =Fu(7)
= 2L+ v,7){(u2)k2 X % erfc (2;(_7) - (9.17)
From (9.15) and (9.13)
di ; 2 vl
(%) Voo =2ut)i LY Vi (B4 ). 018)

and from (9.17)

<(%V)’>upwmd=2<,ﬁ>k2 Xo,. 9.19)

As might be expected from physical reasoning,
the fluctuations caused by upwind or downwind drift
are negligible compared to the crosswind fluctuations;
(9.17) and (9.19) should be used only if no crosswind
is present.
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The standard deviation of u is, from (9.18)
T =kV2ULXV 7W (u2)

where W stands for the round bracket in (9.18).

As may be seen from (9.11), this kind of fluctuation
is in effect a parasitic modulation of the instantaneous
frequency of the carrier. This modulation is normal
with mean zero and variance (9.18).

If the signal is amplitude modulated with frequency
), the carrier with the two sidebands will float in
accordance with u(t). The receiver bandwidth (optical
filters) will therefore have to be widened from 2Q)
to 20+ A, where A must be large enough to accom-
modate u(t) for most of the time. Its value for a
given probability of accommodation is given by the
Laplace function, e.g., for the signal to be accom-
modated for 99.7 percent of the time, A must equal 6
times the standard deviation (9.20). The resulting
widening of the bandwidth increases the noise in
proportion, so that the signal-to-noise ratio will de-
crease by

(S/M homog ~ (S/N)turhu
66N \/m LXW (u?)
T

(9.20)

dB

=20 logio (l+ (9.21)

where we have taken A=60,. Alternatively, one may
calculate the bandwidth limitation for a given signal-
to-noise ratio; a system with bandwidth 2 will
demodulate frequencies up to ) in a homogeneous
atmosphere, but this value will decrease to

! A <
Q =Q—§=Q—6k \/TLXW {u?)

(9.22)
in a turbulent atmosphere.
If the signal is frequency-modulated,
t
V=Aexp {Lf [w+ Aw cos Q7+ u(T)]dT} (9.23)
0

where Aw is the frequency deviation. The demodula-
tor will recover the instantaneous frequency u(t)
+ Aw cos Qt; if u(t) is to produce no appreciable dis-
tortion, we must have

(u?) < ((Aw cos Qt)?) éé_“;& (9.24)

or from (9.6),

Aw > k V2LXW /7 (2) (9.25)

leading once more to the requirement of a wide-band
system.

It should be pointed out that for technical reasons it
is almost impossible to keep w in a contemporary
laser constant; the thermal fluctuations alone cause
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a frequency drift which is probably much greater than
(9.18). Also, the bandwidth of contemporary optical
filters is still so wide that the reduction (9.22) will
have no practical effect. Thus at the present the time-
phase fluctuations are hardly dangerous.

As for phase fluctuations in space, i.e., over the
aperture, which may be considered rectangular (area
4yz), elliptic (myz) or circular (wp?), if no significant
distortion is to set in, we must have

() = WO)F) <7

where y may be replaced by z or p. The windspeed is
immaterial for this type of fluctuation (except in as far
as it determines X, Y, and Z). From (9.8) and (2.6)
we therefore have

2u2)RRLX V7 (1— e v'?) < 772 (9.26)
where y and Y may be replaced by z and Z, and for
isotropic turbulence one may set X=Y=Z=R.
This determines the size of the aperture or else the
permissible bandwidth of the modulation: assuming
v <Y and expanding the exponential, we find the condi-
tion on the aperture size for coherence of the carrier
phase fronts:

N
Y NG IX VG X

For A\=6X10"7" m, X=Y=Z=60 m, L=10 km,
(%) =10"1° and permitting a standard phase deviation
of 0.177, we find an aperture radius of only 0.32 mm,
so that unless the path is short and the atmosphere
stable, there is not much hope of keeping the carrier
wave fronts coherent.

For the modulation frequency )= cK the situation is
much better. Without assuming y <<Y, and assess-
ing a permissible standard phase deviation AW (e.g.,
0.177), we have from (9.26) the maximum aperture
dimension

e

or alternatively, for a given aperture the maximum
modulation frequency is given by

(9.27)

(9.28)

_ cA(AW)?
2(u2)LX Vi [1—exp (—y2/Y?)]

2

(9.29)

with obvious modifications for z or p.

Formula (9.29) shows that even if the aperture diam-
eter far exceeds the correlation distance of the turbu-
lence (y >>Y) the permissible modulation bandwidth
remains finite:

0= =L (9.30)
V2 () LX V7

Even under extreme conditions (L=100 km, (u?)

