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This paper reviews the major sources of harmonic currents excited by an electromagnetic wave

in an iostropic plasma.

The discussion is based on the assumption that a plane wave of prescribed

form interacts with a plasma whose response is described by the usual macroscopic equations for the

electron velocity, density and temperature.

Nonlinear interactions arising from (i) the magnetic field

of the plane wave, (ii) the dependence of the collision frequency and other rate parameters on the
electron temperature, and (iii) the oscillating space-charge induced by the wave in regions of inhomo-
geneity, are examined in sufficient detail to provide an estimate of their relative importance in pro-

ducing harmonic currents in various situations.

The physical origins of these currents are discussed

and a characteristic perturbation parameter provided for each of the interactions.

1. Introduction

When a high-frequency electromagnetic wave inter-
acts with a plasma, there are various weak non-
linearities through which harmonic currents can be
excited, and these currents may, in turn, give rise
to secondary radiation fields. Although certain re-
lated nonlinear interactions have been studied in
detail, mostly in connection with wave interaction
effects in the ionosphere [Ginsburg and Gurevich,
1960], the literature on harmonic excitation itself is
relatively sparse and widely scattered. The reason
for this is fairly obvious: the nonlinear sources re-
sponsible for the appearance of harmonic currents
are weakly excited and are therefore of little interest
under most circumstances. Put another way, the
linearized theory of wave propagation in a plasma
works “extremely well. However, just as the avail-
ability of intense laser fields at optical frequencies
has led to an interest in the nonlinear optics of crystal-
line media [Armstrong et al., 1962; Bloembergen,
1963], so also should the increasing power of radio
and radar transmitters and the long path lengths in-
volved in space communications lead to increased
interest in the relatively weak excitation of harmonic
signals in ionized media.

Up to the present time the three main practical
motives for studying the excitation of such signals
have been: (1) the production of spurious signals in
the ionosphere [Feinstein, 1950; Forsterling and
Wiister, 1951: Vilenskii, 1953; Wetzel, 1963: Rydbeck,
1963 ]: (2) the design, or explanation, of useful harmonic
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generators [Maiman, 1957: Uenohara et al., 1957;
Baird and Coleman, 1961:; Swan, 1961]: (3) the pos-
sibility of diagnostic applications [Wetzel, 1961a;
Rydbeck, 1963]. Harmonic spectra have been ob-
served experimentally in a variety of circumstances,
but their origins are seldom clear. For example, in
those cases in which a steady magnetic field was
present, exciting fields at the gyromagnetic frequency
of the electrons have produced observable harmonic
signals, but while the cavity measurements made by
Maiman [1957] are consistent with a simple and
reasonable theory, the more complicated computer
calculations of Whitmer and Barrett [1961] are at
variance with the experimental results in several re-
spects. Harmonics produced in a microwave dis-
charge without a steady magnetic field have been
ascribed in one case to strongly inhomogeneous electric
fields [Swan, 1961] and in another to modulation of
the ionization frequency [Baird and Coleman, 1961]:
in the latter case the proposed hypothesis accounts
very well for the observed data, but in the form used
it appears to lack any convincing theoretical basis.
The general picture appears to be that while detect-
able harmonics can be produced quite easily, the non-
linear processes underlying their production are not

usually well understood and most probably occur in

combination.

In an effort to bring some order to this picture, we
will attempt in this paper to examine a certain class
of nonlinearities which might be responsible for some
of these harmonic spectra. Because of the com-
plexity of the analysis in the anisotropic case, we will
restrict our attention to isotropic plasmas. A steady
magnetic field can be expected to enhance certain of
the isotropic interactions in the neighborhood of
cyclotron resonance, as well as to introduce additional
harmonic terms having a different character. When
appropriate, we will mention such effects in passing.
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2. Basic Formulation

Several authors have examined certain features of
the various nonlinear interactions between a plasma
and an electromagnetic field on the basis of kinetic
theory, using the Boltzmann equation [Margenau
and Hartman, 1948; Vilenskii, 1953; Fain, 1955: Rosen,
1961]. This approach has definite virtue when study-
ing a single interaction in detail, but is far too cumber-
some if one wishes to evaluate the comparative effects
of several nonlinearities within a given mathematical
framework. Accordingly, we will choose a simpler,
and physically more transparent, description of the
plasma in terms of the particle and momentum trans-
port equations, augmented by a phenomenological
energy equation. The primary electromagnetic wave
will be assumed, when possible, to have the form of
a transverse plane wave with prescribed local
parameters.

