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A Ire alme n! (If Ihe c harac le ri slics of a plane wave propaga ling in a hUlTloge neous , unhuunded , 
and fu ll y iu nized p las ma is g ive n by e mp luy ing the linea rized , two-fluid cunlinuum theo ry of plas ma 
dynam ics. The plas ma is as sume d lu be a mac roscopi ca ll y ne utral and loss- free mixture of gas uf 
e lec trons and s ing ly c harged ions . Th e di s pe rs ion re lations lor the gene ral case 01 propagation al 
an arbi trary angle 10 th e direction uf Ihe s tati c magne li c fi e ld are inves ti gat e d withuut a n y limitalion 
on Ihe fr e que nc y and wilh e mphas is on th e c oupling of Ihe trans ve rse and Ihe long iludinall ype waves. 
S imple a nalyti ca l e xpress ions for the di s pe rsio n re la lions in the various int e rva ls of fre qu en cy and 
phase ve loc ilY , as we lJ as fur Ihe fre quen cies whe re t he Iran verse and Ihe longitudina l Iype waves 
couple, are g ive n in le rm s of the variou s para me le rs . This Irealme nl dues not cove r Ihe cases in whi c h 
Ihe propaga tion veClor is in Ihe c lose ne ighb urhood uf ei the r Ihe direc lion of the s lati c magne ti c fie ld 
or thai pe rp e nd ic ular to it. 

1. Introduction 

By fa r the larges l number of applications to the study of the nature of wave propagation in 
the ionosphe re a re based on the magneto-ionic th eory of Apple ton and Hartree [Ratcliffe, 1959]. 
Thi s theory is concerned with th e trea tm e nt of the plane wave di s persion rela ti ons in a cold , homo­
geneous and unbou nded elec tron plasma. A number of ex tens ions to the theory of Apple ton and 
Hartree are available in the lite ra ture. The ex tension of the conventional magneto-ionic theory 
to the low frequenci es by the inclusion of th e mot ion of the heavy ions has been inves tigated by 
various authors [As trom, 1950 , 1951; S tix, 1957; Fejer, 1960; Booke r, 1963; Story, 1956; Hines , 
1953, 1957, 1963; Ses hadri, 1964a]. T he magneto- ioni c theory together with its hydromagnetic 
extension o bt a in ed by taking into account the motion of the heavy ions has been able to predict 
correctly the nature of the plane wave propagation in a plasma, under the circumstances in whic h 
the effec ts of the alternating electric fi eld predomi nate over those of the pressure gradien ts. 

When the effects Of the pressure grad ie nts are not negligible, the magneto-ionic theory fails 
to provide an adequate description of the properti es of wave motion in a plasma. Also when the 
pressures of the charged particles are taken into account, new types of wave motion are found to 
appear. Th ere have been a number of inves tigations on the plane wave dispe rsion relati ons in 
a compressible plasma which is capable of sustaining not on ly th e us ual transverse elec tromagnetic 
type waves but also the longitudinal plasma waves. These inves tigations are all based on a linear­
ized theory of plasma oscillations and the essentials of this theory have been summarized in a recent 
paper by Oster [1960] . The characteristics of a plane wave propagating in an unbounded sin gle 
component warm plas ma have been treated [Oster, 1960] only for the two spec ial cases for which 
th e propagation vector is either along or across the direction of the ex ternal magnetostati c field. 
Rece ntly a syste mati c development of the theory of plane wave propaga tion in an unbounded , 
compress ible e lec tron plasma has been given for the general case in whic h the propagation vec tor 
makes an arbitrary angle with the direction of the magnetostati c fi eld [Ki eb urtz , 1964; Seshadri, 
1964a and b). 
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The plane wave dispersion relations in a compressible plasma wherein motions of both the 
electrons and the ions are taken into account have also been studied by Pai [1960, 1962], Watanabe 
[1961], and Tanenbaum [1961]. The treatments of these authors pertain to the case with no 
applied magnetic field or to simpler cases of propagation parallel or perpendicular to the direction 
of the external magnetic field. Various simpler aspects and special cases of the plane wave 
dispersion relations in a two component, warm plasma are contained in the books by Stix [1962], 
Allis, Buchsbaum, and Bers [1963] and Denisse and Delcroix [1963]. 

In this paper, the plane wave dispersion relations in a two component warm magnetoplasma 
are investigated in a systematic manner. The dispersion equation, which is essentially a quartic, 
is derived without making any approximations in the beginning and is cast in a form amenable 
to analysis by a perturbation procedure. As a natural consequence of the procedure employed 
in analyzing the dispe rsion relations, the coupling regions where the high phase velocity, pre­
dominantly transverse waves merge with those of the low phase velocity, predominantly longi­
tudinal waves become evident. Moreover, simple analytical expressions for various sections of 
the dispersion curves are obtained and this enables the proper understanding of the changes in 
the dispersion caused by the variations of the relevant parameters. 

It is only appropriate to mention the reasons for using the continuum theory in the present 
investigation. Basically, there are two methods of dealing with the plasma problems, namely 
the kinetic treatment based on the Boltzmann equation and the hydrodynamic treatment based 
on the various transport equations. The first method is more accurate but leads to greater mathe­
matical complexities. The second method, though incapable of accounting for effects such as 
Landau damping, is more readily amenable to analysis. Moreover, the macroscopic treatment 
gives correctly the various waves and their phase velocities and this knowledge is bound to provide 
valuable guidelines for the more complete treatments based on the Boltzmann equation. 

