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A treatment of the characteristics of a plane wave pl(l]ldgdlillg., in a homogeneous, unbounded,
and fully ionized plasma is given by employing the linearized, two-fluid continuum theory of plasma
dynamics. The plasma is assumed to be a macroscopically neutral and loss-free mixture of gas of
electrons and singly charged ions. The dispersion relations for the general case of propagation at
an arbitrary angle to the direction of the static magnetic field are invvsligal(-d without any limitation
on the frequency and with emphasis on the coupling of the transverse and the longitudinal type waves.
Simple analytical expressions for the dispersion relations in the various intervals of frequency and
phase velocity, as well as for the frequencies where the transverse and the longitudinal type waves
couple, are given in terms of the various parameters. This treatment does not cover the cases in which
the propagation vector is in the close neighborhood of either the direction of the static magnetic field
or that perpendicular to it.

1. Introduction

By far the largest number of applications to the study of the nature of wave propagation in
the ionosphere are based on the magneto-ionic theory of Appleton and Hartree [Ratcliffe, 1959].
This theory is concerned with the treatment of the plane wave dispersion relations in a cold, homo-
geneous and unbounded electron plasma. A number of extensions to the theory of Appleton and
Hartree are available in the literature. The extension of the conventional magneto-ionic theory
to the low frequencies by the inclusion of the motion of the heavy ions has been investigated by
various authors [Astrom, 1950, 1951; Stix, 1957; Fejer, 1960; Booker, 1963; Story, 1956; Hines,
1953, 1957, 1963; Seshadri, 1964a]. The magneto-ionic theory together with its hydromagnetic
extension obtained by taking into account the motion of the heavy ions has been able to predict
correctly the nature of the plane wave propagation in a plasma, under the circumstances in which
the effects of the alternating electric field predominate over those of the pressure gradients.

When the effects 6f the pressure gradients are not negligible, the magneto-ionic theory fails
to provide an adequate description of the properties of wave motion in a plasma. Also when the
pressures of the charged particles are taken into account, new types of wave motion are found to
appear. There have been a number of investigations on the plane wave dispersion relations in
a compressible plasma which is capable of sustaining not only the usual transverse electromagnetic
type waves but also the longitudinal plasma waves. These investigations are all based on a linear-
ized theory of plasma oscillations and the essentials of this theory have been summarized in a recent
paper by Oster [1960]. The characteristics of a plane wave propagating in an unbounded single
component warm plasma have been treated [Oster, 1960] only for the two special cases for which
the propagation vector is either along or across the direction of the external magnetostatic field.
Recently a systematic development of the theory of plane wave propagation in an unbounded
compressible electron plasma has been given for the general case in which the propagation vector
makes an arbitrary angle with the direction of the magnetostatic field [Kieburtz, 1964; Seshadri,
1964a and b].
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The plane wave dispersion relations in a compressible plasma wherein motions of both the
electrons and the ions are taken into account have also been studied by Pai [1960, 1962], Watanabe
[1961], and Tanenbaum [1961]. The treatments of these authors pertain to the case with no
applied magnetic field or to simpler cases of propagation parallel or perpendicular to the direction
of the external magnetic field. Various simpler aspects and special cases of the plane wave
dispersion relations in a two component, warm plasma are contained in the books by Stix [1962],
Allis, Buchsbaum, and Bers [1963] and Denisse and Delcroix [1963].

In this paper, the plane wave dispersion relations in a two component warm magnetoplasma
are investigated in a systematic manner. The dispersion equation, which is essentially a quartic,
is derived without making any approximations in the beginning and is cast in a form amenable
to analysis by a perturbation procedure. As a natural consequence of the procedure employed
in analyzing the dispersion relations, the coupling regions where the high phase velocity, pre-
dominantly transverse waves merge with those of the low phase velocity, predominantly longi-
tudinal waves become evident. Moreover, simple analytical expressions for various sections of
the dispersion curves are obtained and this enables the proper understanding of the changes in
the dispersion caused by the variations of the relevant parameters.

It is only appropriate to mention the reasons for using the continuum theory in the present
investigation. Basically, there are two methods of dealing with the plasma problems, namely
the kinetic treatment based on the Boltzmann equation and the hydrodynamic treatment based
on the various transport equations. The first method is more accurate but leads to greater mathe-
matical complexities. The second method, though incapable of accounting for effects such as
Landau damping, is more readily amenable to analysis. Moreover, the macroscopic treatment
gives correctly the various waves and their phase velocities and this knowledge is bound to provide
valuable guidelines for the more complete treatments based on the Boltzmann equation.

2. Statement of the Problem

Consider a homogeneous plasma of infinite extent. The plasma is idealized to be a lossless
and macroscopically neutral mixture of gas of electrons and a single species of ions. The drift
velocity of the electrons and the ions are assumed to be zero so that the plasma, as a whole, may
be considered to be stationary. A uniform magnetic field By is assumed to be impressed exter-
nally throughout the plasma in the z-direction, where x, y, and z form a right-handed rectangular
coordinate system (fig. 1). It is proposed to restrict attention only to the linear, time-harmonic
problem; the harmonic time dependence of the form e~ is implied for all the field components.

Let N., V., and P. be res_p)ectively, the average number density, the velocity and the pressure
of the_)electrons; and let Ni, Vi, and P; be the corresponding quantities for the ions. Also let E
and H be the alternating electric and magnetic fields. The linearized time-harmonic hydrody-
namic equations of motion for the electrons and the ions are

— - —

—iwmeNeVe=—Nee(E+ Ve X2z2By) — VP, (1)
— - —

—iwm,-N,-ViZNie(E—F ViXQBo)—VPi 2)

where —e and m. are respectively the charge and the mass of an electron and +e and m; are the
corresponding quantities for an ion. Since the plasma is assumed to be neutral, the number
densities of the electrons and the ions are equal and hence, each may be set equal to N, for con-
venience. The linearized equations of continuity combined with the equations of state are given by

= .
ugmeNO V -Ve=iwP, (3)

—
uimiNo V -Vi=iwP; (4)
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FIGURE 1. Geometry of the problem.
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where u. and u; are the sound velocities in the electron gas and the ion gas respectively. In addi-
tion, the electric and the magnetic fields satisfy the following time-harmonic Maxwell’s equations

— —>

V X E=iowH (5)
— o —

VXH:—in()E+N()€(Vi_V(') (6)

where wo and € are respectively the permeability and the dielectric constant of free space.

