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Propagation of waves in a compressible plasma, bounded by a rigid convex surface, is considered
in this paper. The situation is idealized to the extent that Maxwell’s equations, when combined
with continuum theory of fluid dynamics, are separable. Specifically, the model is a perfectly conduct-
ing cylinder of infinite length which is excited by a uniform voltage applied to an axial slot. It is
shown that both electromagnetic and electroacoustic waves are excited in the plasma. Of particular
interest is an azimuthal surface wave which circulates around the cylinder with exceptionally low
attenuation. In the limiting case of a cold (incompressible) plasma, the surface wave is not excited.

1. Introduction

It is now known that certain significant differences exist between waves in cold plasma and
waves in warm plasma [Stix, 1962; Denisse and Delcroix, 1963]. 1In the latter case, it is found,
that in addition to the electromagnetic-type waves, one may also excite electroacoustic-type
waves by a source. In homogeneous media, the propagation characteristics of these two wave
types are determined by uncoupled wave equations. The presence of either inhomogeneities
or a d-c magnetic field will produce some coupling between the electromagnetic and electroacoustic
waves. A particularly simple example of coupling occurs when a semi-infinite compressible
plasma is bounded by a rigid dielectric with a plane interface [Hessel et al., 1962; Seshadri, 1964
Wait, 1964a]. A plane electromagnetic wave incident from either side of the interface will produce
secondary waves of both electroacoustic and electromagnetic types in the plasma. A notable
exception occurs when the electric field of the incident wave is purely parallel to the plane interface,
in which case no coupling occurs.

An important parameter emerging in the analyses for electroacoustic-electromagnetic effects
is the ratio (u/c) where u is the velocity of sound in the electron gas and ¢ is the velocity of light
in vacuum. Because this ratio is very small (e.g., 10~% or 10~%), in both laboratory and ionospheric
plasmas, the electroacoustic effects are usually negligible insofar as they modify the electromagnetic
characteristics of the waves. However, there appear to be certain configurations where the electro-
acoustic effects are particularly noticeable. Such an example considered in this paper is a
compressible plasma medium bounded by a convex rigid surface. A source located on the surface
will excite the usual creeping-type electromagnetic waves but, because of the compressibility,
a strongly trapped surface wave will also be excited. On physical grounds, one may expect that
deep in the “shadow” the trapped wave component would dominate the creeping wave components.
This conjecture is verified by the analysis in the present paper.

2. Formulation

To simplify matters, a rather idealized model is considered. The d-c magnetic field is ne-
glected. The convex surface is taken to be an infinite circular cylinder of radius a immersed in
the plasma. The source is a narrow axial slot which is excited throughout the length of the cylinder
by a voltage V. This configuration is almost completely analogous to the problem of a conducting
sphere excited by an annular slot. Since the formal results for the sphere problem were given in
some detail in an earlier paper [Wait, 1964b], the derivation of the corresponding formal equations
for the cylinder problem will be omitted. The emphasis here will be on the transformation of the
solution to a meaningful and possibly useful form.
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The plasma medium is regarded as a one-component electron fluid. In other words, the ions
are neglected in the equation of motion, yet their presence is required to neutralize the plasma.
It is also assumed that the amplitude of the electromagnetic and the acoustic waves is sufficiently
small that a linearized theory is valid [Oster, 1960]. The average density of the particles is ny and
this is regarded as a constant in the plasma region. The pressure deviation of the electrons from

the mean is p and their mean velocity is v. As usual, the electric and magnetic fields are denoted

E and ﬁ, respectively. Collisions between particles and other forms of damping are consistently
neglected in this paper.
The linearized hydrodynamic equation of motion is

mn 6_v=n eE—V
0 ot 0 D, 9]

where e and m are the charge and the mass of the electron, respectively. The equation of contin-
uity, when combined with the equation of state, leads readily to
wmnoV - v=— dp/at, (2)

where, as mentioned, u is the velocity of sound in the electron gas.
Maxwell’s equations for the electromagnetic fields in the plasma are given by

— -
V X E=— u,dH/ot, 3)
and
- -
V X H=¢€,E/[dt + neev, (4)

where wo and €, are the magnetic permeability and dielectric constant of free space, respectively.
[Note that for electrons, e=—|e|]

3. Formal Solution

Without subsequent loss of generality, all field quantities are assumed to vary as exp (iwt)
and, thus, the derivative d/dt may be replaced everywhere by iw.