2. Statement of the Problem 

Consider a homogeneous plasma of infinite extent. The plasma is idealized to be a lossless 
and macroscopically neutral mixture of gas of electrons and a single species of ions. The drift 
velocity of the electrons and the ions are assumed to be zero so that the plasma, as a whole, may 
be considered to be stationary. A uniform magnetic field Bo is assumed to be impressed exter­
nally throughout the plasma in the z-direction, where x, y, and z form a right-handed rectangular 
coordinate system (fig. 1). It is proposed to restrict attention only to the linear, time-harmonic 
problem; the harmonic time dependence of the form e-iwt is implied for all the field components . 

. ~ 

Let Ne , Ve , and Pe be resnectively, the average number density, the velocity and the pressure 
~ ~ 

of the electrons; and let N i, Vi, and Pi be the corresponaing quantities for the ions. Also let E 
~ 

and H be the alternating electric and magnetic fields. The linearized time-harmonic hydrody-
namic equations of motion for the electrons and the ions are 

(1) 

~ ~ ~ 

-iwmiNiVi =Nie(E+ Vi X £Bo) -\lP; (2) 

where - e and me are respectively the charge and the mass of an electron and + e and mj are the 
corresponding quantities for an ion. Since the plasma is assumed to be neutral, the number 
densities of the electrons and the ions are equal and hence, each may be set equal to No, for con­
venience. The linearized equations of continuity combined with the equations of state are given by 

(3) 
~ 

ufmiNo \l . Vi = iwP; (4) 
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where Ue and Ui are the sound velocities in the electron gas and the ion gas respectively. In addi­
tion, the electri c and the magneti c fi elds sati sfy the following time-harmonic Maxwell 's equations 

~ ~ 

\l X E = iW/1-oH (5) 

(6) 

wh ere /1-0 and Eo are respec tively the permeability and the dielec tric constant of free space. 
It is desired to investigate the characteris tics of a pla ne wave propagating in the plasma me­

dium. Let Tbe the propagation vector suc h that hk coincides with the y-axis and let () be the 
angle that 7? makes with the direction of the stati c magnetic field, so that kx = k sin () = kn, ky = 0 
and kz = k cos () = kl. Therefore, all the fi eld components will have the spatial dependence of 
the form eik(nx+ lz) so that 

.i. = ikn; .i. = 0; .i. = ikl. ax ay az (7) 

~ 

On eliminating Pe from (1) with the help of (3) and (7), an expression for Ve can be ob tained in terms 
~ 

of E. In a similar manner, the elimination of Pi from (2) with the help of (4) and (7) leads to an 
~ ~ ~ ~ 

expression for Vi in terms of l!.. On substituting (5), (7), and the expressions for Ve and Vi in terms 
-) 

of E into (6), the following set of equations specifying Ex, Ey, and Ez is obtained. 

Dl~ uEj -iD23 Ey =[D] [E]=O 
D 33 Ez 

(8) 

where 

2 ( k2 2l2) 2 . ( k2 2l2) _ _ _ W peW ce _ ~ WpiW Ct -~ 
D12 - D 21 - 3 D 1 2 + 3 D 1 2 wae e W wai i W 
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(9) 

k2U~ ( 2 W~n) W~n Dn = 1--2 - 1- [ -2 ; C¥.n = I--2 
W C¥." W W 

n =e, L (10) 

Also Wpe(Wpi) and wce (wc;) are the plasma and the gyromagnetic frequency of the elec trons (ion s) 
and are given by 

(11 ) 

and Co = I Iv' ILoEo is the fr ee space elec tromagneti c wave velocity. The determinant of [DJ should 
be equal to zero in order that (8) may have a nontrivial solution and thi s condition leads to the 
dispersion equation . 

The two s pec ial cases of propagation along and across the static magnetic field are re viewed 
bri e fl y before proceeding to the study of the di spersion relations for the arbitrary direction of 
propagation. 

3 . Propagation Along the Direction of the Static Magnetic Field 

For the case of propagation along the direc tion of the static magnetic field, [ = 1. and n = o. 
Therefore, EI 1 = E;11= E23= E:l2= DI3= D:l I = D z1= D 32= O and EIl=E22 , D ll = D 22 and D 3:l=- E33. 

Consequ ently the ge neral di spersion equation fac tors into the following three separate equations: 

D 3:l=- E3:l= O. 

With the help of (9), (12a, b) may be shown to yield the following express ions: 

where V=I is the phase velocity of the wave and 

and 

1 
E I = 1- !V _ R2 

R 

fl =~ 
Wpe 

R = Wce 

Wpe 
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In this inves tigation me/mi will be set equal to 1/1836 which corresponds to a hydrogen plasma. 
In ' general, m is very much small in comparison with unity . It is to be noted that 0 is the nor­
malized frequency and R is the normalized s trength of the external magnetic field. The substi­
tution of (14a) and (14b) in (13a) and (13b) yields 

_ [ (O+ R ) (O- Rm) JI/2 
VEM(O) - Co 0 2 + OR(I- m) - (1 + m + R2m) (ISa) 

[ (O-R) (O+ Rm) JI/2 
VEM(e)=Co 02 - 0R(I - m)-(1 + m+ R2m) (ISb) 

Note that in the phase velocities (lSa) for the ordinary mode and (lSb) for the extraordinary modes 
neither of the two acoustic velocities Ue and Ui appear. Evidently therefore, (lSa, b) pertain to 
the purely transverse electromagne tic modes with no coupling to the longitudinal plasma waves. 
These two modes are the same as in an incompressible plasma for the case of propagation along 
the static magnetic field and have been studied previously [Seshadri, 1964a]. In figures 2a and b 
the phase velocities given by (lSa, b) are plotted for two values of R2 , namely R2 = 1/2 and R2 = 4/3 . 