=101, X=10 m, AV =0.17) this still provides for a
modulation frequency of the order of 700 kec/s. It
would therefore appear that in designing a laser com-
munication system, one should start with the largest
aperture technically or economically feasible (so as
to reduce amplitude fluctuations to a minimum) and
then compromise on modulation bandwidth versus
path length. On the other hand, if the path length and
bandwidth are prespecified, the aperture may be de-
termined from (9.28). In all cases the result must be
checked against the spectrum of the parasitic ampli-
tude modulation given by (10.10).

To measure the phase fluctuations in time and space
it is evidently best to use the apparatus described by
Read [1964], in which the laser beam is divided by a
beam splitter; one beam goes through the atmosphere
and returns to the receiver after being reflected by a
corner reflector, the other goes to the receiver directly
and provides a standard. The two beams are reunited
by a second beam splitter before striking the receiver
the beam is split into two parallel beams with varying
distance between them and after traversing the atmos-
phere, the phase difference between the two beams is
measured at the receiving end of the path for various
separations. These experiments should be repeated
with a modulated beam and the measurements should
be performed on the modulation phase; this will enable
the measurements to be carried out also on long paths
(Read worked with path lengths of only up to 270 m).

10. Comparison With Wave-Equation
Solutions

To take account of the effects of small inhomoge-
neities, wave optics as mentioned in section 5 must be
used. This has been done by Tatarski[1961], Chernov
[1960] and others; recently the present problem has
been investigated by further development of the
Rytov method by Fried and Cloud [1964a, b, ¢] and
Fried [1964]. The reader is referred to these authors
for derivations; only the results will be stated here
(unfortunately they are confined to isotropic turbu-
lence).

Angle of arrival: No explicit solution by wave
optics is known to the author; however, this reduces
in essence to finding the geometrical shape of the per-
turbed phase front, the normal to which determines
this angle at any point. The geometry of the per-
turbed phase front is considered by Fried and Cloud
[1964b, c], and Fried [1964].

Spot location: Again, as far as the author is aware,
no formulas equivalent to (7.10) and (7.11) have been
derived by wave optics.

Beam cross section: From the wave optics point of
view the “spot” can no longer be regarded as illumi-
nated by a tube of rays; its diameter is given by the
closed curve of equal mean amplitudes and therefore
(as in geometric optics) tied up with the amplitude
fluctuations. Since no significant energy is diverted
from the beam, the beam cross section must vary
inversely as the square of the amplitude.
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Amplitude fluctuations: For 4L/kR* < 1, a condition
always fulfilled in the optical band, wave optics yield

[Chernov 1960]
fx [V3VEBy—zodx  (10.1)

A 2 _L.’;
<("’g z) >'€ ,

which is identical with (8.4); hence for the correlation
function (2.4), the expressions (8.5) or (8.6) will hold
as before.

Let us now set A= (A) (1 + «), where a(t) is arandom
variable with mean zero that will be detected by an
AM demodulator. It is easily shown that

(4?)
(4)*

=1+ (a?). (10.2)

An AM signal orginially modulated with modulation
depth m will thus be distorted by the turbulent atmos-
phere to

V=Ao[1+m cos Qt+aft)]e. (10.3)
The mean signal power to mean noise power is thus

m?/2{a?); to prevent the modulation being distorted
by the amplitude fluctuations, we must therefore have

; (A?*) >
5 550 Gy = _
m?2> 2(a?) 2(< 1% 1 (10.4)
where we have substituted for (o) from (10.2). Since

A is, as in section 8, lognormally distributed with
(log A) =0 (we have for simplicity set 4p=1), we have

A2y =eXlog d) (fy=¢'He D (1 5)

Substituting this in (10.4) and using (8.6), we obtain
after elementary manipulations the condition for the
signal to be high above the noise:

m2>2[exp<3R;\/—<p‘ ))—1]

Since m?=<1,
only for

(10.6)

the signal will be above the noise

(o 3\/— .

R, o 2—0.2696.