The total current density due to charge motion in
the plasma is defined as

—_

J=—e(neve — nivi) 2.1)
where —e is the electron charge and np,?)p and n,-,_v)i
denote the density and average velocity of the electrons
and ions respectively. Since the densities are roughly
the same and the ion velocity is smaller than the elec-
tron velocity by the factor m/M, the mass ratio of elec-
tron to ion, we may neglect the ion current and regard
the ions as merely providing a uniform neutralizing
background. Henceforth, then, we will be interested
only in the electron current which, dropping sub-
scripts, will be written

— —
Jj=—env. (2.2)
Harmonic components in this current will arise from
harmonic components in n and v, so we must examine
the nonlinearities in the equations governing the
response of the plasma to the applied electromagnetic
field; namely, the equation for the electron velocity

—

- 5 —
W Vo= (EtoxB) -2, (TJo,  (23)
at m mn
the continuity equation
-
L (= 2.4)

ot

and, to close the system, an equation for the electron
energy (written here as a phenomenological equation
for the electron temperature [see, e.g., Ginsburg

and Gurevich, 1960} ):

QI'E— - 7F_SV('(T()[T1_T0]

2e
TRY: @)

It has been assumed in the moment equation (2.3)
that the electron velocity distribution is -isotropic,

so the divergence of the stress tensor has been written
as the gradient of the isotropic pressure p.=nkT.,
where k is the Boltzmann constant. In the last term
of (2.3) the temperature dependence of the effective
collision frequency is noted explicitly. The tempera-
ture equation (2.5), if multiplied by (3/2)nk, simply
states that the rate of increase of the average electron
energy per unit volume is equal to the difference
between the electric power delivered to the electrons
and the rate at which energy is lost by collisions with
heavy particles held at the equilibrium temperature
Ty, 6 being the energy loss parameter (6=2m/M for
elastic collisions, where M is the mass of the heavy
particle).

Rather than expand everything in Fourier series
and then attempt to disentangle the sources of har-
monics from the resulting confusion, we will seek
instead to identify the individual sources of harmonics
in physical terms and to provide a characteristic
measure of the relative importance of each. These
sources can be anticipated from an examination of
the equations (2.3) t_g)(2.5)._)The plasma is driven by

the prescribed field E (and B) and its response appears
in the variables 7, n, and T.. We know even from
simple orbit theory that the magnetic field B of the
plane wave could perturb the trajectory of the elec-
tron in such a way that its motion relative to the
phase plane of the wave might be anharmonic. Such
a nonlinearity would be “intrinsic” in the sense that
it would always be present when a wave propagates
in a plasma, and would thus provide a threshold
of interest in evaluating the importance of other
nonlinearities.

A nonlinearity like the - V7 term in (2.3) cannot
itself be regarded as a primary source of harmonics,
although it will affect the detailed response of the
plasma to those primary sources which produce
changes of electron velocity along the streamlines.
Behavior of this latter type might arise from pressure
gradients produced by a harmonic temperature wave
traveling with the primary wave, or from space-charge
variations induced when the primary wave encoun-
ters an inhomogeneity. Moreover, the existence of
temperature oscﬂl)ations could introduce harmonic
components into v through the T.-dependence of the
collision frequency in the last term of (2.3).

Our general approach will be to use the formula-
tion provided by (2.3) to (2.5) to find a semiquantitative
description of the effect of these various sources, treat-
ing each as if all the others could be ignored. It will
be convenient to have a zeroth-order approximation at
hand, representing the linearized solution to (2.3)
to (2.5) for the case of constant electron temperature,
pressure and density. If the primary transverse
plane wave is written as

f(?, ‘t)=?oe‘“"‘\‘_’) cos (wt—BK '_;)) (2.6)
s

where E, is a_constant vector, K is the direction of
propagation (Ey - k=0), o is the wave frequency and
B and « are the propagation and attenuation constants
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in a uniform plasma of density ny, then the solution of
(2.3) in the zeroth-order approximation becomes

S
7}’(0)-_M
@2+ 12)

[w sin (wt—BK '—r—)H- ve cos (ot — BR —r))] (2.7)

ir)ld from (2.2) the corresponding induced current is
J ©=—enyv©. This zeroth-order current is just the
linear polarization current produced by the primary
wave in the plasma and thus determines the values of
B and « for this wave. In addition to generating har-
monic currents, the nonlinearities will also perturb the
propagation of the primary wave by producing slight
changes in B and a.

3. Intrinsic Electric-Magnetic Field
Interaction

A free electron in the field of a plane wave experi-
ences both electric and magnetic forces, and although
these forces vary with time, it 1_5)2; the nature of a
plane wave that the average.of ExB always points in
the direction of propagation K, so the electron should
experience a drift in the K-direction. Since the trajec-
tory of the electron is now curved in the plane of
polarization (established by E and k), the projections
of its velocity on the phase plane will no longer be
sinusoidal —in fact, on the basis of symmetry we would
expect that a Fourier representation of the motion
would contain odd harmonics only.

