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Propagation of waves in a compressible plasma, bounded by a rigid convex surface, is considered 
in this paper. The situation is idealized to the extent that Maxwell 's equations, when combined 
with continuum theory of fluid dyna mics, are separable. Specificall y, the model is a perfec tl y co nduc t· 
ing cylinder of infinite length whic h is excited by a uniform voltage applied to an axial s lot. It is 
s hown that both electromagne ti c and electroacoustic waves are excited in the plas ma. Of parti cular 
inte res t is an azimuthal surface wave whic h c irculates around the cylind er with excep tionall y low 
a tte nuation . In the limi ting case of a cold (incompress ible) p lasma, the surface wave is not exc ited . 

1. Introduction 

It is now known that certain s ignificant diffe rences exist between waves in cold plas ma and 
waves in warm plasma [Stix, 1962; De ni sse and Delcroix, 1963]. In the la tter case, it is found, 
that in addition to the electromagneti c-type waves, one may also excite elec troacoustic- type 
waves by a source . In homogeneous media, the propagation characteri sti cs of th ese two wave 
types are determined bv uncoupled wave equations. The presence of either inhom'ogeneities 
or a doc magnetic fi eld will produce some coupling betwee n th e el ec tromagn eti ~ and electroacoustic 
waves . A partic ularl y s imple example of coupling occ urs whe n a se mi-infinite co mpressible 
plasma is bounded by a rigid dielec tri c with a plane inte rface [Hessel e t aI. , 1962 ; Ses hadri, 1964; 
Wait , 1964a]. A plane electromagnetic wave incident from eithe r s ide of the interface will produce 
seco ndary waves of both elec troacous ti c a nd elec tromagnetic types in the plasma. A notable 
exception occurs whe n the elec tri c field of the incide nt wave is purely parallel to the plane interface, 
in whic h case no coupling occurs. 

An important parameter eme rging in the analyses for electroacous ti c-electromagnetic effec ts 
is the ratio (u/c) where u is the velocity of sound in th e elec tron gas and c is the velocity of light 
in vacuum . Because thi s ratio is very s mall (e.g., 10- :3 or 10- 4), in both laboratory and ionospheric 
plasmas, the elec troacous tic effects are usually negli gible insofar as they modify the electromagneti c 
characteri sti cs of the waves. However, there appear to be ce rtain co nfigurations where the elec tro­
acoustic effec ts are particularly noticeable. Suc h an example co nsidered in this paper is a 
compressible plasma medium bounded by a convex rigid surface. A source located on the s urface 
will excite the usual creeping-type electromagnetic waves but, because of the co mpress ibility, 
a strongly trapped surface wave will also be excited. On physical grounds, one may expec t th at 
deep in the "shadow" the trapped wave component would dominate the creeping wave compone nts . 
This conjecture is verified by the analysis in the present paper. 

2. Formulation 

To simplify matte rs, a rathe r idealized model is considered . The doc magnetic fi eld is ne­
glected. The convex surface is take n to be an infinite circular cylinder of radius a immersed in 
the plasma. Th e source is a narrow axial slot which is excit ed throughout the length of the cylinder 
by a voltage Vo. This configura tion is almost co mpletely analogous to the proble m of a conduc tin g 
sphere excited by an annular slot. Si nce the formal results for the sp here problem were give n in 
some detail in an earlier paper [Wait , 1964b], the derivation of the correspondin g formal equations 
for the cylinder proble m will be omitted. The emphasis here will be on the tra nsforma tion of the 
soluti on to a meaningful and poss ibly useful form . 
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The plasma medium is regarded as a one-component electron fluid. In other words, the ions 
are neglected in the equation of motion, yet their presence is required to neutralize the plasma_ 
It is also assumed that the amplitude of the electromagnetic and the acoustic waves is sufficiently 
small that a linearized theory is valid [Oster, 1960]. The average density of the particles is no and 
this is regarded as a constant in the plasma region. The pressure deviation of the electrons from 

the mean is p and their mean velocity is -:. As usual, the electric and magnetic fields are denoted 

E and H, respectively. Collisions between particles and other forms of damping are consistently 
neglected in this paper. 