It is de51red to investigate the characteristics of a plane wave propagating in the plasma me-
dium. Let % be the propagation vector such that 2xk coincides with the y-axis and let 6 be the
angle that % makes with the direction of the static magnetic field, so that k, =k sin 0 =kn, k,=
and k.=k cos 6=kl. Therefore, all the field components will have the spatial dependence of
the form ek +12) g¢ that

o _ . a9

E—Lkn. ay—O. e ikl. (7)
-

On_e)liminating P, from (1) with the help of (3) and (7), an expression for V', can be obtained in terms

of E. Ina snmllar manner, the elimination of P; from (2) with the help of (4) and (7) leads to an

expression for V in terms of On substituting (5), (7), and the expressions for V and V in terms

of £ into (6), the following set 0f equations specifying E,, E,, and E. is obtained.

Dll iDlZ DIS E.l‘
— 1Dy Dss —iDyy Ey :[D] [E]=0 (8)
D:H iD.'IZ D33 Ez

where
k212C? w? k2u? [ w2, ku?l?
i1 = SR (1— d >+ = (l— )
w? w?aeDe w? w?aiD; w?
B W Wce k2u2l? W2 0ci k*u?l?
Di=Dun= w3ae.D, <1 w? ) i wa; D; (1 w? )
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Di3=D3 =—

? w?a.D.  ®? w?aiD;  w?
k2C b 188 D k22
Dy =GBy e (1— e>+—’” (1——5)
w? w’aeD, w? w’a;D; w
Do Dos Whewee K2uZln i wpi@ci k2uln
o3 = D3z =— -
wia.D,  ®? wdaiD;  ©®
. lrzn?C?,- - e (1 B k2u§n2> n w2; (1 _lczu,?n2 (9)
- w? w?D, W’ w’a, w3
kzu?, w%n Wi, .
Dn :l—wzan<l"lz w2>:an:1—w2 =@y U (10)

Also wpe(wpi) and wee(wei) are the plasma and the gyromagnetic frequency of the electrons (ions)

and are given by

2 B
= NOe'w,-,,: Lol n=e,1 (11)

2 —
mn€o . mn

ey

and Co=1/V o€ is the free space electromagnetic wave velocity. The determinant of [D] should
be equal to zero in order that (8) may have a nontrivial solution and this condition leads to the
dispersion equation.

The two special cases of propagation along and across the static magnetic field are reviewed
briefly before proceeding to the study of the dispersion relations for the arbitrary direction of

propagation.

3. Propagation Along the Direction of the Static Magnetic Field
For the case of propagation along the direction of the static magnetic field, /=1 and n=0.
Therefore, €n=¢€y=€xy=€p=D13=D33;=Dy3y=D3,=0 and €= €2, Di1=D, and D3y =—e€s3.
Consequently the general dispersion equation factors into the following three separate equations:

D1 —Dy:=0:; D1 +D>=0: Djy3=—€33,=0. (12a, b, ¢)

With the help of (9), (12a, b) may be shown to yield the following expressions:

V=Coleite) 2 V=Chle;—e) 2 (13a, b)
where V:% is the phase velocity of the wave and
- 1 m
61—1*92_R2—92_R2m2 (14a)
o — R ____Rm?
TR Q02— Rem?) )
and
w . Wee . _Lnﬁ .
Lo o R e (14c)
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In this investigation me/m; will be set equal to 1/1836 which corresponds to a hydrogen plasma.
In general, m is very much small in comparison with unity. It is to be noted that  is the nor-
malized frequency and R is the normalized strength of the external magnetic field. The substi-
tution of (14a) and (14b) in (13a) and (13b) yields

B Q+R) (Q—Rm) v )

Vemo = Co [92+QR(1—m)-(l+m+R2m)] o
B (Q—R) (Q+Rm) ks 5

Vime) = Co [Qz_QR(l—m)—(l+m+R2m)] b

Note that in the phase velocities (15a) for the ordinary mode and (15b) for the extraordinary modes

neither of the two acoustic velocities u, and u; appear. Evidently therefore, (15a, b) pertain to

the purely transverse electromagnetic modes with no coupling to the longitudinal plasma waves.

These two modes are the same as in an incompressible plasma for the case of propagation along

the static magnetic field and have been studied previously [Seshadri, 1964a]. In figures 2a and b

the phase velocities given by (15a, b) are plotted for two values of R?, namely R?=1/2 and R*=4/3.
In a similar manner, it may be easily shown with the help of (9) that (12¢) yields

Q2 —1—m)V*— [Q%ul + muZ(Q*—2)] 2+ Q2mut=0. (16)

The dispersion equation (16) which does not contain the velocity Cy of electromagnetic waves in
free space obviously corresponds to the purely longitudinal plasma waves with no coupling to the
purely transverse electromagnetic waves. Also (16) does not depend on the static magnetic field,
as is to be expected since the purely longitudinal plasma waves are unaffected by the static mag-
netic field for the case of propagation parallel to its direction. The study of the dispersion equation
(16) has shown [Seshadri, 1965] that the electron plasma (EP) mode propagates for {1 > 1 and its
phase velocity approaches u, in the limit of infinite frequency. On the other hand, the ion plasma
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FIGURE 2a. Dispersion relations for propagation along FIGURE 2b.  Dispersion relations for propagation along
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(IP) mode propagates for all frequencies and its phase velocity approaches u; in the limit of infinite
frequency and the velocity V2 u;, which is the velocity of the acoustic waves in the whole gas of
charged particles, in the limit of zero frequency. In fact, the transition of the phase velocity of the
ion plasma mode from the value V2 u; to the value u; takes place rather rapidly near the frequency
given by Q?=2m. The phase velocities of the electron and the ion plasma modes, as given by
the dispersion equation (16) are also plotted in figures 2a and 2b. The values of Cy and u. are taken
to be equal to 3 X 10% and 3 X 10* m/sec respectively.