The conducting cylinder is now alined to be coaxial with the z-axis of a cylindrical coordinate
system. Thus, the region p > a is the compressible plasma. Also, because of the two-dimensional
nature of the problem, the derivative d/dz may be set equal to zero.

With the simplifications introduced above, it is now a simple matter to show that the electric
and velocity field components may be found from the scalar pressure p and the magnetic field
which has only a z component. Thus, for p > a,

*iewp 0p  ew'map’ ©)
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® l€w dp  €w2m pdd (6)
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The p and H. satisfy
148 19> K
ap 0;0+102 8d>2+ }H =0, ®)
where k7 = poew? and k= (w/u)*(€/€o).

Solutions of (9) may be written in the form

+o
p=YY, AuHG kpp)e-int, (10)
and
H,= f CoHO (kep)eine, (11)

n

where H?(Z) is the Hankel function of the second kind of order n with argument Z, while 4,
and C, are constants yet to be determined. The use of the Hankel function of the second kind
assures outgoing waves at infinity. As indicated, the summations are over integer values of n
so that periodicity in ¢ is assured.

On the assumption that the cylinder is acting as a rigid body, the boundary condition on the
velocity is v, =0 at p=a and 0 < ¢ < 27. Thus, using (7), (10), and (11), it follows that

An __noen _ H3(kea)
(&5 weo (kpa) H?'(kpa)’ (12)

where the prime indicates a derivative with respect to the argument of the Hankel function.
The coefficient 4, may be found from the prescribed condition of the tangential electric field
E4(a) on the cylinder. Explicitly, for p=a,

Ey=Es(a) =—-for — (A/2) < ¢ < (A/2) (13)

_0
al
=0 for (A/2) < |p| =,

where A is the angular opening of the slot.
A simple exercise in Fourier analysis gives the alternate form, for p=a,

_ Vo & sin (nA/2)
Ed’(a)~27m E (nA/2) " (14)

n=—o

for the whole interval —7m < ¢ <. As indicated, this representation is appropriate for a uni-
form electric field of strength Vy/(aA) within the slot. A more realistic variation [Wait, 1959]
of the electric field within the slot is given by

Vo

Ed)(a) :aﬂ,[(A/Q)z_d)z]l/z fo

r—A2<¢p<Al2, (15)

where V, is still the voltage across the slot. The corresponding Fourier representation for this
variation is readily found to be

Eu(a) =2 S Ju(na2)e-ms, (16)

n——w
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where Jo is the Bessel function of the first kind of order zero. In general, we may write

Eo(@) =52 finaj2)ems, a7

where f(x) =(sin x)/x for the uniform field assumption and f(x) = Jo(x) for the nonuniform field
in the slot. In both cases, f(x) approaches unity as nA/2 tends to zero. In this limiting case,
VU < -inw—&

90 2 € =""0(0) (18)

n=—cowc

Ey(a)=

where 8(¢) is the unit impulse function at $=0.  In what follows, the function f(An/2) is retained
in the analysis.

Using (6), along with (10), (11), and (12), it is now a straightforward matter to apply the pre-
scribed field condition at p=a. This process yields

_ Vieew f(nA/2)

Cn = 277]6«(1 H(nz)l(kea) (1 - 871) , (19)
where
= ’lz(wo/w)z H‘f’(kpa) H(,f’(k(,a)
"= ko) (hya) H (kya) BT (kea) -
Thus,
Ho—— Vitew & f(nA/2) HP(kep) o-ind
T 2mkea & (1—8,) HY(kea) 21)
and

__ Viienee = nf(nA)2) HP(kea) HP(kpp) e
P oredkea) (kya) (1—20,) H'(kea) H? (kya) :

(22)

n=—o

It the plasma were to become incompressible (i.e., cold), the parameter (kya) would approach
infinity.  For this limiting case, the pressure p— 0 and the parameter §,— 0. The resulting
expression for H, is then identical to the magnetic field of an axially slotted cylinder in a dielectric
medium of dielectric constant € and wave number k. [ Wait, 1959].