The linearized hydrodynamic equation of motion is 

~ 

av ~ 
mno a,:= noeE -"v p, (1) 

where e and m are the charge and the mass of the electron, respectively. The equation of contin­
uity, when combined with the equation of state, leads readily to 

~ 
u2mno"V . v =- ap/at, (2) 

where, as mentioned, u is the velocity of sound in the electron gas. 
Maxwell's equations for the electromagnetic fields in the plasma are given by 

~ ~ 

"V X E =- /LoaH/at, (3) 

and 
~ ~ 

"V X H = EoaE/at + noev, (4) 

where /Lo and Eo are the magnetic permeability and dielectric constant of free space, respectively. 
[Note that for electrons, e=-leIJ 

3. Formal Solution 

Without subsequent loss of generality, all field quantities are assumed to vary as exp (iwt) 
and, thus, the derivative a/at may be replaced everywhere by iw. 

The conducting cylinder is now alined to be coaxial with the z-axis of a cylindrical coordinate 
system. Thus, the region p > a is the compressible plasma. Also, because of the two-dimensional 
nature of the problem, the derivative ajaz may be set equal to zero. 

With the simplifications introduced above, it is now a simple matter to show that the electric 
and velocity fi eld components may be found from the scalar pressure p and the magnetic field 
which has only a z component. Thus, for p > a, 

where 

E =_I_aHz __ e_ap 
P iEWP acfJ Ew2m ap' 

1 aHz e ap Eq, =---------, 
iEW ap Ew2m pacfJ 

EO ap 
iEwnom ap' 

E w2 noe2 
- = 1-:::.11 and w2=--. 
Eo w2 0 mEo 
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The p and Hz satisfy 

(9) 

Solutions of (9) may be written in the form 

+00 
P = 2: AnW~)(kpp)e-in<l>, (10) 

n=-oo 

and 

+00 
Hz = 2: CnH(~l(kep)e-in"', (11) 

11=-00 

where H~)(Z) is the Hankel function of the second kind of order n with argument Z, while An 
and Cn are constants yet to be determined. The use of the Hankel function of the second kind 
assures outgoing waves at infinity. As indicated, the summations are over integer values of n 
so that periodicity in <p is assured. 

On the assumption that the cylinder is acting as a rigid body, the boundary condition on the 
velocity is Vp = 0 at p = a and 0 < <p < 21T. Thus, using (7), (10), and (11), it follows that 

An _ noen H(~)(kea) 

Cn WEo (kpa)H(~)'(kpa)' (12) 

where the prime indicates a derivative with respect to the argument of the Hankel function. 
The coefficient An may be found from the prescribed condition of the tangential electric field 

E",(a) on the cylinder. Explicitly, for p = a, 

Vo 
E",=E",( a) = aA for-(A/2) < <p < (A/2) (13) 

=0 for (A/2) < 1<p1 :31T, 

where A is the angular opening of the slot. 
A simple exercise in Fourier analysis gives the alternate form, for p = a, 

E ( ) = Vo ~ sin (nA/2) -in'" 
'" a 21Ta n~oo (nA/2) e (14) 

for the whole interval -1T < <p < 1T. As indicated, this representation is appropriate for a uni­
form electric field of strength Vol (aA) within the slot. A more realistic variation [Wait, 1959] 
of the electric field within the slot is given by 

Vo 
a1T[(A/2)2_<p2]1 /2 for -A/2 < <p < A/2, (15) 

where Vo is still the voltage across the slot. The corresponding Fourier representation for this 
variation is readily found to be 

(16) 
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where Jo is the Bessel function of the firs t kind of order zero. In general , we may write 

Vo +'" 
E d> (a ) =- L f (ntJ. /2) e - ind> , 

21T'a n=- oc 
(17) 

where f (x ) =(sin x l ix for the uniform fi eld ass umpti on and f( x) = Jo(x) for the nonuniform field 
in the slot. In both cases, f (x) approaches unity as n!J./2 lends to zero. In this limiting case, 

(18) 

where o(cp) is the unit impulse func tion at CP = O. In what follows, the functionf(tJ.n /2) is retained 
in the analysis. 