4. Propagation Across the Direction of the Static Magnetic Field

For the case of propagation across the direction of the static magnetic field, /=0 and n=1.
Therefore, as before, €3 =e€31 =€ =€32=D13=D3;=Ds:3=D3,=0. Consequently the general
dispersion equation factors into the following two separate equations:

D Ds,— D?,=0; D33=0. (17a, b)
With the help of (9), (17b) may be shown to yield
Vemo = CoQ*—1—m)~12, (18)
Since neither of the two acoustic velocities, u. and u; appear, (18) evidently corresponds to a purely
transverse electromagnetic wave without any coupling to the longitudinal plasma waves. Also
(18), which corresponds to the ordinary electromagnetic mode as indicated by the subscript EM(0)
on V, is independent of the static magnetic field. As the ordinary electromagnetic mode has its
electric vector in the direction of the static magnetic field, which exerts no force parallel to itself,
its dispersion is unaffected by the static magnetic field for the case of propagation across its direc-
tion. The phase velocity given by (18) is plotted in figure 3.
With the help of (9) and (10), (17a) may be shown to yield the following cubic equation in V2:
A0V6+A1V4+A2V2+A3::O (]9)
Ao=*— Q2+ 2m+ R*+ R*m?) + (1 + m + R*m)? (20a)
A1 =—CJQA + 6+ md) — Q{1+ m+ &+ 4mé + m?6 + R*(1 + m?

+ md+ m28)} +2mé(1 +m)+ R*m(1+m+2md+ R*m)]  (20b)

A= Q2C2u? [Q*(1+m~+md) — m(2+ 8+ md+ R*+ R*m)] (20c)
As=—Q*muiC? (20d)

when
Sl (20e)

The dispersion equation (19) which contains Cy, ue, and m, corresponds to modes that have trans-
verse and longitudinal field components and in which the motion of both the electrons and the
ions contribute to the wave propagation. It is possible to decompose the total field into three
independent modes which have been designated as (i) the modified extraordinary electromagnetic
mode [MEM(x)], (ii) the modified electron plasma mode [MEP], and (iii) the modified ion plasma
mode [MIP]. The phase velocity of these three modes are given by (19), which is solved by a
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FIGURE 3. Dispersion relations for propagation across

method similar to the one detailed in the next section and the following result is obtained:

QHOE=1=1¥)
O =QAE=F2)=F 1l

1/2
Vyvem = Co |: ] for Q0 > O,

Q(Q*—1—R?» |
VMPIP:COI:Q4_(QZ(R2+2)_£1:I for ), <Q <VI1+R?

_ l gﬁ(QZ_l_Rz) 1/2_ (QZ_]_Rz)Q 1/2
LR [R{1+uf, IR } 2R up]

for |2 —1— R?| S%(i

0
=u 02— 1—R2 2 forVI+R:< Q<
Vap= Co [R?2m— QX1+ R2]"2 for 0 < Q < Q,

= [—925 {1+ R?)— R*m} + } [CH{Q1 + R?) — R*m}?

1/2
—4Q2C2u2{ Q2 — m(2+R2)}]‘/2] for [Q2—Q2| < Z,— m
0

m(2+ R?) — (?

= Qu. [92(1 +R)—R®m

1/2
] f()l' Q(, < )<= Q()

— {21+ R)—Rm} 1~ [—Q% (02— m2+ R}

1/2
+ [Qud{ Q2 — m2+ RY)} + 4mQ*ui{Q*(1 + R?) — R*m }] ”2]
for |2 — Q2| <m

=0 Vmu[02—m@2+R)] 2 for Oy < Q<o
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where

R 2
Q:,zzig“‘ <§> +1 (24a)
R

Zm 1/2 N
Qa:(l+R2> L Qo= [m2+R)]". (24b, )

In obtaining (21) —(23), it has been assumed that
CG == 1rE>=> Wk

where V,=CyR Vm is the Alfvén wave velocity and U(,Z\/ﬂu() is the acoustic velocity in the
entire gas of charged particles. The condition (25) is usually obtained im most practical cases
and corresponds to the value of R? being of the order of unity.

Although, as stated earlier, the three modes corresponding to (19) have both longitudinal
and transverse field components, it may be easily verified that (i) the modified extraordinary elec-
tromagnetic mode is predominantly transverse throughout its frequency range of propagation,
0,< Q) < o (ii) the modified electron plasma mode is predominantly transverse for ;< ) < V 14+R?
and is predominantly longitudinal for V14 R? < () < o, and (iii) the modified ion plasma mode is
predominantly transverse for 0 < Q < (), and is predominantly longitudinal for Q, < Q < .

In the limit of infinite frequency, the phase velocities of the MEM(x), MEP and MIP modes
approach Cy, u., and u; respectively. Also in the limit of zero frequency, the phase velocity of
the MIP mode approaches V,. The phase velocities of the three modes given by (21)—(23) are
plotted in figure 3 for R2=1/2.

5. Propagation in an Arbitrary Direction With Respect to That of the Static
Magnetic Field

For arbitrary direction of propagation, the determinant of [D] does not factor into two simpler
equations and this makes the analysis of the dispersion relations for the general case very com-
plicated. With the help of (8), (9), and (10), the following quartic equation in V'? is obtained:

AVE+A VS + AV A+ A3V?+A5=0 (26)
where
Ao= Q2 —1—m) [Q*— Q%24 2m + R*+ R*m*) + (1 + 2m + 2R*m + m> + 2R*m* + R*m?)] (27a)
A =C3— Q%2+ 8+ md) + Q{4+ 4m+ 26 + 6md + 2m?8)
+ R*2 4 2m?+ 812+ mb + m?8 + m381?) } — Q*{(2+4m
+2m?+ 8+ 7md + Tm?6 + m?6) + R*(1 + > + 4m + 4m?
+ m3(1 + [?)+ 3md8l? + md + 4m?6 + m?38 + 3m38[?)
+ R*m*(2 + 812+ mdI2)} + 2md(1 + 2m + m?) + R*m(1 + [
+2m + 2ml? + m*(1 + [?) + 2md + 2md> + 2m*$

+2m?8%) + Rim*(1 + >+ m+ ml> + 2mél[?)). (27b)
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A= CE[Q8(1 + 28+ 2md + md?) — QH{(1 + m + 28 + 8md + 2m?
+2md* + 2m?8%) + R3(1 + m* + 28/ + 2md + 2m>8 + 2m35/2
+ m&* + m*&*%) } + VP{md4 +4m+ & + 2md + m?5)
+ R2(2+ m+ m?+ m32 + 4mé2 + md + mSl2 + 4m?d
+ m?6 + Sm36[* + 2m?8%1* + 2m38%(%) + R*m*(1 + 26/>
+2mdI2 + md21Y)} — R22m2{48(1 + m) + R*(0 + m+2md(1 + 2)}].  (27¢)
As=—Cu2[Q5(1 + m+2m8) — Q*{2m(1 + & + md) + R[>+ m + m?
+2m3+2mdl* + 2m*51*)} + Q*R2mi*{2(1 + m*+ md