In a similar manner, it may be easily s hown with the help of (9) that (12c) yields 

(16) 

The dispersion equation (16) which does not contain the veloc ity Co of electromagnetic waves in 
free space obviously corresponds to the purely longitudinal plasma waves with no co upling to the 
purely transverse elec tromagne ti c waves. Also (l6) does not depe nd on the s tati c magnetic fi eld , 
as is to be expected s.ince the purely longitudinal plasma waves are unaffec ted by the s tati c mag­
netic field for the case of propagation parallel to its direction. The stud y of the dispersion equation 
(16) has shown [Seshadri, 1965] that the electron plasma (EP) mode propagates for 0 > 1 and its 
phase velocity approaches Ue in the limit of infinite frequency. On the other hand, the ion plasma 

10-

10' 
EM(e} 

10' 

10' EM{O) 

10' 

10' 

jQJ IP 

, I 
R • ~ 

10' 

10-5 10. 4 10.3 10<1 10. 1 10 

" 
f i GURE 2a. Dispersion relations for propagation along 

the static magnetic field (R' = ~). 

583 

10- T'T'" -1' 

10' 

10' 

, 
10 

EM(O) 

, 
10 

. 
10 

3 
10 

10' 
10.5 10 . 4 10. 3 

TTTT']1T 

EM(_) 

IP 

R2 .. ;' 

10-2 

fP 

3 
::; 

J 

10 

FIG UflE 2b. Dispersion relatLOns for propagation along 

the static magnetic field (R2 =~) . 



(IP) mode propagates for all frequencies and its phase velocity approaches Ui in the limit of infinite 
frequency and the velocity v'2 Ui, which is the velocity of the acoustic waves in the whole gas of 
charged particles, in the limit of zero frequency. In fact, the transition of the phase velocity of the 
ion plasma mode from the value V2 Ui to the value Ui takes place rather rapidly near the frequency 
given by fF = 2m. The phase velocities of the electron and the ion plasma modes, as given by 
the dispersion equation (16) are also plotted in figures 2a and 2b. The values of Co and Ue are taken 
to be equal to 3 X 108 and 3 X 104 m/sec respectively. 

4. Propagation Across the Direction of the Static Magnetic Field 

For the case of propagation across the direction of the static magnetic field, l = 0 and n = l. 
Therefore, as before, Et3 = E3t = En = E32 = Dt3 = D3t = Dn = D32 = o. Consequently the general 
dispersion equation factors into the following two separate equations: 

(17a,b) 

With the help of (9), (17b) may be shown to yield 

V EM(O) = CoD,(D,2 - 1 - m)- t/2. (18) 

Since neither of the two acoustic velocities, Ue and Ui appear, (18) evidently corresponds to a purely 
transverse electromagnetic wave without any coupling to the longitudinal plasma waves. Aho 
(18), which corresponds to the ordinary electromagnetic mode as indicated by the subscript EM(O) 
on V, is independent of the static magnetic field. As the ordinary electromagnetic mode has its 
electric vector in the direction of the static magnetic field, which exerts no force parallel to itself, 
its dispersion is unaffected by the static magnetic field for the case of propagation across its direc­
tion. The phase velocity given by (18) is plotted in figure 3. 

With the help of (9) and (10), (17a) may be shown to yield the following cubic equation in V2: 

(19) 

(20a) 

+ mo + m2o)} + 2mo(1 + m)+ R2m {1 + m+ 2mo+ R2m)] (20b) 

when 

(20e) 

The dispersion equation (19) which contains Co, Ue, and m, corresponds to modes that have trans· 
verse and longitudinal field components and in which the motion of both the electrons and the 
ions contribute to the wave propagation. It is possible to decompose the total field into three 
independent modes which have been designated as (i) the modified extraordinary electromagnetic 
mode [MEM(x)], (ii) the modified electron plasma mode [MEP], and (iii) the modified ion plasma 
mode [MIP]. The phase velocity of these three modes are given by (19), which is solved by a 
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me thod s imilar to the one de tailed in the next sec tion and the following result is obtained: 

[ 1'12(D2 -1- R 2) ]1 /2 
VMEM(X)= CO D4- D2(R2+ 2)+ 1 forD > D2 (21) 

(22a) 

(22b) 

(22c) 

V MIP = Co [R 2m -D2( 1 + R2] 1/2 for 0 < D < D " (23a) 

= [-~ {D2(1 + R 2) - R2m } + t [q{D2( 1 + R2)- R2m }2 

(23b) 

_ [m(2 + R 2) -DZ ]1 /2 
-DUe D 2(1 + R 2) - R Zm for D " < D < 0 0 (23c) 

= {D2(1 + R 2) -R2m } - 1/2 [ - D;u~ {D2 - m(2 + R 2)} 

for 102 - D~ I .;;; m (23d) 

=D Vm Ue[D2- m(2 + W )]- 1/2 for Do < D < 00 (23e) 
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where 

ill, 2=+~+ ~(~r + 1 

ila = C~~2r2 : 

In obtaining (21) - (23), it has been assumed that 

q » V~ » U~ 

(24a) 

(24b, c) 

where Va = CoR Vm is the Alfven wave velocity and Ua = v'2,;;: Ue is the acoustic velocity in the 
entire gas of charged particles. The condition (25) is usually obtained im most practical cases 
and corresponds to the value of R2 being of th e order of unity . 

Although, as stated earli er, the three modes corresponding to (19) have both longitudinal 
and transverse field components, it may be easily verified that (i) the modified extraordinary elec­
tromagneti c mode is predominantly transve rse throughout it s frequency range of propagation, 
ilz< .o < 00, (ii) the modified electron plasma mode is predominantly tran sverse for .0, < fl < Vl+Rz 
and is predominantly longitudinal for VI + R2 < fl < 00, and (iii) the modified ion plasma mode is 
predominantly transverse for 0 < fl < fla and is predominantly longitudinal for fla < fl < 00. 