Using (6), along with (10), (11), and (12) , it is now a straightforward matter to apply the pre­
scri bed fi e ld condition a t p = a. This process yields 

where 

Thus, 

and 

_ n2(wo/wJ2 H\;)(kpa) H;~)(kea) 
0" - (kea) (kpa) H\~)'(kpa) H\;)'(kea) . 

_ VoiEnoe +x nf( ntJ./2) H\;)(kea) H~)(kpp) - ind> 

p - 21T'Eo(kea) (kpa) n~oo (1 - On) H\?)'(kea) H\~)'(kpa) e . 

(19) 

(20) 

(21) 

(22) 

If the plasma we re to become incompressible (i.e., cold), the parameter (kpa) would approach 
infinity. For thi s limi ting case, the press ure p ~ 0 and the parameter On ~ O. The resulting 
expression for Hz is the n identical to the magnetic fi eld of an axially slotted cylinder in a dielectric 
me dium of dielec tri c cons ta nt E and wave numbe r ke [Wait, 1959] . 

Equations (21) and (22) are exact expressions for the magnetic field and the pressure, respec­
tively, in the compressible plasma. Corresponding expressions for the electric and velocity field 
compone nts may be obtained from (5) to (8)_ Some simplification is achieved in the far field when 
p ~ 00. Then, the Hankel functions of arguments keP and kpp may be approximated in the manner 

( 2 ' ) 1/2 
H~2l(keP ) == 1T'k:p i" exp (- ikeP) (23) 

and 

( 
. )1 /2 

H\~) (kpp) == 1T'~pp i" exp (- ikpp). (24) 
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4. Application of Watson Transformation 

The subsequent discussion will deal with the be havior of the fun c tion Hz. In particular, 
we shall develop an expansion [or Hz whi c h s hould give so me ph ys ical ins ight into th e nature of 
the diffrac tion ph e nome na associa ted with the rigid cylinde r. 

For conve nie nce, we write 

where 

with x=kpa and x,=kep . 

+oc 
Hz = 2: hne- ind>, 

n= - oo 

iEWVo H\r)(Xl) f(n 11/2) 
h" = - -2-- H(2)'( ) 1 - " , 

7TX n X 0 " 

(25) 

(26) 

Following the prescription of the Watson transformation [ So mmerfeld , 1949; Wait, 1959], 
the summation in (25) is re placed by a co ntour integral in the complex v plane, s uc h that 

3 f . e;V7r -_ - 'lvcb __ _ 
Hz - 2' hve . dv. 

l sin V7T 
(27) 

whe re the poles of the integrand are at v = n . Here, C, is a s traight line, jus t below the real axis , 
which runs from left to right; C2 is a s traight lin e, ju st above the real axis, which runs from right 
to le ft. It is a si mple matte r to ve rify that 27Ti ti mes the residues of the poles in (27) leads to the 
summation (25). Thus, the equivale nce is es tabli shed, provide d that C, + C2 enclosed only the 
poles at v = n . 

It i de monstrated below that hI' has a number of complex poles whic h li e in the fourth quadrant 
at 11 = Vs whe re s indicates the number of the pole . Because of symmetry, poles also exist at 
v=- Vs in the second quadra nt. Furthe rmore, C, may be closed by an infinite se micircle in the 
lower half plane of v without changing the value of the integral. Similarly, C2 may be closed by 
an infinite se mic ircle in the upper half plane. Thus, Hz may now be replaced by a summ a ti on 
of the res idues of the poles Vs and - v s. Therefore, 

cos V.,(7T - cp) 
si n Vs7T 

where the summation is over the poles Vs which are solutions of 

(Ilh v) = o. 