(10.7)

It may be seen from (10.6) that the mean S/N ratio
(more precisely the ratio of mean signal power to
mean noise power) depends sensitively on (u?), i.e.,
on the intensity of atmospheric turbulence. For
L=200 km, R=100 m, A =6,000 A, and (an improb-
ably high value of) (u?)=10"1°, we ﬁnd (10.7) satisfied
with a safety factor of over 200, but the S/N ratio is
only (20 logiom —17.72) dB, i.e., the modulation depth
must be at least 81.5 percent for the mean signal to
be above the noise; whereas for the more likely value
of (u?)=10""2 a modulation depth of only 30 percent
will keep the signal about 8 dB above the noise.
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Apart from overcoming the parasitic amplitude
modulation by sufficient modulation depth, it can
also be discriminated against on the basis of its spec-
trum. The time correlation function of the fluctu-

ations, assuming (2.5), is found by Chernov [1960]
to be

(log A(0) log A(7)) = (log* A(0))e™"™  (1(.8)
where T=R/v. with v, the crosswind velocity. The

spectral density of the fluctuations is the Fourier
transform of this time-correlation; performing the
integration, we obtain

1677\/_

F(Q.) = (u? >[7 exp (—Q2R?/4v?) (10.9)

where (), is the angular frequency of the parasitic
modulation. Integrating (10.9) over ., we find (from
tables of the error function) that 99 percent of the
parasitic spectrum lies below the frequency

3.64v, ,
R (10.10)

(Qa) 99, =

Even assuming an improbably small correlation
distance of R=2 mm and a hurricane windspeed of
75 mph (33 m/sec), this gives (Qa)g9y, =0.6 Mc/s,
which is still well below the value of an intercarrier
frequency likely to be adopted in a wide-band commu-
nication system, although approaching the limit set
by (9.30). Frequency discrimination thus appears
more effective than fortifying the signal by increased
modulation depth. For more reasonable values of
R and v, we find (Q4)99% of the order of tens or hun-
dreds of cycles; similar results may be derived from
Tatarski’s analysis [1961].

The frequency spectrum of the amplitude fluctua-
tions does not depend on the frequency of the carrier
(unless w and R should themselves be frequency-
dependent); hence the limitations imposed by
turbulence-induced amplitude fluctuations in laser
communications should be no worse than in the case of
microwave links. On the contrary, since a significant
part of, or even the entire cross section of the beam
may be intercepted by the receiving aperture (which is
not the case for microwave links), amplitude fluctua-
tions may be further decreased by increasing the aper-
ture, for in the limit the whole energy of the beam will
be intercepted so that only the amplitude fluctuations
correlated with the phase fluctuations (and due to
“compression’ and “‘expansion’ of the carrier by the
varying transit time) remain. Also, “boiling” will be
averaged out at the receiver output if the aperture is
large and will not be further considered.

Thus, in general, the signal degeneration due to
amplitude fluctuations may be counteracted by high
modulation depth, frequency discrimination and a large
receiving aperture.

Phase fluctuations: For conditions in the optical
frequency band, wave optics yield [Chernov, 1960,
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p. 75, eq (141)]

v

<ll12>=—271<u2>k2LX (10.11)

which differs from (9.6) only by a factor of 1/2. Thus
in the case of phase fluctuations, by using wave optics
one gains a meager 3 dB in accuracy® and loses the
advantage of considering anisotropic turbulence with-
out unduly cumbersome mathematics. When, in
addition the arguments following (9.10) are considered,
it therefore seems that geometric optics are preferable
in this case and all others following from it (sec. 9).

11. Conclusion

The statistical distributions of the angle of arrival,
the spot location, the cross section, the amplitude, the
carrier phase and the modulation phase of a laser beam
traversing a turbulent atmosphere have been derived
in terms of the space correlation function of the atmos-
pheric index of refraction and the windspeed. The
fluctuations of these quantities impose limits on the
depth and bandwidth of the modulation, on the length
of the path and on the aperture of the receiving appara-
tus; these limits are interdependent and may be indi-
vidually improved at the expense of the others.
Experiments are proposed to find more exact numerical
values affecting the above limits. Unless these experi-
ments yield data far off the order assumed in this
report, it appears that turbulence-induced signal
degeneration can in general be effectively counteracted
by choosing the aperture and the band and depth of the
modulation as dictated by the path length and the
atmospheric parameters to keep the modulation phase
constant over the aperture. On the other hand, the
coherence of the carrier wave fronts is, for reasonable
apertures and path lengths, entirely determined by the
turbulence of the atmosphere and thus out of the
designer’s hands.

The above investigation was sponsored by the
Boulder Laboratories of the National Bureau of Stand-
ards. The author is very grateful to E. Barrows for
his thorough and helpful comments.

5 Even this is not certain, for the derivation of (10.11) by wave optics is marred by many
assumptions, neglections and approximations.
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