+ m?8) + R*m(1 +m+2mdl?) } — 2m>PR*[4. (27d)
As= Ciut’m(Q? — R?) (2 — R2m2[%) = A,;. (27¢)

The extremely lengthy and not altogether straightforward manipulations needed in obtaining (26)
and (27) are omitted here for the sake of brevity. Note that §=10"%. Since m, the ratio of the
electron to the ion mass is of the order 1074, it is evident that & is of the order m2. With this
knowledge it is clear that the coeflicients of all the powers of () in (27) are in the form of a power
series in m. It is seen from (26) and (27) that the dispersion equation (26) is a quartic in V% and a
cubic in 2. Nevertheless it was found to be advantageous to solve (26) for V rather than for ().

It is proposed to solve (26) under the assumption (25). In almost all practical situations and
particularly for the case of the ionosphere, (25) holds good and hence the following study is not
restrictive from a practical point of view. In view of (25), it is legitimate to neglect m, §, and R*m
in comparison with unity and to omit § in comparison with R

The dispersion as obtained from (26) is found to vary rapidly in the neighborhood of certain
frequencies for propagation directions close to both along and across the static magnetic field.
It is therefore desirable to study first the dispersion relations in the interior region which excludes
both the axial (1—/2> §) and the transverse ({*> m) boundary layers. The investigation of the
dispersion relations for the axial and the transverse boundary layers will form the subject of a
subsequent paper.

The solution of the fairly complicated dispersion equation (26) is considerably simplified by
the following perturbation procedure. If V of the order Cy or higher is only sought, it is found from
(26) and (27), the leading terms are of the order C§ and the other terms are lower by a factor of at
least 8. On retaining only the leading terms, the following simplified dispersion equation is
obtained:

AgVi+AuwV?+ Ai=0 (28)

where

Au=22—1)[Q*— Q%2+ R>»+1]
= {1~ 1)~ %) (P -0 (29a)
A== CE 2002052+ RY+ 1 2+ RX1+ By} — o + ] (29b)
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Az =C3[Q5 — Q%1 + R?) + Q2R(2 + m) — R*Im?]

=Cy > —03) (22— Q3) (P — Q3 (29¢)

. _1+R_ [1+R®* __
Ei=—5F \/< 5 ) —ReE (30a)
Qz,=Rm?. (30b)

It can be easily argued that (28) is valid only when [Q2—Q2,| > § and |Q>— Q%] > 8. Also, when
Q) is of the order m and V' is of the order V mCy, the leading terms in (26) are of the order m*C$ and
their retention gives (28) again. When (Q* — R?m?) is of the order m*, the approximation (28) may
be shown to be not valid. Consequently, (28) gives correctly the phase velocities of the order Vm
Co when Q is of the order m or lower such that |Q%— R?m?| > m*, and the phase velocities of the
order C, for the higher values of Q such that [32— Q2] > § and |Q2—Q3] > 8.

The approximate dispersion equation (28) is the same as the one obtained from considerations
of the magneto-ionic theory which neglects the electron and the ion pressures completely, and its
analysis shows [Seshadri, 1964a] that there are two modes of propagation. The ordinary electro-
magnetic mode propagates in the two frequency ranges 0 < () < ()3 and 1 < () < ® and the extraor-
dinary electromagnetic mode in the three frequency ranges, 0 < <Q;, Q;<Q <y and
O, <Q <o The frequencies (s, Q4i, and Qs for which the phase velocity given by (28) goes
to zero are called the resonant frequencies. From the foregoing discussion, it is clear that the
magneto-ionic theory does not give correctly the dispersion near the resonant frequencies. The
phase velocities specified by (28) become considerably smaller than Cy in the close neighborhood
of Q=3 and Q=(y; and very much smaller than Vm C, in the close neighborhood of () =Qs;.
In the close neighborhood of the resonant frequencies, the first term on the left side of (28) may be
neglected in comparison with the other two terms with the result

Asi
22— — =25,
SmT 31)

The solution of (28) gives

Ay 1
V6‘1=_2A+m+ﬂ0, A%i_‘l-Aoi 2i. (32)

The upper and the lower signs in (32) correspond to the ordinary and the extraordinary electro-
magnetic waves respectively. The phase velocities given by (32) and plotted in figure 4 for R2=1/2
are marked AB with various subscripts corresponding to the various branches. For the portions
of the dispersion curves marked AB, the electron and the ion pressures play negligible roles as
a result the corresponding field components are predominantly transverse in character similar to
the pure electromagnetic wave.

If V'is of the order ue, the leading terms on the left side of (26) are of the order Ciu! and the
remaining terms are lower by a factor of at least m. It follows, therefore, that for obtaining ¥ of
the order u., only the leading terms need be retained resulting in the following expression for the
phase velocity:

As
A (33)
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where
Asi=— Cu2[ Q5 — Q*{2m + R[>+ m)} + 2mQO2R2[2 — 2m3R*[*]
= (22— R2[?) (2 —2m) (2 — R2m2[?). (34)

It may be easily verified that (33) is valid only if |[Q2—Q2,|>>§ and |Q2—Q%|>>§. Also it can be
shown that (33) yields ¥ of the order u. only for 2 >> m and |Q2— R2[2|>> m and these inequali-
ties further limit the range of validity of (33). For Q2 >> m, A, and A3 may be simplified with
the result (33) reduces to

2O EIRE)

2 — 29,
V- @—03) (33a)

which corresponds to a propagating mode only for 1.2 <? <R2?> and Q2,<Q*<®. Note
that Q2 <R*?<Q}. In figure 4, the sections of the dispersion curves specified by (33a) are
marked CD with two different subscripts corresponding to the two different branches. Note that
when Q tends to infinity, V specified by (33a) approaches asymptotically the value wu..