The latter pole-determining equation is exactly equivalent to the equation 

01'= 1, 

where 

_ v2(wolw)2 H~2)(X) H~2)(y) 

0" - xy H~2)'(X) Hf;-l'(y) , 
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where x = kea and y= kpa. It is immediately evident that an evaluation of (31) leads to the propa­
gation constant for the waves which "circulate" around the cylinder. Individually, they contain 
the factor exp (- ivs</» for waves traveling in the positive q, direction or exp (+ ivs</» for waves 
traveling in the negative </> direction. If q, is measured in a positive sense it is convenient to write 

cos vs( 7T - q,) ~ . -iv <PC (A..) 
. - Le s s 'l', 

SIn Vs7T (32) 

where 

(33) 

It is evident that when 1> ~ 7T and provided - 1m Vs7T P 1, the function Cs may be replaced by unity. 
Under this condition, waves circulating around the cylinder are highly attenuated. 

A study of (30) indicates that there are two sets of poles. The first set which we shall describe 
as the electromagnetic or EM type, while the second set is called the acoustic or A type. The 
EM-type modes are located where Ivl is of the order of x, while the A-type modes are located where 
Ivl is of the order of y. Recognizing that y P x, it is evident that a different type of approximation 
is to be used in the two cases. With this point in mind it is desirable to rewrite (28) in the form 

(34) 

where 

H e--2 . ~ Ci(q,) (_. eA..) 
z - TTL 'f [~1.] exp LV s'l' , 

av hv e 
11="'8 

(35a) 

and 

Ha - _ 2 . ~ C~( </> ) ( . aA..) 
z- 7TL'f[~1.] exp-Lvs'l'· 

av hv. v=va 
s 

(35b) 

Here, the superscript e refers to the contribution from the EM-type poles at v~, whereas the super­
script a refers to the contribution from the A-type poles at v~. 

5. Pole Determinations-EM Type 

For the EM-type poles, we may use the third-order approximation for the Hankel functions 
such that 

i (2)1 /3 H(2)(X) == - - w(t) 
" 7T1/2 X 

and 

i (2)2/3 H(2 )'(X) == - - - w'(t), 
v 7T1 /2 X 

where t=(v-x)(2/x)1/3, w(t) is the Airy function defined by 

w(t) = exp (- 27Ti/3)(- 7Tt/3)1 12H~% [(2/3)(- t)3/2] , 

572 

(36) 

(37) 



and w'(t) = dw(t)/dt. This third-order approximation is valid when v is in the vicinity of x which 
itself is to be much larger than one [Wait, 1962] . Within this same domain the Hankel function 
H~2)(y) may be replaced by the first term of its asymptotic series. Thus, H~2)'(y) == - iH~2)(y). 

Using the above approximations for the various Hankel functions, it follows without difficulty that 

he == Voiew (~)1 /3 w(t- Y)f(vl1/2) 
v 27TX 2 w'(t) 1- Ov ' 

(38) 

where 

= _ . (WO)2 !C (~)1 /3 w(t) 
Ov - L 2'()' w xy w t 

(39) 

and 

zo=p-a. 

Again, in order to simplify matters, the height zo of the observer has been assumed to be small 
compared with the radius of curvature a. 

Using the third-order approximations described above, the residue series re presentation for 
EM-type waves is found to be 

He=Hoei37T/4(7T¢)l/2(x/2)1 /6'" w(ts - Y) Ge(¢)f(ve 11/2) exp [- its(x/2)1 /3¢] 
Z z 7' w(ts) s S ts - q~ - qe(2/X)2 /3 ' (40) 

where 

_ . (WO)2 (Ve)2 (X) 1/3 _ . w2 X (X) 1/3 qe - - L - ~ - = -L ~- - , 
w xy 2 w2 Y 2 (41) 

and ts are roots of the equation 

w2 v2 (X)I /3 
w'(t) + i ~ xy"2 w(t) = 0, (42) 

and 

(43) 

The quantity H~ may be identified as the field of a "delta" slot at distance a¢ on an equivalent 
flat ground plane. 