These conclusions can be made more precise by
solving a reduced version of (2.3) as completely as
possible. Let a plane wave whose electric vector_is
given by (2.6) propagate in the z-direction with £,
=Ee,, so that E(z, t)y=e,E, exp (—az) cos (ot — Bz).
In rationalized MKS units, the associated magnetic
field will have the form

—B-)(z, )= Eyc;‘Eo exp (—az) cos (wt—LBz— @)

where ¢, is the wave velocity in the plasma and the
phase angle ¢ takes account of the phase shift of the
magnetic field in a lossy medium and is defined by
tan ¢ = «/B.

. . . o ~
An approximation to v which accounts only for the

- .

vxB effect can be found by neglecting o>V v and
V pe in (2.3), assuming that v, is a constant, and writing
the resulting reduced equation in coordinate form:

vy @ e

a—t’+ Vebz == E(z, t)+;l v:B(z, t) (3.1)
vz __ €
e + V=" v2B(z, t). (3.2)

Under steady-state conditions there will be no v, com-
ponent, so we may define a new variable u=uv, +iv,

and combine (3.1) and (3.2) into a single equation

ou } .
a—7+ |:V(. +EL,: % E(z) cos (wt—,Bz—qS)] u=—i Ez, t)
(3.3)

for the complex variable &. (For ease of writing, we
have used the abbreviation Ey(z) for E, exp (—az).)
By the use of an integrating factor, the steady-state
(particular) solution of this equation becomes

~_ ,: 0 CE()(Z)
U=—exp | —vVet—1 A

sin (wt — Bz — d))]

pIN®

EE()(Z)
cpme

Xi Eo(z) f cos (wt—Lz) exp [v(-t—i

sin (wt—,Bz—d))] dt. (3.4)

The exponential factors containing sin (wt — Bz — ¢)
can be replaced by the Bessel function expansion

eky(z

exp [ii ) sin (wt——Bz—d))]

cpmw

= 2 ./II(U“/C[I) exp I *+in(wt _BZ_ (,b)] (8%0))

where J, is the Bessel function of the first kind of order
n, and we define the parameter vy = eFy(z)/mw.

Upon performing the integration term by term, mul-
tiplying the series together and separating the harmonic
terms into real and imaginary parts, the orthogonal
velocity components v, and v, may be written in the
following approximate form:

vr =—vo{J2[sin (wt — B2) + A cos (wt — Bz)]

Sis (% ./u./z—%./f) sin 3 (wt“ﬂz_§ d))

+ .. . (nodd) . . (3.6)

v: =+ vo{Jo Jil(A~"'—A) sin ¢+ cos ¢]
+ 3JoJilcos 2(wt — Bz — 1) — A sin 2wt —Bz— )]

+ .. .(neven) . .. }. (3.7
Only the lowest order Bessel functions have been
retained, and the solution contains only terms through
first order in the parameter A =v./w, which will hence-
forth be assumed to be small. Note that the trans-
verse velocity v, contains only odd harmonics, while
the longitudinal velocity v. contains only even har-
monics. It should be emphasized that these are
solutions of (3.1) and (3.2), not of (2.3). The existence

601



of v: means that both 7+ V o and V p. should be in-
cluded in any attempt to solve (2.3). On the other
hand, one expects that a perturbation solution of (2.3)
based on the velocities given above would not alter
the results in a qualitative way, leading at most to a
correction of some of the numerical coefficients.

Since the parameter vy is the magnitude of the un-
perturbed electron velocity in the case v.=0, and ¢,
is always greater than the speed of light in vacuum,
the ratio vo/cp is small for nonrelativistic velocities and
we can use the small-argument approximations for the
Bessel functions:

(U()/Cp)"

i1 (volcp) << 1.

.]n(v()/cll) e (38)

If these approximate forms are used in (3.6) and (3.7),
the expansions can be expressed as power series in
the small parameter €= (vo/cp):

vy =—1vo[sin (wt —Bz)+ A cos (ot —B2)]

1 . 2
—-ﬂe 0o [sm 3wt — Bz 3 b)

+16—1 A cos 3(wt—Bz—§¢)] +0(eh (3.9

v:= Levo[cos b+ (A-'—A) sin ¢]

+i€v0 [cos 2(wt—,8z~%d))

1 .