When V is of the order Vu.Cy and Q2 — Q2 or Q2— Q2 is of the order V8, the leading terms
in (26) are of the order u3C} and the other terms are lower by a factor of V8 orsmaller. The reten-
tion of the leading terms alone yields:

AV + A2l ? + A3 =0, (35)
whose solutions are given by
Asi Asi\, Asi
Py Ak skl 10N) b S L] ‘
G vV I v v (36)

It may be easily proved that 43i/41; < 0 for ) in the close neighborhood of either 23 or {)4;. Hence

only the upper sign in (36) will correspond to real values of V' and consequently, the lower sign in
(36) may be disregarded.

arbitrary angle to the direction of the static magnetic

i ] field (R*= 3, 12=13).
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The phase velocities for *=Q2 and Q2 = ) are obtained from (36) to be given by

o | Asi
V2= —lei. (37)

With the help of (29b) and (34), (37) is seen to yield real values for ¥ of the order of magnitude
VueCo for @2 =% and Q?=Q3%.  Consequently, (37) with the upper sign, correctly gives the phase
velocities when (02— Q2) or (02— Q%) is of the order of magnitude \/_SE

When (Q2—Q2)> V3§ or (Q2—Q2)> V3, it is found with the help of (29b, ¢) and (34) that
Asi/Avi is of the order & lower than (42/4,)*> The square root in (36) may therefore be expanded.
Also since for (Q*2—Q2)> V'S or (Q2—Q2)> V8, Ay and Ay are of the same sign, (36) may be

shown to yield

s

V~:—A2i.

(38)

When (Q*—02) < /3 or (@OF=0z) < V8, Aii and A, are of opposite signs and (36) may then be

shown to reduce to

o Asi
ST (39)

With the help of (39) and (31) the phase velocity specified by (36) is found to merge with that given
by (32) for QZ—Q{;{-<\/6_01‘ Or=0% <V$§. In a similar manner, a comparison of (38) with
(33) shows that the phase velocity given by (36) merges with that specified by (33) for 2 —Q2,
>V38 or 2—Q2%> V3.

The phase velocities computed from (36) with the upper sign are also plotted in figure 4
and the corresponding sections of the dispersion curves are marked BC with two different sub-
scripts corresponding to the two different branches. Note that the curve marked A3B;C3D; forms
one continuous dispersion curve.

When V is of the order Vm u., > m and |Q2—R2[2| > m, the retention in (26) of only the
leading terms, which are of the order Ciuim, yields

Asi
e A—: (40)
When Q> m, (40) may be simplified with the help of (27¢) and (34) to yield
V2= mu2Q0?%(Q?—2m). (41)

Obviously (41) gives real values for V only for Q2 > 2m. Further, when Q?—2m is of the order m?,
V given by (41) becomes of the order u, with the result the validity of (40) is ensured only under the
additional restriction that Q?—2m > m2?. The phase velocities as computed from (40) are also
plotted in figure 4. Note that (41) is independent of R. There are two branches corresponding
to the following frequency ranges: (i) 2m < 2 < R2[? and (ii) R2/? < ()2 < = and these are respec-
tively marked EsF5 and E4F ..

Using arguments similar to above, it can be shown that for |2 — R2{2| of the order of m, V' is
of the order Vm u, and is specified by

AV + A3iV2+ A4 =0. (42)
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The solutions of (42) are given by

Asi\? Ay
245)  Au (43)

In the close neighborhood of )2= R2[2, it can be shown that

Asi__up [Q*—Q2{2m + R22+ R?m} + 2mR>2(?]

A 0202 —R?) (44a)
Az mud(Q?— R2?)
A—;— =R (44b)

When ()2 — R2{? is of the order m and R? > Q2 > R2[2, it is clear from (44b) that A4;/4>; < 0. Hence,
only ¥, given by (43) will be real. When Q2—R22> m, A4i/A» is smaller than (A43/242)2 by a
factor of m and the square root in (43) may be expanded. For Q2 — R2[2> m and Q2% < R2, A3;/A» > 0
and (43) may be then shown to reduce to

Ay mu2()?

N T Ty (45)

Comparison of (45) with (41) shows that ¥, given by (43) merges with the phase velocity given by
(41) for Q> —R22> m. When 2m < R22, A4i/A» > 0 and Asi/A» < 0. Hence V, and V_ given by
(43) are both real. If R*?>—Q0%> m, A3/A> <0 and with the help of (43), it can be shown that

Asi
V=1 (46a)
and
pr = Asi__mugQ®
~T dw (B—2m) (46b)

An inspection of (33) and (46a) shows that V', given by (43) merges with that given by (33) for
R?>> m. Similarly, it is seen that V_ given by (43) merges with that given by (40) and (41) for
R22— Q2> m. Also, when Q?>=R2?[?, A4i/A>=0 and A3i/A> < 0. Hence, (43) yields

Asi.

PA=—2% P2=0 for *=R1P. (47)

The phase velocities, V', and V_ given by (43) and plotted in figures 4 are marked D,E, and F5G;
respectively. From the foregoing arguments, it is clear that the section of the dispersion curve
marked D4E; merges continuously and smoothly with that marked C4D4 on the low-frequency side
and with the section E4F; on the high frequency side with the result the sections marked 44B,,
B.Cy, CiDy, DsE, and E4F 4 together form one smooth curve. Also the section F5G5 of the dispersion
curve corresponding to V_ given by (43) joins smoothly with the section marked E5F; on the low-
frequency side. Note that this curve goes to zero for (1= RI.

When Q is of the order m, the phase velocity of the order V/m u. may be shown to be specified

b
" —
___Az} (48)
With the help of (29¢) and (34), (48) may be simplified to yield for () of the order of m
2 — R2]2,2
Mg R (49)

(- Rm?)
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Only for 0 < Q < Rlm and Q > Rm, does (49) yield real values for V. Note that V" specified by
(49) attains the value V2m u.l for Q tending to zero and goes to zero for Q= Rlm. It may be proved
that (49) is valid even in the close neighborhood of Q=RIm. When |Q%— R2m?| is of the order
m?3, V given by (49) becomes of the order u. and hence (49) is not valid. The phase velocity, as
obtained from (49) is also plotted in figures 4 and the corresponding sections of the dispersion
curves are marked by H;K, and H;K; respectively.