In the limit of infinite frequency, the phase velocities of the MEM(x), MEP and MIP modes 
approach Co, Up, and U ; respectively. Also in the limit of zero frequency, the phase velocity of 
the MIP mode approaches Va. The phase velocities of the three modes given by (21) - (23) are 
plotted in figure 3 for R2 = 1/2. 

5. Propagation jn an Arbitrary Direction With Respect to That of the Static 
Magnetic Field 

For arbitrary direction of propagation, the determinant of [D] does not factor into two simpler 
equations and thi s makes the analysis of the dispersion relations for the general case very com­
plicated. With the help of (8), (9), and (10), the following quartic equation in V2 is obtained: 

(26) 

where 

A, = q [- fl6(2 + 0 + mol + fl4{(4 + 4m+ 20 + 6mo + 2m20) 

+ 2m + 2mi2 + m2(1 + [2) + 2mo + 2mo[2 + 2m20 

+ 2m20[2) + R4m2(l + i2 + m + mi2 + 2mof2)]. (27b) 
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+ m28) + R 2m(l + m + 2m8[2)} - 2m3R4[4. (27d) 
A4 = qu~fPm(f),2 - Rt [2) (fF - R2m2[2 ) = A4i . (27e) 

The extre mely le ngthy and not altogether straightforward manipulations needed in obtaining (26) 
and (27) are omitted here for the sake of brevi ty. No te that 8 = 10- 8 . Since m, the ratio of the 
electron to the ion mass is of the order 10- 4, it is evident that 8 is of the order m2 . With thi s 
knowledge it is clear that the coeffi cie nts of all the powers of 0 in (27) are in th e form of a power 
senes In m. It is seen from (26) and (27) that the dispersion equation (26) is a quarti c in fI2 and a 
cubic in 0 2 . Nevertheless it was found to be advantageous to solve (26) for V rather than for O . 

It is proposed to solve (26) under the assumption (25) . In almost all prac ti cal situations and 
particularly for the case of the ionosphere, (25) holds good and hence the following study is not 
res tric tive from a practical point of view. In view of (25), it is legitimate to neglect m, 8, and R2m 
in compariso n with unity and to omit 8 in comparison with R 2. 

The dispersion as obtained from (26) is found to vary rapidly in the neighborhood of certain 
frequencies for propagation direc tions close to both along and across the stati c magnetic field . 
It is therefore desirable to s tudy first the dispersion relations in the interior region which excludes 
both the axial (1-[2 ~ 8) and the transverse (l2 ~ m) boundary layers. The inves tigation of the 
di spersion relations for the axial and the transverse boundary layers ·will form the subjec t of a 
subseque nt paper. 

The solution of the fairly complicated dispersion equation (26) is considerably simplified by 
the following perturbation procedure. If V of the order Co or higher is only sought , it. is found from 
(26) and (27), the leading terms are of the order q and the other terms are lower by a fac tor of at 
leas t 8. On retaining only the leading terms, the following simplified di spersion equation is 
obtained: 

(28) 

where 

AOi = (0 2 -1) [04 - 0 2(2 + R2) + 1] 

=(0 2-1) (02-0n (02-0D (29a) 

(29b) 
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(29c) 

(30a) 

(30b) 

It can be easily argued that (28) is valid orili: when Ifl2 - fl~il ~ 0 and Ifl2 - fl~il ~ o. Also, when 
fl is of the order m and V is of the order V mCo, the leading terms in (26) are of the order m4q and 
their retention gives (28) again. When (fl2 - R2m2) is of the order m4, the approximation (28) may 
be shown to be not valid. Consequently, (28) gives correctly the phase velocities of the order Vm 
Co when fl is of the order m or lower such that Ifl2 - R2m2 1 ~ m\ and the phase velocities of the 
order Co for the higher values of fl such that Ifl2 - fl5il ~ 0 and Ifl2 - fl~il ~ o. 

The approximate dispersion equation (28) is the same as the one obtained from considerations 
of the magneto·ionic theory which neglects the electron and the ion pressures completely, and its 
analysis shows [Seshadri, 1964a] that there are two modes of propagation. The ordinary electro­
magnetic mode propagates in the two frequency ranges 0 .;;; fl < fl3i and 1 .;;; fl .;;; 00 and the extraor­
dinary electromagnetic mode in the three frequency ranges, 0.;;; fl < fl5i' fl l .;;; fl < fl4i and 
fl2 .;;; fl .;;; 00. The frequencies fl3i' fl4i' and fl5i for which the phase velocity given by (28) goes 
to zero are called the resonant frequencies. From the foregoing discussion, it is clear that the 
magneto-ionic theory does not give correctly the dispersion near the resonant frequencies. The 
phase velocities specified by (28) become considerably smaller than Co in the close neighborhood 
of fl = fl3i and fl = fl4i and very much smaller than Vm Co in the close neighborhood of fl = fl 5i . 
In the close neighborhood of the resonant frequencies, the first term on the left side of (28) may be 
neglected in comparison with the other two terms with the result 

(31) 

The solution of (28) gives 

(32) 

The upper and the lower signs in (32) correspond to the ordinary and the extraordinary electro­
magnetic waves respectively. The phase velocities given by (32) and plotted in figure 4 for R2 = 1/2 
are marked AB with various subscripts corresponding to the various branches. For the portions 
of the dispersion curves marked AB, the electron and the ion pressures play negligible roles as 
a result the corresponding field components are predominantly transverse in character similar to 
the pure electromagnetic wave. 