Equation (40), which is a fairly general result, may be simplified somewhat when ¢ is not near 
7T' and provided the width al1 of the slot satisfies keal1 ~ 1. In this case, both G; (¢) and f{vi 11/2) 
may be replaced by unity. Furthermore, under the assumption y ~ x, the dimensionless factor 
qe has a magnitude which is small compared with unity. Thus, the factor ts -q~-qe (2/X)I/3 in 
(40) may be replaced by ts to within a good approximation. Thus, the simplified version of (40) 
reads 

ewV: (2)1/3 w(t - Y) Hi == __ 0 - '" s exp [- ix¢ - i (x/2) 1/3ts¢] . 
2 X £.. tsw(ts) 

s 
(44) 

To determine the solution of (42), an iterative method may be adopted. For the first-order 
iteration, v2 is replaced by x 2 in the factor multiplying w(t). Thus, (42) may be written 

758 -850 0-65-8 

w'(t) -qew(t) =0, 
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where qe is given by (41). A solution of (45a) appropriate for small values of qe, is written 

1 1 2 •• h' h f ts = 'T s + - qe - -2( )3 qe + terms contammg Ig powers 0 qe, 
7s 7s 

where 7s are solutions of 

W' (7) = 0. (45b) 

Values of 7s are well known from the theory of Airy functions [e.g., Fock, 1945]. Thu s, 

e tc. 

71 = 1.0188 exp (- i7T/3) , 
7 2 = 3.2482 exp (- i7T/3) , 
73= 4.8201 exp (- i7T/3 ), 

A higher order solution of (42) may be obtained by replacing v in (42) by x + (x/2) 1/3t s where ts 

is given by (45b). Then, a higher order solution Ts is obtained from 

where 

where, as usual, x = kea and y = kpa . 
Thus, the higher order approximation is 

W' (T) - Qew(T) = 0, 

1 ] 
Ts= 7s+ - Qe- -2( )3 Q~+ . 

7s 7s 

(46) 

If one wished, fu rther iterations could be effected. Howe ver, as a practical matter, the ze ro-order 
solution give n by (45b) should be quite adequate. 

In the limiting case of an incompressible (or cold) plasma where y= kpa ~ 00, the parameter 
qe vanishes completely. The root ts occurring in (40) is then identical to 7s. The residues series 
r epresentati on then has the same form as the groundwave field for radio propagation over a spheri­
cal ear th in an atmosphere of dielectric constant e[e.g., ch. V in Wait, 1962]. 

The preceding development indicates that the EM-type residue waves, circulating around 
the rigid cylinder , are only slightly modified by the compressibility of the ambient plasma. 

6 . Pole Determination- A Type 

We now turn our attention to the contribution from the electro·acoustic or A-type poles. As 
indicated, the poles occur when v is of the order of y and since y ~ x, the Debye approximation 
[Sommerfeld , 1949] for the Hankel function H(~) (x) is appropriate. Therefore, it is found that 

H~2)(XI)= _ 1 [-f XI , 2_ 1/2 'J H~2)' (x) - [(v/x)2 _1)1/2 exp x [(v/x) 1] dx , (47) 

where x = keu and XI = keP = ke(a + zo) . 
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In view of the large magnitude of v , (47) may be further approximated to 

H<2)(X I) x [V ] kea [ zo ] ~=-- exp --(XI -X) =--exp -v- . 
H~2)' (x) V X v a (48) 

Within the same approximation the function 0", defined by (31), is represented by 

= _ (WO) 2 ~ H~2)(y) . 
0" - H(2 )'( ) w y " y (49) 

If it is assumed, provisionally, that the second order or Debye approximation is valid for H~2)(y), 
(49) may be simplified to 

o =+(WO)2 ~ 1 . 
v W y [(v /y)2-1)1/2 

The pole condition 0" = 1 then leads to the simple result that 

( 
(4) - 1/2 wa ( ( 2) - 1/2 v=y 1-:::fr = - 1 + :::fr . 
w4 U w 2 (50) 

This corresponds to an unattenuated surface wave propagation along the r igid surface with a 
propagation constant 

w ( ( 2) - 1/2 k [1 -(WO/W)4]- 1/20 r - 1+~ . 
P U w2 

This is precisely what one would expect for a compressible plasma medium bounded by a plane 
rigid surface. The a pplicability of the result to a curved surface rests on the validi ty of the Debye 
approximation for the Hankel function H~2)(y). Certainly, when WUW4 ~ 1, thi s situation would 
be violated. Therefore, it is necessary to use a third· order type approximation for H~2)(y). 