When [Q2— R2m?| is of the order m3, V is of the order u. and it may be shown to be specified by

AVi+ AV + A5 =0 (50)
where :
Aii=m(1+ ) (51a)
A~2,-=C§ [02(12 + m)—RHzmz] (51b)
Asi=—2C2u2m(Q2 — R*2m?) . (510)

The two solutions of (50) are given by

. A2\ Asi
LE24y 24 Aii (52)

where Vi and V', correspond to the upper and the lower signs in (52) respectively. For (1* > I~?2m~'-’,
A3i/A41i < 0 and hence only V; will be real. For Q2— R2m2> m3, (421/241;)* > |A3i/A1i| and A1i/A>»i
> 0: hence, (52) yields for V2

Asi , (Q2— R22m?)

9 ‘i3I __« 2
v Asi 2mu Q2 —R2m?) ° (53)
which is the same as that given by (48) and (49) showing that the phase velocity curve for V; speci-
fied by (52) merges with that given by (48) for O?— R?m?> > m?.

~ t'()r R2m? < Q% < R?m?, A3i/A:i < 0 and hence again only V, is real. Also if R2m2— 2 > m3,
Ai/A2 < 0 and therefore, (52) may be simplified to yield
A~2i,

1i

Vi=— (54)

which is seen to be the same as (31). As a result, it follows that the phase velocity curve for V|
specified by (52) merges with that for V. given by (32).

If Q2 < R22m2, A4i/A,i >0, Asi/A,; <0, and hence both ¥, and Vs are real. From (51) and
(52), it is easily deduced that

Asi
2 —=_ X
V' Aqi
and
Ay, (2= R22m?)
= L T e (R R (55)

Clearly (55) shows that V, specified by (52) is real and identical with that given by (48). The phase
velocity curves computed from (52) are sketched in figure 4. The curve corresponding to V., is the
same as the one marked H,K, and that corresponding to V', is marked B;Hs. From what has been

592



stated before, it is clear that the section BsHs joins smoothly with the section 4A5;B5 on the lower
frequency side and with the section H;K5 on the higher frequency side.

Following the same procedure employed before, it can be easily deduced that when Q2 is of
the order m; V of the order Vm u, is specified by the following equation:

/IziV4+A_-3iVZ+A_4i:0- (56)

For Q2 of the order m, the coefficients in (56) may be readily shown with the help of (29¢), (34), and
(27e) to be given by

A2i= ]. (57&)
Asi=u2(Q2—2m) (57b)
Asi=—mutQ2. (57¢)

The two solutions of (56) are

o) "
(51-) Asi (58)

Since A4i/A» < 0, only V'3 corresponding to the upper sign in (58) is real. It follows from (58) that

V2=2mu? for ?<2m (59a)
and
2()2
:ﬁ%) for Q2> 2m. (59b)

It is seen from (41) and (59b) that the phase velocity curve for V3 given by (58) merges with that
specified by (41) for Q2> 2m. For Q2 of the order m, (49) becomes identical to (59a) showing that
the phase velocity curve for V; specified by (58) for 2> < 2m merges with that given by (49). The
phase velocity curve for V3, as obtained from (58) and plotted in figure 4 is marked K;E5. It is to
be noted that the section of the dispersion curve marked K;E5 joins smoothly with the section
H;K; on the lower frequency side and with the section E;F'5 on the higher frequency side. Also
in the close neighborhood of Q%=2m, V' changes rather rapidly from the value V2m u. which is
equal to the acoustic velcoity in the gas of both the charged particles to the value V'm u. which
is equal to the acoustic velocity in the ion gas alone. This feature is the same as obtained for an
isotropic two component plasma [Seshadri, 1965]. Further, it follows that the various sections
of the dispersion curves marked respectively by 45B5, B;sHs, H;Ks5, K5E5, EsF's, and F5G5 form one
smooth curve.

It is of interest to examine the dispersion for extremely low frequencies such that (2 < R?m?.
For this case, (26) may be simplified to yield

Ve— R*mC3(1+ 12)Ve+ RIPm2CiV* — 2mPRAACHu2V? — Ciui)?mPR414 = 0. (60)

Using arguments similar to those given previously, it follows from (60) that V' of the order Vm Cy
is given by the following equation:

Vi—R2mC}(1 + [»)V?+ R*{*m?*C§=0. (61)
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The solutions of (61) are

V2=RmCi=V? V2=R2mC3[>. (62)
Also the phase velocities of the order V'm u. are obtained from (60) to be given by

Ve =2mlu2. (63)

It follows therefore that in the low-frequency limit there are only three propagating modes with
the phase velocities specified by (62) and (63). It is easily recognized that the first part of the
section A4B; of the dispersion curves in figure 4 corresponds to the fast hydromagnetic wave whose
phase velocity is equal to the Alfven wave velocity Vo=CoRVm for all directions of propagation.
The mode denoted by the first part of the section 45B5 of the dispersion curve in figure 4 is the slow
hydromagnetic wave with a phase velocity which is equal to the Alfvén wave velocity in the direc-
tion of the static magnetic field By and which changes by a factor of cos 6 for the other directions
of propagation. The mode denoted by H,K; in figure 4 is the sound wave whose velocity in the
direction of B, is equal to the acoustic velocity V2m u in the entire gas of charged particles.
The phase velocity of the sound wave, just like the slow hydromagnetic wave, changes by a factor
of cos 6 for the other directions of propagation. The spatial dispersion of the three modes in the
low frequency limit, as obtained here, is in accordance with the results obtained previously from
magnetohydrodynamic considerations [Seshadri, 1964a].

The section of the dispersion curve denoted by K;E5 for ? considerably less than 2m, has a
phase velocity equal to the acoustic velocity in the entire gas of charged particles for all directions
of propagation except in the transverse boundary layer. The static magnetic field has very little
effect on the dispersion for this section of the phase velocity curve.

Only the identification of the various modes given in figure 4 remain. In a two fluid compres-
sible plasma there are only four independent modes of oscillation, and these are designated as
follows: (i) the modified extraordinary electromagnetic mode MEM(X), (ii) the modified ordinary
electromagnetic mode, MEM(0), (iii) the modified electron plasma mode, MEP and (iv) the modified
ion plasma mode, MIP. The branch 4B, of the dispersion curve corresponds to the MEM(X)
mode, since its cutoff depends on the strength By of the external magnetic field and since, in the
limit of infinite frequency, its phase velocity approaches Cy. The branch A»B, corresponds to the
MEM(0) mode, since its cutoff is independent of By and since, in the limit of infinite frequency, the
phase velocity of this mode also approaches Cy. The branch 43B3CsD; belongs to the MEP mode
since, in the limit of infinite frequency, its phase velocity approaches the acoustic velocity ue in
the electron gas. The branch A4B,CiD4EF s belongs to the MIP mode for, in the limit of infinite
frequency, its phase velocity becomes equal to the acoustic velocity u; in the ion gas. The remain-
ing two branches of the dispersion curves do not extend to infinite frequency and are obviously
parts of the above mentioned four modes. It may be easily argued that the branch 45Gs is a part
of the MEM(X) mode. Also, it is appropriate to associate the branch H,K; with the MEP mode.