If V is of the order Ue, the leading terms on the left side of (26) are of the order qu; and the 
remaining terms are lower by a factor of at least m. It follows, therefore, that for obtaining Vof 
the order Ue, only the leading terms need be retained resulting in the following expression for the 
phase velocity: 

(33) 
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where 

(34) 

It may be easily verifi ed that (33) is valid only if 1!}2 - 0~i l » o and 102-0~il»a. Also it can be 
shown that (33) yields V of the order Ue only for 0 2 > > m and 102 - R2l21> > m and these inequali­
ti es further limit the range of validity of (33). For 0 2 » m, A2i, and A ;li may be s implifi ed with 
the result (33) r educes to 

_ U~02(02 - R 2[2) 
V2 - (0 2 _ O~i) (02 - O~;) (33a) 

which corresponds to a propagating mode only for 03~ < 0 2 < R2l2 and o 24i< 0 2 < 00 . Note 
that Of; < R 2[2 < 0 li. In figure 4, the sec tions of th e dispersion c urves specified by (33a) are 
marked CD with two different subscripts corresponding to the two different branches. Note that 
when 0 tends to infinity, Vveecified by (33a) approaches asymptotically the value Ue. 

When V is of the order ueCo and 0 2 - Of; or 0 2 - OJ; is of the order Va, the leading terms 
in (26) are of the order u~q a nd the other term s are lower by a factor of V8 or smaller. The reten­
tion of the leading terms alone yields: 

(35) 

whose solutions are given by 

(36) 

It may be easily proved that A3i/AJi < 0 for 0 in the close neighborhood of either 0 3i or 0 4;. Hence 
only the upper sign in (36) will correspond to real values of V and consequently, the lower s ign in 
(36) may h e di sregarded. 
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The phase velocities for fF = flffi and fl2 = flJi are obtained from (36) to be given by 

(37) 

With the help of (29b) and (34), (37) is seen 10 yield real values for V of the order of magnitude 
VueCo for fl2 = ~fi and fl2 =!17. Consequently, (37) with the upper sign, correctly ~ives the phase 
velocities when (fl2 - fl~i) or (fl2 - fl~;l is of the order of magnitude va. 

When (fl2 - flff) ~ Yo or (fl2 - flJ;) ~ va. it is found with the help of (29b, c) and (34) that 
A3dA Ii is of the order a lower Ihan (A 2dA 1i)2 . The square rool in (36) may therefore be expanded. 
Also since for (fl2 - fli;) ~ Va or (fl2 - flJ) ~ VB, A Ii and Ati are of the same sign, (36) may be 

shown 10 yield 

(38) 

When (fl2 - flffi) ~ Yo or (fl2 - flJ;) ~ va, A Ii and Ati are of opposite signs and (36) may then be 
shown to reduce to 

(39) 

With the help of (39) and (.31) the phase velocity specified by (36) is found 10 merge with that given 
by (32) for [l2-flii ~ Yo or fl2_flJi ~ v'8. In a similar manner, a comparison of (38) with 
(33) shows I hat the phase velocity given by (36) merges with I hal specified by (33) for fl2 - fl~i 
~ Yo or fl2_fl~i~ v'8. 

The phase velocities computed from (36) with the upper sign are also plotted in figure 4 
and the corresponding sections of the dispersion curves are marked BC with two different sub­
scripts corresponding to the two different branches. Note that the curve marked A:lB:IC:ID:1 forms 
one continuous dispersion curve. 

When V is of the order Vm ue , fl ~ m and Ifl2 - R2[21 ~ In, t he retention in (26) of only the 
leading terms , which are of the order qu~m, yields 

(40) 

When fl ~ m, (40) may be simplified with the help of (27e) and (34) to yield 

V2= mu~fl2/(fl2 - 2m). (41) 

Obviously (41) gives real values for V only for fl2 > 2m. Further, when fl2 - 2m is of the order m2 , 

V given by (41) becomes of the order Ue with the result the validity of (40) is ensured only under the 
additional restriction that fl2 - 2m ~ m2 • The phase velocities as computed from (40) are also 
plotted in figure 4. Note that (41) is independent of R. There are two branches corresponding 
to the following frequency ranges: (i) 2m < fl2 < R2[2 and Oi) R2[2 < fl2 < 00 and these are respec­
tively marked E5F5 and E4F4. 

Using arguments similar to above, it can be shown that for I fl2 - R2f21 of the order of m, V is 
of the order V m u,· and is specified by 

(42) 
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The solutions of (42) are given by 

(43) 

In the close neighborhood of !V = R2[2, it can be shown that 

A3i _ u~ [!14 - !12{ 2m + R 2[2 + R 2m} + 2mR2[2] 
A2i - - !12(!12 - R 2) (44a) 

A4i _ mu:(!12 - R2[2) 
A2i - (!12 - R 2) (44b) 

When !12 - R2[2 is of the order m and R2 > !12 > R2[2, it is clear fro m (44b) that A4;/A2i < O. Hence, 
only V + give n by (43) will be real. When!12 - R2[2 P m , A4;/A2i is smaller than (A 3;J2A 2i ) 2 by a 
factor of m and the square root in (43) may be expanded. For!12 - R 2[2 Pm and!12 < R2, A3dA2i > 0 
and (43) may be then shown to reduce to 

V2 =_ A4i = mu~!12 . 
+ A3i (!12 - 2m) (45) 

Comparison of (45) with (41) s hows that V+ give n by (43) merges with the phase velocity given by 
(41) for f},2 - R2[2 P m. When 2m < R2[2, A4;/A 2i > 0 and A3dA2i < O. He nce V+ and V_ given by 
(43) are both real. If R2[2 - !12 P m, A3dAu < 0 and with the help of (43), it can be shown that 

V2 =_ A3i 
+ A2i (46a) 

and 

(46b) 