—%A sin 2 (wt—,Bz—§ )] +0(e?). (3.10)
(It should be remarked that sin ¢/A remains finite for
A=0.) However, according to (2.4) the appearance
of a second-harmonic velocity in the longitudinal di-
rection implies the excitation of a corresponding space-
charge wave:

V2o

=T (3.11)

where numerical subscripts are introduced to identify
harmonic components of the various plasma
parameters.

Substituting from the second term of (3.10), we
obtain

1 ’ 1
ng = ~a €’ng |:C()S 2 <wt = (6% ~§¢>

3 ain 2 (wi—gz—1ta) | G0
—§Asm2<wt Bz Z(i))] (3.12)

The definition of harmonic currents will therefore in-
volve not only the harmonic velocity components, but
harmonic density components as well. To illustrate
the implication of this, let us evaluate the third-
harmonic component of the transverse current defined

by

Jaz =—e(novrs + nav) (3.13)
with v, and v.3 taken from the first two terms of (3.9)

and n» taken from (3.12), all of them in the limit A=0.

enovo

24

Jx3 = €2 sin 3(wt— Bz)

enyvy ., .
— =2 ¢ sin (wt — Bz) cos 2wt — PBz)

== L *(engvy) sin 3(wt — Lz)

12

L engro) sin (wt—PB2). (3.14)

8

The result dramatizes the difficulties encountered in
nonlinear analysis of this type, even when pursued from
the naive point of view we have adopted here. The
products of harmonic components contain both sum
and difference terms, the latter feeding corrections
back into the lower order components. Fortunately,
however, if these corrections are viewed in terms of a
characteristic perturbation parameter, they will
always be of higher order than the dominant contri-
bution to a given harmonic and should therefore be of
little practical significance.

The intrinsic electric-magnetic field interaction can
therefore be expected to generate a harmonic spec-
trum of currents whose dominant terms are given by

—A) sin ¢ é.

= 1
Jo=% €(enowy) [cos ¢+ (A!

;)2 (enovy) [sin (wt — Bz) + A cos (wt — B2)]é.,

= 1
Joi = Ze(enovo) [cos 2 (wt—,Bz— —d))
S 1 .
—§A sin 2 <wt—BZ—§ ¢):|‘*z
= 1 . A
B=—15 €(enovo) [sin 3wt — Bz)+ O(A)] é,
—

J2n o3 62"4162

= Sy
Jon+1 & €€,

(3.15)
The third harmonic has been simplified in accordance
with (3.14) and the last two entries summarize the
strenglh and polarization of the even and odd har-
monics respectively. The antlclpated longitudinal
drift current shows up in jo, while J7 is ]ust the linear
polarization current in the field of the primary wave.
As expected, the transverse current contains only
odd harmonics, and these decrease by a factor €2 from
one term to the next. These transverse currents can

602



generate odd harmonic waves traveling in the direc-
tion of the primary wave, provided that the dispersion
at the primary frequency is so small that B;=23p3,
over an appreciable distance. On the other hand, it is
easy to show from Maxwell’s equations that there is
no magnetic field associated with the longitudinal
currents, so there will be no radiated harmonic fields
of even order.

The situation is quite different in the presence of a
steady magnetic field. If, for example, the direction
of the steady field coincides with the magnetic field
of the wave, a traveling space- -charge wave of order €
is produced at the primary frequency @ which, in turn,
provides a source for a second-harmonic transverse
wave.

The procedure used to find v, and v, in this section
resembles that used by Maiman [1957] for calculating
harmonic currents produced by prescribed cavity
fields. Moreover, some currents of this type were
obtained by Chen [1962] for the case in which v.=0.
Chen’s results are incorrect, however, containing a
spurious factor (1 + w?/w?) which resulted, effectively,
from the mtmdutlmn of an internal polarization field
in addition to the impressed field.

4. Electron Temperature Effects

There are many interesting and important phe-
nomena associated with the dependence of the
effective collision frequency of the electrons in a
plasma upon the electron temperature 7., but only
a few authors have considered the role of this non-
linearity in the production of harmonic currents
[Vilenskii, 1953: Rosen, 1961; Visvanathan, 1962].
There are actually several other ways in which electro-
magnetic field-induced electron temperature varia-
tions can produce harmonic currents in a plasma, but
since the modulation of the collision frequency is
probably the most important, we will consider it in
greatest detail.

An approximate solution of (2.5) can be obtained by
assuming that in this equation, at least, the collision
frequency ve is constant. Under this condition, and
with 7 replaced by its zeroth-order approximation
(2.7), the solution has been shown by Ginzburg and
Gurevich [1960] to take the form

(51/2—2w )6
(2w)*+ %2

wv(2+8)d
(2w)* + 812

Te=To+ Tk [1 cos 2(wt — Bz)

+ sin 2(wt—Bz)] (4.1)

where

e2F%(z)

Te= 3kmd(w*+ V?‘.)'