In an isotropic plasma, two out of the four possible modes are purely longitudinal and the other
two are purely transverse. But in an anisotropic plasma, all the four modes contain both longi-
tudinal and transverse field components, and for the purpose of distinguishing these from the cor-
responding ones of the isotropic plasma, the word ‘modified’ is attached to their designation.
Although the modes of anisotropic plasma, strictly speaking, contain both longitudinal and trans-
verse field components, the procedure used in the analysis of the dispersion uncovers the fact that
these modes are predominantly longitudinal in certain frequency ranges and predominantly trans-
verse in the other ranges of frequency. The MEM(0) mode is predominantly transverse in its
entire range of propagation, 1 <{) <o. The MEM(X) mode is predominantly transverse for
0< Q< Rmand Q; <) <x and is predominantly longitudinal for Rm < Q) < Rl. The MEP mode
is predominantly longitudinal for 0 < < Rml, and 4 <) < o is predominantly transverse for
0, <Q < Q4. The MIP mode is predominantly transverse in the frequency range 0 < () < Qg
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and is predominantly longitudinal for (23 < () <. It is evident from the above discussion that
in the neighborhood of the three frequencies 0= Rm, (0 =Q3 and )= ()y;, coupling of the trans-
verse and the longitudinal type waves takes place.

6. Concluding Remarks

It is desirable to contrast the treatment of the plane wave propagation in a two component
warm plasma contained in this paper with those aspects of the problem that are discussed in the
books by Stix [1962], Allis, Buchsbaum, and Bers [1963] and Denisse and Delcroix [1963]. Apart
from the careful consideration of the characteristics of plane wave propagation in a warm plasma
through the use of Boltzmann equations, Stix [1962] has discussed the dispersion of the low fre-
quency ion acoustic wave and the ion cyclotron wave. The low-frequency ion acoustic wave
corresponds to the first half of the branch H,K; of the dispersion curve, and the ion cyclotron wave
consists of two parts, the first part corresponds to the branch Bs;Hs and the second part to the
second half of the branch H,K,. Since he treated only the low phase velocity and low-frequency
approximation, Stix obtained a gap in the frequency spectrum in the range Rl < < R. Note
however that in this frequency gap, the two Alfvén waves propagate.

A parametric representation was first introduced by Clemmow and Mullaly [1955] for ascer-
taining the regions of propagation of the possible plane wave modes in an unbounded and homo-
geneous magneto-ionic medium. The two parameters used by Clemmow and Mullaly [1955] are
X=w}/w* and Y’=wj/w?. In the analysis of the properties of wave propagation in a plasma,
the determination of the propagation characteristics explicitly as a function of the wave frequency
w is almost always desired. Such a determination is difficult if the parameters X and Y? are used,
since the wave frequency is mixed in both of them. Therefore, in the present analysis, instead
of the conventional parameters, the following normalized frequencies are used:

w We
Q=2 g=te.
Wpe Wpe

Allis, Buchsbaum, and Bers [1963] have considerably extended the Clemmow-Mullaly plots, for
example, to apply to a two component plasma. The two parameters employed by Allis, Buchsbaum,
and Bers are

9 wfw ar wi)i

=B g

w? w?

__ WeeWei

It is to be noted that o is proportional to the number density and 82 is proportional to the square
of the external static magnetic field. Note also that both the parameters a® and B2, also contain
the wave frequency. In order to overcome certain practical difficulties encountered in the con-
struction of the graphical plots, Allis, Buchsbaum, and Bers [1963] use the assumed mass ratio
m=nme/m;=13} between an electron and an ion. Further, as the mass ratio vanishes, the param-
eter 3% also vanishes. To avoid the above-mentioned practical difficulties, the graphical plots
were constructed (but not included in this paper for the sake of brevity) in terms of the two para-
meters 22 and R?> A discussion of this new diagrammatic representation may be found in Seshadri
[1964b] for a single component warm plasma and in Seshadri [1964a] for a two component cold
plasma. This new parametric representation has two special features, namely, (i) the wave
frequency w is contained only in one of the parameters and (ii) the mass ratio m does not appear
in either of the parameters. The first feature facilitates greatly the study of the propagation char-
acteristics explicitly as a function of frequency and the second feature enables the plots to be used
with equal facility for both the single and the two component plasma, with the result it is possible to
ascertain from the graphical plots the influence of the heavy ion motion on the propagation char-
acteristics of a plane wave in a plasma. Moreover the plots in the 0> — R? parameter space can
be employed as is for a multicomponent plasma.
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Allis, Buchsbaum, and Bers [1963] have noted that the plane wave dispersion relation with
electron and ion thermal motion included is sufficiently involved that no simple form has been found
for it. Consequently, their discussion of the plane wave dispersion relations in a two component
warm plasma proceeds by first neglecting the coupling of the electromagnetic and the plasma waves
and the coupling being then described intuitively on the basis of the understanding of the corre-
sponding coupling in a single component warm plasma.

Denisse and Delcroix [1963] have considered various aspects of the characteristics of plane
wave propagation in a two component warm plasma. For the case of propagation along and across
the external magnetic field, they have plotted the dispersion curves in terms of x” and y' where
x' =log [(wi, + w3)w*] and y' = C3/V? for |C3/V?| <1 and y' =1+log (1 +log |C3/V?|) for |C3/V?| = 1.
In view of the different scales adopted for the different phase velocity regions and in view of the
log log scale adopted for the low phase velocity region, a clear overall picture of the variation of
the basic quantity, namely the phase velocity with the frequency, as is depicted in figures 2 and 3,
is difficult to obtain from the work of Denisse and Delcroix. For the general case of propagation
at an arbitrary angle to the direction of the static magnetic field, Denisse and Delcroix have at-
tempted to extricate the rules governing the propagation of the coupled longitudinal and transverse
modes. The dispersion relation has been expressed both as a quartic in u[ = (C3/}V*—1)?] and as a
cubic in x[=(w?, + ®?)/w?]. They have examined the vertical and the horizontal asymptotes cor-
responding to x going to zero and infinity and thus have obtained respectively the limiting behavior
of the dispersion for infinite and zero frequencies. They have not examined the dispersion over
the whole frequency region nor are any dispersion diagrams for the arbitrary direction of propa-
gation given.