An inspection of (33) and (46a) shows th at V+ given by (43) merges wi th that given by (33) for 
R 2[2 P m. Similarly, it is see n that V_ given by (43) merges with that given by (40) and (41) for 
R2[2-!12 P m. Also, when !12= R2[2 , A4i/A2i=0 and A3dA 2i < O. Hence, (43) yields 

~ = - A 3i . V2 =0 for !12= R 2[2. 
+ A2i' - (47) 

The phase veloc ities , V+ and V_ given by (43) and plotted in figures 4 are marked D4E4 and F5G5 

respectively. From the foregoing arguments, it is clear that the sec tion of the di spersion curve 
marked D4E4 merges continuously and smoothly with that marked C4D4 on the low-frequency side 
and with the section E4F4 on the high freque ncy s ide with the result the sec tions marked A4B4, 
B4C4, C4D4, D4E4 and E¢4 together form one smooth curve. Also the section F 5G5 of the di s persion 
curve corresponding to V_ given by (43) joins smoothly with the sec tion marked E5F5 on the low­
frequency side. Note that this curve goes to zero for !1 = R[. 

When !1 is of the order m, the phase velocity of the order Vm Ue may be shown to be specified 
by 

With the help of (29c) and (34), (48) may be simplified to yield for !1 of the order of m 

(02 - R2[2m2) 
V2 = 2mu~ (!12 _ R 2m2) . 
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Only for 0 < 0 < RIm and 0 > Rm, does (49) yield real values for V. Note that V specified by 
(49) attains the value ~ Uel for 0 tending to zero and goes to zero for 0 = Rlm. It may be proved 
that (49) is valid even in the close neighborhood of 0 = RIm. When 102 - RZmzl is of the order 
m a, V given by (49) becomes of the order U p and hence (49) is not valid. The phase velocity, as 
obtained from (49) is also plotted in figures 4 and the corresponding sections of the dispersion 
curves are marked by HIKI and H5KS respectively. 

When 10 z - R2m2 1 is of the order m3 , V is of the order U p and it may be shown to be specified by 

where 
Ali = m(I + IZ) 

12i = q [oz(l2 + m) - R2/2mZ] 

Aai =- 2qu~/2m(OZ - R21Zm2) • 

The two solutions of (50) are given by 

(50) 

(5Ia) 

(SIb) 

(S I c) 

(52) 

where VI and Vt correspond to the upper and th e IQwer signs in (52) respecti vely. For OZ > R2mZ, 
A:li /Ali < 0 and hence only VI will be r eal. For!V - R2mZ ~ m\ (Az;/2AIi )2 :3> IA3;/AIiI and AIi /A-zi 
> 0; he nce, (52) yields for V~ 

(53) 

whic h is the same as that give n by (48) and (49) showing that the phase veloci ty curve for VI speci. 
fi ed by (52) merges with that give n by (48) for OZ - R 2m Z ~ m ;l . 

For R2[2m 2 < 0 2 < R2m2 , A;li /A Ii < 0 and he nce again only VI is real. Also if R2m2 - 0 2 ~ m:I, 
A~ ;/Ati < 0 and there fore, (52) may be s implifi ed to yield 

(54) 

whi c h is see n to be the sa me as (31). As a result , it follows th at the phase veloc it y curve for VI 
specifi ed by (52) merges with that for V" give n by (32) . 

If 0 2 < R 2 / 2m 2 , Xli/Ali > 0, Az;/Ali < 0, a nd he nce both VI and Vt are real. From (5 1) and 
(52) , it is eas il y deduced that 

j ,u 
V2 = - -=-

1 Ali 

and 

(55) 

Clearly (55) s hows that Vz spec ified by (52) is real and ide ntical with that give n by (48), The phase 
velocity c urves computed from (52) are ske tc hed in fi gure 4, The curve corresponding to Vt is the 
same as the one marked HIKI and that corres ponding to VI is marked B5H5' From what has been 
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stated before, it is clear that the section BsHs joins smoothly with the section AsBs on the lower 
frequency side and with the section HsKs on the higher frequency side. 

Following the same procedure employed before , it can be easily deduced that when D,2 is of 
the order m; V of the order Vm U e is specified by the following equation: 

(56) 

For D,2 of the order m, the coefficients in (56) may be readily shown with the help of (29c), (34), and 
(27e) to be given by 

A2i= 1 (57a) 

Xli=U~(D,2-2m) (57b) 

(57c) 

The two solutions of (56) are 

Since A4;/A2i < 0, only V3 corresponding to the upper s ign in (58) is real. It follows from (58) that 

~ = 2mu~ for D,2 <1!; 2m (59 a) 

and 

(59b) 

It is seen from (41) and (59b) that the phase velocity curve for VI given by (58) merges with that 
specified by (41) for D,2 ~ 2m. For D,2 of the order m, (49) beco mes identical to (59a) s howing that 
the phase velocity curve for V3 specified by (58) for D,2 <1!; 2m merges with that give n by (49). Th e 
phase velocity curve for V3 , as obtained from (58) and plotted in fi gure 4 is marked KsEs. It is to 
be noted that the section of the di spersion curve marked KsE5 joins smoothly with the sec tion 
H5KS on the lower frequency side and with the section E5Fs on the higher frequency side. Also 
in the close neighborhood of D,2 = 2m, V changes rather rapidly from the value ~ Ue whic h is 
equal to the acoustic velcoity in the gas of both the charged particles to the value Vm U e which 
is equal to the acoustic velocity in the ion gas alone. This feature is the same as obtained for an 
isotropic two component plasma [Seshadri, 1965]. Further, it follows that the various sec tions 
of the dispersion curves marked respectively by AsB5, BsH5, H5KS' KsE5, EsFs, and FsGs form one 
smooth curve. 