4.2)

If the temperature relaxation time 7=1/dv, is much
larger than the period 27/w of the exciting wave, then

d(ve/w) << 1 and (4.1) simplifies to

T,

—1+—1
Ty [

30 cos 2(wt — Bz) + 36A sin 2(wt —Bz)].
(4.3)

Now, the definition of the effective collision frequency
ve involves the electron velocity distribution function
(hence some average energy parameter which we take
here to be the electron kinetic temperature T,) and the
force law governing the scattering interaction between
the electrons and the heavy particles. Accordingly,
it is convenient to adopt a heuristic expression for v,
of the form

T./To)”

ve(Te) = veol

(4.4)

where v, is the equilibrium value v.(T}).

The parameter o depends upon the nature of the
scattering interaction. For example, o= 1/2 for rigid-
sphere collisions appropriate to low energy scattering
by molecules, =0 for the induced polarization inter-
action usually occurring at high energies, and o=—3/2
for coulomb scattering by ions. In general, a value
of o for a particular molecule and 7. can be estimated
from empirical curves of collision probability versus
electron energy. Many such curves are given by
Brown [1959].

We now assume that T%/T, >> 1, which allows us
to ignore the first term on the right of (4.3) and write
(4.4) in the form
ve(Te) = v!9{1 — 38[cos 2(wt —Bz) — A sin 2(wt —Bz)]}”

(4.5)

where

Vi‘()) = V{.“(Th'/Tl))‘r- (4'6)

Since & << 1, equation (4.5) can be expressed as a
power series in &:

ve(Te) = V{0 — p{® % d[cos 2(wt — Bz) — A sin 2(wt — B2)]

S (T(—U8_—])
[cos 2(wt—B2)— A sin 2wt —B2)]2+. . . (4.7)
or
Ve(Te) = V0 + S+ 522 + 4.8)

where the v are identified by comparison with the
coefficients of 8" in (4.7).

Let t us again take a re(jgced form of (2.3) in which
V-V, V pe, and now v X B are all ignored, and attempt
a perturbation analysis based on an expansion of 7in
the form

- > N o
=100 4§+ §21(2) (4.9)
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If we substitute (4.8) and (4.9) into

N
v_ e
ot m

— L Elz, ) — vl )7,

(4.10)

and equate successive powers of §, the coefhcients in
(4.9) are found to satisfy the equations

o0 —> e=

0 =—_CF(z ¢ :
= ~Ez, 1) (4.11a)
—_>

o'V == —
— 4 POy1) =— (1) (0) (4.11b)
a[ C C
PRE)

V2 => = L
a_t_ - Vgnv(z):_ V((.”v“)— Vz_z)v(()) . (41 1C)

The solution for the unperturbed vel()(:ily-z;“” is just
(2.7) with k=¢&. and v, replaced by v\, while the solu-
tion for each higher-order coefficient requires knowl-
edge only of the lower-order coefficients. Sacrificing
generality for clarity, we write below the solutions

for the first three coefficients in the special case o= }:

7 = — v—oTsin (wt —Bz)+ A cos (wt — B2)] (4.12)

— 1—> 1
o= ~3 voA [cos (wt—Bz)— 3 cos 3wt —,Bz)]

(4.13)
1
;)?2’ = aaA [cos (wt —Bz) — % cos 3wt — Bz)

1
l—ocos ’Swt—Bz] (4.14)

—
Terms of order A% are again ignored, and vo=eE(z)/mw.

The velocity coefficients are all transverse, so there
are no ()S(:lllatmg density _components and the total
current is therefor simply j——enov, which separates
into the following harmonic components:

=2 - .
Je1 = engvg|sin (wt — Bz) + A(1 + 8/8 — 6%/64)

cos (wt—Bz)] (4.15)
— —
Jes = — engvo(8A/24) (1 — 8/16) cos 3(wt — Bz) (4.16)
= —
Jes = enyuy(6*A/640) cos S(wt — B2) (4.17)
—
j{‘(:’.n+1) ee —U—;a"A- (418)

Modulation of v. by the primary wave thus produces
an odd harmonic spectrum of purely transverse cur-
rents whose magnitudes fall off by a factor 6 from one
to the next. An additional numerical factor enters
from the series (4.7) and the subsequent integrations.
This factor depends on the value of o, and it turns

out, for example, that in the case of collisions with ions
(0=—23/2) the currents can be obtained from (4.15)—
(4.17) simply by replacing & and 8% with— 36 and — 1556
respectively. Incidentally, the perturbation of order &
shown in the primary current in (4.15) was found by
Taylor [1961] and by Epstein [1960] using a more
complicated formulation of the problem.