In contrast to the treatments contained in the books by Allis, Buchsbaum, and Bers [1963]
and Denisse and Delcroix [1963], in this paper the dispersion equation for the arbitrary direction
of propagation of the plane wave has been cast in a rather simplified form as given in (26) and (27).
By systematically analyzing the dispersion equation in the various regimes of frequency and phase
velocity, it has been possible not only to treat the coupling of the transverse and the longitudinal
waves, but also to obtain simple analytical expressions for the dispersion relations in the various
intervals of frequency and phase velocity, as well as for the frequencies where the transverse and
the longitudinal type waves couple. Also, the dispersion curves are plotted in terms of the phase
velocity as a function of frequency for a typical case in which the propagation vector makes an angle
of 45 deg with the direction of the static magnetic field.

In conclusion, it is appropriate to sum up that the plane wave dispersion relations in a two
component warm plasma are worked out in this paper for the general case of propagation at an
arbitrary angle to the direction of the static magnetic field. This treatment does not cover the
transition regions corresponding to propagation vectors in the close neighborhood of either the
direction of the magnetostatic field or that perpendicular to it. The treatment of the dispersion
relations for the axial and the transverse boundary layers is reserved for a subsequent paper.
Once the dispersion is known for all angles including the axial and the transverse transition regions,
it will be possible to depict the spatial dispersion, that is, the variation of the phase velocity as
a function of angle for various typical frequencies, as was done for the two component cold plasma

[Seshadri, 1964al.

The author is grateful to Ronald V. Row for the many helpful discussions and to P. A. Kimball
for the valuable assistance with the numerical computations.
This research was supported by the Office of Naval Research under Contract Nonr—3185(00).

596



7. References

Allis, W. P., S. J. Buchsbaum, and A. Bers (1963), Waves in anisotropic plasmas, (MIT Press, Cambridge, Mass.).

Astrom, E. (1950), Magnetohydrodynamic waves in a plasma, Nature 165, 1019-1020.

Astrom, E. (1951), On waves in an ionized gas, Arkiv. Fysik 2, No. 42, 443—457.

Booker, H. G. (1963), The magnetoionic theory at hydromagnetic frequencies, presented at the 1963 Spring URSI Meeting,
April 29—May 2, Washington, D.C.

Clemmow, P.C., and R.F. Mullaly (1955), Dependence of the refractive index in magnetoionic theory on the direction of
the wave normal, Physics of the Ionosphere, Report of Physical Society Conference, Cavendish Laboratory, Physical
Society, London, 340-350.

Denisse, J. F., and J. L. Delcroix (1963), Plasma waves (Interscience Publishers, New York, N.Y.).

Fejer, J. A. (1960), Hydromagnetic wave propagation in the ionosphere, J. Atmospheric Terrest. Phys. 18, 135-146.

Hines, C. O. (1953), Generalized magnetohydrodynamic formulae, Proc. Camb. Phil. Soc. 49, 299-307.

Hines, C. O. (1957), Heavy-ion effects in audio-frequency radio propagation, J. Atmospheric Terrest. Phys. 11, 36—42.

Hines, C. O. (1963), The relation between hydromagnetic waves and the magnetoionic theory; Electromagnetic theory and
antennas, ed. E. C. Jordan, 287-299 (Pergamon Press).

Kieburtz, R. B. (1964), VLF propagation in a compressible ionosphere, Radio Sci. J. Res. NBS/USNC—-URSI 68D, No. 7,
795-805.

Oster, L. (1960), Linearized theory of plasma oscillations, Rev. Mod. Phys. 32, 141-168.

Pai, S. I. (1960), Wave motions of small amplitude in a fully ionized plasma without external magnetic field, Rev. Mod. Phys.
32, No. 4, 882-887.

Pai, S. 1. (1962), Wave motions of small amplitude in a fully ionized plasma under applied magnetic field, Phys. Fluids 5,
No. 2, 234—-240.

Ratcliffe, J. A. (1959), The magnetoionic theory and its application to the ionosphere (Cambridge University Press, Cam-
bridge, England).

Seshadri, S. R. (1964a), The magnetoionic theory at hydromagnetic frequencies, Research Report No. 392, Applied Research
Laboratory, Sylvania Electronic Systems, Waltham, Mass.

Seshadri, S. R. (1964b), Wave propagation in a compressible ionosphere, I and 1I, Radio Sci. J. Res. NBS/USNC—-URSI
68D, No. 12, 1285-1307.

Seshadri, S. R. (1965), Radiation from electromagnetic sources in a plasma, IEEE Trans. Ant. Prop. AP-13, No. 1.

Stix, T. H. (1957), Oscillations of a cylindrical plasma, Phys. Rev. 106, No. 6, 1146-1150.

Stix, T. H. (1962), The theory of plasma waves (McGraw-Hill Book Co., Inc., New York, N.Y.).

Storey, L. R. O. (1956), A method to detect the presence of ionized hydrogen in the outer atmosphere, Can. J. Phys. 34,
1153-1163.

Tanenbaum, B. S. (1961), Dispersion relations in a stationary plasma, Phys. Fluids 4, No. 10, 1262-1272.

Watanabe, T. (1961), Waves in a rarified ionized gas propagated transverse to an external magnetic field, Can. J. Phys. 39,
No. 7, 1044-1057.

(Paper 69D4-493)

597



	jresv69Dn4p_579
	jresv69Dn4p_580
	jresv69Dn4p_581
	jresv69Dn4p_582
	jresv69Dn4p_583
	jresv69Dn4p_584
	jresv69Dn4p_585
	jresv69Dn4p_586
	jresv69Dn4p_587
	jresv69Dn4p_588
	jresv69Dn4p_589
	jresv69Dn4p_590
	jresv69Dn4p_591
	jresv69Dn4p_592
	jresv69Dn4p_593
	jresv69Dn4p_594
	jresv69Dn4p_595
	jresv69Dn4p_596
	jresv69Dn4p_597
	jresv69Dn4p_598