Using the Airy function representations for the Hankel functions , as given by (36) and (37), 
it is now found that for the A-type poles, 

= (r)I/3 (WO) 2 wet) 
0" - 2 w w' (t) , (51) 

where 

t= (v -y) (2 /y) 1/3. 

The contribution from the A-type poles may now be written 

(52) 

where 

(53) 

and 

v~ = y+ (y/2) 1/3[. . (54) 
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Here, t. are solutions of 

w' (f) - qaW(t) = 0, (55) 

where 

qa= (y/2)1/3(WO/w}2. (56) 

The root of (55) of greatest interest is the one which has a surface wave character. Since qa is 
essentially real, it may be shown that [Wait, I964c] the surface wave root of (55) is 

to = Reto + ilmto, (57) 

where 

R "' 2 1 1 5 
eto -qa+-2 +-84+32 7+· .. , 

qa qa qa (58) 

and 

(59) 

When qa becomes greater than about three, the imaginary part of to is negligible. Then, 

(60) 

which corresponds to 

'vg = y+ (y/2) 1/3to = y[I + (Wo/w )4/2]. (61) 

Provided (WO/W)4 is sufficiently small, this result agrees with (50). The height-gain function Ho 
for this surface wave mode is given approximately by 

Ho=exp [-vgzo/a] = exp (-kpZo), (62) 

which indicates the strong trapping or "clinging" effect. 

When qa becomes small the attenuation, which is proportional to - 1m to, is appreciable. For 
example, if qa is l.00, - 1m to = 0.1551, and if qa is reduced to zero, - 1m to approaches 0.5094. 
This corresponds to the cold plasma limit. 

There are other roots of (55) which are somewhat analogous to the conventional EM poles 
discussed in connection with (44). The height-gain functions for these modes are given by (53) 
with s = 1, 2, 3, . . .. However, it would appear that for all practical purposes, contributions 
from these roots are negligible. 

In (52), the function f for the A-type poles is approximately represented by 

fiy~Il/2) = fikp all/2) 

sin (kpall/2) . . = (kpall/2) for the Uniformly excIted slot 

= Jo(kp all/2) for the nonuniformly excited slot. 

Because kpa is a very large parameter, the function lf1 will be somewhat less than unity unless 
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aLl, the slot width, was made exceptionally small. This points up the difficulty in exciting the 
electroacoustic-type waves by a finite source_ 

In the preceding discussion, it has been assumed implicitly that W~/W2 < 1. Thus, the propa­
gation constants ke and kp are real. However, if W~/W2 > 1, ke and kp become purely imaginary. 
The analysis given in this paper is applicable to this case if the factor (1 - W~/W2)1 /2 is replaced 
everywhere by - i(wUw2 -1)1/2. An interesting consequence is that the modes ll~ and ll~ have 
large imaginary parts except the surface wave mode llg which is of the acoustic type. As seen 
by (50), this particular mode does not become highly attenuated as W~/W2 increases beyond unity. 

7. Concluding Remarks 

From the analysis given in this paper, it is evident that the finite compressibility of the plasma 
will modify the characteristics of the electromagnetic field in the vicinity of the rigid cylinder. In 
fact, for excitation by an axial slot of infinitesimal width, a strongly trapped surface wave is excited 
which travels around the cylinder with exceptionally low attenuation, provided the plasma is a 
non-dissipative medium.! However, the excitation of the surface waves is quite weak compared 
with the excitation of the electromagnetic-type modes. (As seen by (40) and (52), the ratio of the 
excitation factors is approximately (U /C)2/3 where u is the velocity of sound waves in the electron 
fluid.) Nevertheless, if the field is measured within a distance k~! from the surface, the fi eld 
amplitude of the surface wave may be comparable with, or even much greater than that of the 
electromagnetic-type modes. Of course, in the limiting case of an incompressible (or cold) 
plasma, the surface wave is no longer excited. 

I This means that collisionless damping is also neglected. 

I would like to express my appreciation to K. P. Spies for various comments and for his very 
careful reading of the manuscript. 
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