Returning to (4.3), we see that a second-harmonic
temperature wave accompanies the primary wave
and ought to produce a longitudinal diffusion cur-
rent through the V p. term in (2.3). The appropriate
velocity components can be estimated by neglecting
—> — T4 —> . .
v+ V7, vX B and v(T.)vand substituting V p. = kn,V T,
with T, given by (4.3).

The solution is given by

1 1
Uy = 56% vo tan p —— e Vo [cos 2(wt — Bz ———d)

-—%A sin Q(wt—ﬁz——(b)] (4.19)

The second harmonic term is exactly of the same form
as that found in the last section for the intrinsic inter-
action. Higher-order l(mgltudmal harmonics could be
found by reinstating the v V7 term in (2.3) and pro-
ceeding with a perturbation calculation. There is
no point in doing it here. It is sufficient to observe
that such terms would, as before, generate even har-
monics of order €* in the density n as well as numencal
corrections in the higher-order components of 7,
but would not be expected to alter the general features
of the transverse currents in any important way. The
zeroth-order term in (4.19) is a diffusion velocity result-
ing from the decay of the field amplitude (hence T%)
as the wave moves through the slightly lossy plasma.
Although its existence is of interest, its form in (4.19)
cannot be taken seriously. If the electrons are urged
to flow in the direction of wave propagation by a temp-
erature gradient, the resulting charge separation in-
troduces space-charge forces and the problem becomes
one of ambipolar diffusion.

Finally, we should mention the effect of temperature
oscillations on such chemical rate processes as ioni-
zation, recombination, and attachment. These
processes can be included by introducing energy
dependent coefficients in rate terms added to the right
side of (2.4):

on - ,
F +V- (nv ) = Vi(Tv)n - ar(T(')nz - V(,(T(»)Il. (420)

The rate coefficients are the ionization frequency
vi, the recombination coefficient @, and the attachment
frequency wv,. The perturbation procedure used
earlier to find the effects due to v(T.) can be applied
to (4.20) as well, and the results are much the same.
As an example, we have calculated the dominant third-
harmonic current due to the temperature dependence
of the recombination coefficient a,. The result is

Jra= Clenguo)d(vro/w) cos 3wt —Bz)  (4.21)
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where € is a numerical constant and v, is the zeroth-
order recombination frequency defined by v,
=adTr)ng. The other coefficients in (4.20) would
contribute harmonic currents of similar form.

The experimental results obtained by Baird and
Coleman [1961] remain a puzzle. They found both
odd and even harmonics radiated from a microwave
discharge between two posts in a waveguide when an
additional d-c electric bias field was applied. Their
measurements were remarkably consistent with the
predictions of a simple theory based on the assumption
that vi=+v [7] on the right side of (4.20), where v is
a constant and v’ is simply the zeroth-order electron
velocity in the combined a-c and d-c¢ electric fields.
Unfortunately, there is no convincing justification for
this assumption, (their simple argument using a one-
dimensional velocity distribution function contains
an error). Our formulation would also lead to both
odd and even harmonics in combined a-c and d-c
electric fields, but in order to obtain anything resem-
bling the relation v; ~ [V, the condition on the solution
of (2.5) would have to be dv. > w, which is difficult to
satisfy at microwave frequencies.

5. Effect of Plasma Inhomogeneity

Up until now, our discussion of nonlinear interactions
has supposed that the plasma was homogeneous —
at least to first order. If the plasma is inhomogeneous
to start with, it becomes impossible to prescribe the
primary wave without considering a specific case for
which a solution, generally of a complicated propaga-
tion problem, is available. However, the essential
feature of an inhomogeneous plasma is its nonvanishing
density gradient, so we can get some idea of the char-
acter of harmonic currents in plasma inhomogeneities
by studying what happens when a quasi-plane wave
encounters a region in which Vny # 0.