It is of interest to examine the dispersion for extremely low frequencies such that D,2 <1!; R 2 m2 • 

For this case, (26) may be simplified to yield 

Using arguments similar to those given previously, it follows from (60) that V of the order Vm Co 
is given by the following equation: 

(61) 

593 



The solutions of (61) are 

(62) 

Also the phase velocities of the order Vm Up are obtained from (60) to be given by 

(63) 

It follows therefore that in the low-frequency limit there are only three propagating modes with 
the phase velocities specified by (62) and (63). It is easily recognized that the first part of the 
section A4B4 of the dispersion curves in figure 4 corresponds to the fast hydro magnetic wave whose 
phase velocity is equal to the Alfven wave velocity Va = CoRVmfor all directions of propagation. 
The mode denoted by the first part of the section A5B5 of the dispersion curve in figure 4 is the slow 
hydro magnetic wave with a phase velocity which is equal to the Alfven wave velocity in the direc­
tion of the static magnetic field Bo and which changes by a factor of cos 8 for the other directions 
of propagation. The mode denoted by HIKI in figure 4 is the sound wave whose velocity in the 
direction of Bo is equal to the acoustic velocity ~ Ue in the entire gas of charged particles. 
The phase velocity of the sound wave, just like the slow hydromagnetic wave, changes by a factor 
of cos 8 for the other directions of propagation. The spatial dispersion of the three modes in the 
low frequency limit, as obtained here, is in accordance with the results. obtained previously from 
magnetohydrodynamic considerations [Seshadri, 1964a]. 

The section of the dispersion curve denoted by K5E5 for !V considerably less than 2m, has a 
phase velocity equal to the acoustic velocity in the entire gas of charged particles for all directions 
of propagation except in the transverse boundary layer. The static magnetic field has very little 
effect on the dispersion for this section of the phase velocity curve. 

Only the identification of the various modes given in figure 4 remain. In a two fluid compres­
sible plasma there are only four independent modes of oscillation, and these are designated as 
follows: (i) the modified extraordinary electromagnetic mode MEM(X), (ii) the modified ordinary 
electromagnetic mode, MEM(O), (iii) the modified electron plasma mode, MEP and (iv) the modified 
ion plasma mode, MIP. The branch AIBI of the dispersion curve corresponds to the MEM(X) 
mode, since its cutoff depends on the strength Bo of the external magnetic field and since, in the 
limit of infinite frequency, its phase velocity approaches Co. The branch A2B2 corresponds to the 
MEM(O) mode, since its cutoff is independent of Bo and since, in the limit of infinite frequency, the 
phase velocity of this mode also approaches Co. The branch A3BaCaD3 belongs to the MEP mode 
since, in the limit of infinite frequency, its phase velocity approaches the acoustic velocity Ue in 
the electron gas. The branch A4B4C4D~J'4 belongs to the MIP mode for, in the limit of infinite 
frequency, its phase velocity becomes equal to the acoustic velocity Ui in the ion gas. The remain­
ing two branches of the dispersion curves do not extend to infinite frequency and are obviously 
parts of the above mentioned four modes. It may be easily argued that the branch A5G5 is a part 
of the MEM(X) mode. Also, it is appropriate to associate the branch HIKI with the MEP mode. 

In an isotropic plasma, two out of the four possible modes are purely longitudinal and the other 
two are purely transverse. But in an anisotropic plasma, all the four modes contain both longi­
tudinal and transverse field components, and for the purpose of distinguishing these from the cor­
responding ones of the isotropic plasma, the word 'modified' is attached to their designation. 
Although the modes of anisotropic plasma, strictly speaking, contain both longitudinal and trans­
verse field components, the procedure used in the analysis of the dispersion uncovers the fact that 
these modes are predominantly longitudinal in certain frequency ranges and predominantly trans­
verse in the other ranges of frequency . The MEM(O) mode is predominantly transverse in its 
entire range of propagation, 1 < 0 < 00. The MEM(X) mode is predominantly transverse for 
o < 0 < Rm and O 2 < 0 < 00 and is predominantly longitudinal for Rm < 0 < Ri. The MEP mode 
is predominantly longitudinal for 0 < 0 < Rmi, and 04i < 0 < 00 is predominantly transverse for 
0 1 < 0 < 04i. The MIP mode is predominantly transverse in the frequency range 0 < 0 < !"hi 
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and is predominantly longitudinal for fl:li < 0 < 00. It is evident from the above discussion that 
in the neighborhood of the three frequencies n = Rm, 0 = O~; and 0 = 0 4 ;, coupling of the trans­
verse and the longitud inal type waves takes place. 

6. Concluding Remarks 
It is des irable to con trast the treatment of the plane wave propagation in a two compo nent 

warm plasma contained in this paper with those aspects of the problem that are discussed in the 
books by Stix [1962], Allis, Buchsbaum, and Bers [1963] and Denisse and Delcroix [1963]. Apart 
from the careful consideration of the characteristics of plane wave propagation in a warm plasma 
through the use of Boltzmann equations, Stix [1962} has discussed the dispersion of the low fre­
quency ion acoustic wave and the ion cyclotron wave. The low-frequency ion acoustic wave 
corresponds to the first half of the branch HIKI of the dispersion curve , and the ion cyclotron wave 
consists of two parts, the first part corresponds to the branch B5H5 and the second part to the 
seco nd half of the branch HIKI. Since he treated only the low phase velocity and low·frequency 
approximation, Stix obtained a gap in the frequency spectrum in the range Rl < n < R. Note 
however that in this frequency gap, the two Alfven waves propagate. 