In order to maintain a connection with our previous
discussion, we suppose that the wave propagating in
the inhomogeneous plasma may be written in the form

—> - >

— —
E(r,t)=Eo(r) cos (wt —k(r) - 1) (5.1)
-

where k(r) is the wave vector. Such an expression for
E is generally valid only in the limit of geometrical
optics. The average velocity of the electrons under
the influence of this field will be taken to be the zeroth-
order approximation (2.7) in the limit of small A.
To avoid confusion with 7' in previous sections, we
will write this as

=S e = —> . - >
v =——F(r)[sin (wt—Fk - 1)
mw

- >
+ A cos (wt—k - r)]. (5.2)
Since V ny # 0 we will need (2.4) at the outset, which
requires that
@%-Vn -—;""nv -v' =0.

ot (5.3)
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In general, the second and third terms in (5.3) will
not vanish and there must therefore be a time-varying
component of electron density. Considering this com-
ponent to Qe a perturbation on the original electron
density ny(r) of the inhomogeneous plasma, we write

n=no( +n" (7 t) (5.4)
and substitute into (5.3), yielding
a (1)
4V V=0 (5.5)

at

as the equation for n'Y. Since it has been assumed
that the original electron distribution n(r) is perfectly
neutralized by a corresponding ion distribution and,
moreover, that the ions remain unmoved by the field,
then n'") must represent an oscillating space charge.
It is easy to see how this space charge comes about.
Let us count electrons in a small volume located within
the inhomogeneity, keeping in mind that the ion popu-
lation in this volume will remain stationary. If the
primary field forces electrons to move down the density
gradient, the volume will acquire a net negative charge
as electrons arrive in it from regions of higher density.
Conversely, if the electrons are forced up the gradient
the electron population in the little volume comes from
regions of lower density, and since the ions remain
fixed, the net charge is positive. For a wave-like
driving field there will be a wavelike space charge
perturbation moving along the inhomogeneity.

The existence of space charge implies the existence
of_zi)longitudinal component of the electric field, that

is £ must satisfy

=
V- E(r; t) =—en"e. (5.6)
Since it is assumed that (5.1) is a proper solution of
the propagation problem, we may use (5.6) and (5.2)
to deduce that

(5.7)

which, when substituted into (5.5), yields

2 (1) 5
(1_&;) an +<%‘>u(-n‘”-_—‘v’l0'7 (5.8)

w?) ot *

where we have introduced the plasma frequency
wi=e?no/e;m. The steady-state solution of (5.8) when
wp < w is found to be

(e/m)v’lo -E
(0?—w2)?*+ (w2 A)

n= {[(wZ—mz)—szzl

- —> aed
cos (wt—k-r) —w?A sin (wt—Fk -r)} (5.9)

or, if terms of order A% are ignored and the abbreviation
€= (1 —w}/w? is used,
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nWi=

-

eVn, - Eo

- (wt — r)
maw-e

.
—% sin (wt—k ~7)]. (5.10)
— —

It should be remembered that ng, Eo, € and k are all
functions of position 77

A nonlinear current is produced when these space
charges interact with the field. Using (5.2) and (5.10)
in jJU=—enWy’, we get

2 e3\/ny * E0-+—>

1 e3V E
m2w?e® Eo(r) = T

Ef
1
j =
m2w3e

@
.‘ZA w?

Ey()

[Sin E (wt_?'_r))+(l%€)A cos 2 (wt —?-_r)):l.

(5.11)
The first term is a d-c drift current in the direction
. => .
of the field vector Eo; the second term is a second
harmonic current, also in the direction of ;. Notice
that if the inhomogeneous region of the plasma con-
tains a point of plasma resonance (w, = w), the current
increases sharply in the neighborhood of this point
due to the vanishing of € in the denominator. Under
these conditions one must return to the more complete
expression for n¥ given in (5.9). The second har-
monic current in (5.11) is then large but bounded by
collisions when w,,—w having the expression

= lgEﬂ)—-E—OEo(r) [cos 2 (wt—k _r))

Fd
]2 2 2 ';A

-
—2A sin 2 (wt—k-r1)]. (5.12)

In order to have any confidence in the evaluation of
this type of nonlinear interaction in inhomogeneous
plasmas for which w, ~ @, it is really necessary to
solve (2.3) to (2.5), or some equivalent system, along
with Maxwell’s equations for the field. In the vicinity
of plasma resonance, for example, the field amplitude
Eo(r) will itself be strongly inhomogeneous, and there-
fore the electrons will be subjected te a force of
changing magnitude along their trajectories. This
leads to strongly anharmonic oscillations over a
narrow region and could thereby produce harmonic
waves [Forsterling and Wiister, 1951].  The sinusoidal
motion of an electron will be distorted only to the
extent that its displacement from equilibrium is large
enough for the electrons to “see” the field inhomo-
geneity.

If we indroduce a length Ag to measure the distance
over which the amplitude of the electric field changes
appreciably, and use (¢) to denote the maximum
displacement of an electron in the average field in
the neighborhood of a point, then the ratio (£)/Ag is
a measure of the importance of this nonlinearity.
Field inhomogeneity has occasionally been proposed
as a source of harmonics in microwave discharges
[Swan, 1961 and references cited there], but to con-
sider it further would carry us beyond the scope of
our present discussion.