A parametric representation was first introduced by Clemmow and Mullaly [1955] for ascer­
taining t he regions of propagation of the possible plane wave modes in an unbounded and homo· 
geneous magneto-ionic medium. The two parameters used by Clem mow and Mullaly [1955] are 
X = wJe/w2 and yz = W(~)W2. In the analysis of the properties of wave propagat ion in a plasma, 
the determinat ion of the propagation characteristics explicitly as a function of t he wave frequ ency 
W is almost always desin·d. Such a determination is difficult if the parameters X and y2 are used, 
since the wave frequency is mixed in both of them. Therefore, in the present analysis, in s tead 
of the conventional parameters , the following normalized frequencies are used : 

O=~; R = wce . 
Wp e Wp e 

Allis, Buchsbaum, and Bers [1963] have considerably extended the Clem mow-Mullaly plots, for 
example, to apply to a two component plasma. The two parameters employed by Allis, Buchsbaum, 
and Bers are 

It is to be noted that a2 is proportional to the number density and f32 is proportional to the square 
of the external static magnetic field. Note also that both the parameters a2 and f32, also contain 
the wave frequency. In order to overcome certain practical difficulties encountered in the con­
struction of the graphical plots, Allis, Buchsbaum, and Bers [1963] use the assumed mass ratio 
m = me/m; = ~ between an electron and an ion. Further, as the mass ratio vanishes, the param­
eter f32 a lso vanishes. To avoid the above-mentioned practical difficulties, the graphical plots 
were constructed (but not included in this paper for the sake of brevity) in terms of the two para­
meters !}2 and R2. A discussion of this new diagrammatic representation may be found in Seshadri 
[1964b] for a s ingle co mponent warm plasma and in Seshadri [1964a] for a two component cold 
plas ma. This new parametric representation has two special features, namely, (i) the wave 
frequency W is contained only in one of the parameters and (i i) the mass ratio m does not appear 
in either of the parameters. The first feature facilitates greatly the study of the propagation char­
acteristics explicitly as a function of frequency and the second feature enables the plots to be used 
with equal facility for both the s ingle and the two component plasma, with the result it is possible to 
ascertain from the graphical plots the influence of the heavy ion motion on the propagation char­
ac te risti cs of a plane wave in a plasma. Moreover the plots in the 02-R2 parameter space can 
be e mployed as is for a multicomponent plasma. 
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Allis, Buchsbaum, and Bers [1963] have noted that the plane wave dispersion relation with 
electron and ion thermal motion included is sufficiently involved that no simple form has been found 
for it. Consequently, their discussion of the plane wave dispersion relations in a two component 
warm plasma proceeds by first neglecting the coupling of the electromagnetic and the plasma waves 
and the coupling being then described intuitively on the basis of the understanding of the corre­
sponding coupling in a single component warm plasma_ 

Denisse and Delcroix [1963] have considered various aspects of the characteristics of plane 
wave propagation in a two component warm plasma. For the case of propagation along and across 
the external magnetic field, they have plotted the dispersion curves in terms of x' and y' where 
x' = log [(w~e + W~i)/W2] and y' = CUP for ICUPI ~ 1 and y' = 1 + log (1 + log 1C5/PI) for IQ/V21 ~ l. 
In view of the different scales adopted for the different phase velocity regions and in view of the 
log log scale adopted for the low phase velocity region, a clear overall picture of the variation of 
the basic quantity, namely the phase velocity with the frequency, as is depicted in figures 2 and 3, 
is difficult to obtain from the work of Denisse and Delcroix. For the general case of propagation 
at an arbitrary angle to the direction of the static magnetic field, Denisse and Delcroix have at­
tempted to extricate the rules governing the propagation of the coupled longitudinal and transverse 
modes. The dispersion relation has been expressed both as a quartic in u[ = (Q/V2 - 1)2] and as a 
cubic in x[ = (w~e + W~)/W2]. They have examined the vertical and the horizontal asymptotes cor­
responding to x going to zero and infinity and thus have obtained respectively the limiting behavior 
of t he dispersion for infinite and zero frequencies. They have not examined the dispersion over 
the whole frequency region nor are any dispersion diagrams for the arbitrary direction of propa­
gation given. 

In contrast to the treatments contained in the books by Allis, Buchsbaum, and Bers [1963] 
and Denisse and Delcroix [1963], in this paper the dispersion equation for the arbitrary direction 
of propagation of the plane wave has been cast in a rather simplified form as given in (26) and (27) . 
By systematically analyzing the dispersion equation in the various regimes of frequency and phase 
velocity, it has been possible not only to treat the coupling of the transverse and the longitudinal 
waves, but also to obtain simple analytical expressions for the dispersion relations in the various 
intervals of frequency and phase velocity, as well as for the frequencies where the transverse and 
the longitudinal type waves couple. Also, the dispersion curves are plotted in terms of the phase 
velocity as a function of frequency for a typical case in which the propagation vector makes an angle 
of 45 deg with the direction of the static magnetic field. 

In conclusion, it is appropriate to sum up that the plane wave dispersion relations in a two 
component warm plasma are worked out in this paper for the general case of propagation at an 
arbitrary angle to the direction of the static magnetic field. This treatment does not cover the 
tran:,ition regions corresponding to propagation vectors in the close neighborhood of either the 
direction of the magnetostatic field or that perpendicular to it. The treatment of the dispersion 
relations for the axial and the transverse boundary layers is reserved for a subsequent paper. 
Once the dispersion is known for all angles including the axial and the transverse transition regions, 
it will be poss ible to depict the spatial dispersion, that is, the variation of the phase velocity as 
a function of angle for various typical frequencies, as was done for the two component cold plasma 
[Seshadri, 1964a]. 

The author is grateful to Ronald V. Row for the many helpful discussions and to P. A. Kimball 
for the valuable assistance with the numerical computations . 
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