If the plasma is underdense, in the sense that »?
is always much smaller than w?, then € =1 and the
amplitude of the primary wave varies slowly with
position. This means that (5.2) can be m_T)egraled
locally to give the electron displacement &= [7'dt
at 7 When A=0, the magnitude of this dlsplacemem
is Just

CE()
2" (5.13)

g:

maw

Consxderm‘r the case of strongest interaction in

which Eo is parallel to Vny, and estimating the local
nonuniformity of the plasma by a characteristic length
A, defined by |Vne|=no/A,, the magnitude of the

second harmonic current in (5.11) may be written as

0 e [£5) [ B
mw) | 2mw?*A,

= leno") (£/2An) = |j: | (£/2An)
where |ji| is the magnitude of the primary current.
Clearly, the perturbation parameter that emerges here
is (&/2A,), which is the ratio of the maximum elec-
tron displacement in the field to the scale of the density
gradient. This parameter is usually quite small.

As pointed out elsewhere by one of us [Wetzel, 1963],
the dominant harmonics produced by this interaction
form a sequence in which the pth-harmonic current
is 1,, —eny—10', where the electron density component
np-1 is obtained from

(5.14)

an,, 1

o +V-

,i”l—O- (5.15)

Under special conditions this sequence contains both
odd and even harmonics which fall off from one term
to the next by the factor (¢§/2A,). It is clear, however,
that the spectrum is determined by the way in which
no(r) changes with position along the direction of the
primary electric field vector, so it is impossible to make
any general statements about the relative amplitudes
of the harmonic components. Various aspects of this
type of nonlinear interaction in an inhomogeneous
plasma, including the effect of a steady magnetic field
on n'Y, may be found in papers by Ginsburg [1958]
and by Wetzel [1961a, b, 1963].

There is still another nonlinear current which has
nothing to do with space charge, but is associated with
inhomogeneities and properly belongs among the
electron-temperature effects discussed in the last
section. In an inhomogeneous plasma, the pressure
gradient in (2.3) consists of two terms

V (nokTe) =nok V Toe+ kT, V ny. {5.16)
The first term was treated in section 4, but the second
term gives rise to another second harmonic of electron
velocity which, when multiplied by — eny, provides a
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current

3F2 ) oy
z’: —%i;%gv noy [sm 2wt—Fk-r)

) >
+§A('ns Z(w/"/z"l')] . (5.17)

This current is the same size as the corresponding
space charge current, but is directed along the density
gradient rather than along the electric field vector.
Its origin in (5.16) shows that it is a harmonic com-
ponent of the diffusion current due to concentration
gradients and should therefore be regarded with sus-
picion, in view of the discussion following (4.19)
concerning diffusion currents.

6. Summary

This review of the major sources of induced har-
monic currents in an isotropic plasma has shown that
these sources are quite weak and that the harmonic
currents are all measured by small perturbation para-
meters of some kind.  We summarize the main results
of the preceding sections below.

A. Intrinsic £ — B interaction: Odd harmonic trans-
verse currents of relative magnitudes |jo, 1| = €2]j1],
where € =(vo/c,) is the ratio of the unperturbed elec-
tron velocity in the field of the wave to the phase
velocity of the wave: even harmonic nonradiating
longitudinal currents plus a drift current. The para-
meter € can be estimated from the formula € = 104
(Eo/f), where Eq is given in volts/meter and fis given
in megacycles.
~ B. Electron temperature effects: Odd harmonic
transverse currents of relative magnitudes | jonyi]
«§"Alji|, where § is the energy loss parameter and
A is the ratio (ve/w): even harmonic longitudinal cur-
rents resembling these under A. above. It should be
noted that the results of section 4 are based on the
assumption of a field strong enough to raise the elec-
tron temperature well above that of the heavy particles,
but that this is usually accomplished even at fairly
weak field strengths [Ginsburg and Gurevich, 1960].
Under these conditions the spectral amplitudes do not
depend explicitly on the strength of the field. For
elastic collisions, d=2m/M which is or order 107>,
but in an excited gas 8 can become much larger, even
approaching 10! in some cases (see the reference
cited above).

C. Space-charge effects in plasma inhomogeneities:
Possible quasi-transverse currents at all harmonics.
The relative amplitudes depend upon both the func-
tional dependence of ny on 7 and the direction of
the primary electric field, but are related to the param-
eter (&y/An), where & is the maximum displacement
of an electron in the field and A, is a length measur-
ing the distance over which the electron density
changes appreciably. These currents can be expected
to be most prominent in regions of rapidly changing
plasma density and in the neighborhood of a point of
plasma resonance.
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