Equations (21) and (22) are exact expressions for the magnetic field and the pressure, respec-
tively, in the compressible plasma. Corresponding expressions for the electric and velocity field
components may be obtained from (5) to (8). Some simplification is achieved in the far field when
p—> . Then, the Hankel functions of arguments £ep and kyp may be approximated in the manner

H(ZJ(k ) = (2_1 l/2'11 (_ 'k )
= epP) = ﬂkep> 1" exp LKep (23)
and

4 1/2
HE (kyp) = (ﬂ ) e (k). (24)
D
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4. Application of Watson Transformation

The subsequent discussion will deal with the behavior of the function H.. In particular,
we shall develop an expansion for H. which should give some physical insight into the nature of
the diffraction phenomena associated with the rigid cylinder.

For convenience, we write

+o0
sz E h"eAimb’ (25)

where

il HP(x) finAf2)
" 277'}’ H‘,,2"(x) 1 - 871 ’

(26)

with x=kea and x, = kep.
Following the prescription of the Watson transformation [Sommerfeld, 1949; Wait, 1959],
the summation in (25) is replaced by a contour integral in the complex v plane, such that

v
eivm

—é —ivd
Hz—zifh,,e dv, (27)

Ci+C,

sin v

where the poles of the integrand are at v=n. Here, C, is a straight line, just below the real axis,
which runs from left to right; C is a straight line, just above the real axis, which runs from right
to left. It is a simple matter to verify that 27ri times the residues of the poles in (27) leads to the
summation (25). Thus, the equivalence is established, provided that C;+ C, enclosed only the
poles at v =n.

It is demonstrated below that A, has a number of complex poles which lie in the fourth quadrant
at v=v; where s indicates the number of the pole. Because of symmetry, poles also exist at
v=—rv; in the second quadrant. Furthermore, C; may be closed by an infinite semicircle in the
lower half plane of v without changing the value of the integral. Similarly, C, may be closed by
an infinite semicircle in the upper half plane. Thus, H. may now be replaced by a summation
of the residues of the poles vy and—v;. Therefore,

cos vi(m—¢)

Hz=~27T S‘E[ii sin Ve s (28)
v hv v=vg
where the summation is over the poles vg which are solutions of
(1/h,)=0. (29)

The latter pole-determining equation is exactly equivalent to the equation

where

_ Vo) HP() H2)

& xy H®'(x) H'(y)’ (31)
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where x=kea and y=Fkpa. It is immediately evident that an evaluation of (31) leads to the propa-
gation constant for the waves which “circulate” around the cylinder. Individually, they contain
the factor exp (—ivs¢) for waves traveling in the positive ¢ direction or exp (+ivsp) for waves
traveling in the negative ¢ direction. If ¢ is measured in a positive sense it is convenient to write

cos v(m— ).

=7 —iVsd)
P ie"vstGy(¢p), (32)
where
_1 + e—ins (m—@)
Gl ) =" —grr (33)

It is evident that when ¢ < 7 and provided —Im vgmr > 1, the function G; may be replaced by unity.
Under this condition, waves circulating around the cylinder are highly attenuated.

A study of (30) indicates that there are two sets of poles. The first set which we shall describe
as the electromagnetic or EM type, while the second set is called the acoustic or A type. The
EM-type modes are located where |v| is of the order of x, while the A-type modes are located where
|v| is of the order of y. Recognizing that y > x, it is evident that a different type of approximation
is to be used in the two cases. With this point in mind it is desirable to rewrite (28) in the form

Py Berle b (34)

where

Hi=—2mi ) [ - 1] exp (—ivéd), (35a)

and

Ga
[;(‘f)] exp (—ive). (35b)

He=—2mi Y

v h,

_,a
_ys

Here, the superscript e refers to the contribution from the EM-type poles at v¢, whereas the super-
script a refers to the contribution from the A-type poles at v2.

5. Pole Determinations—EM Type

For the EM-type poles, we may use the third-order approximation for the Hankel functions
such that

9 2 1/3
H(x) E#(Z) w(?) (36)
and
y 2 2/3
@ =——5(2) W, @)

where t= (v —x)(2/x)/3, w(t) is the Airy function defined by

w(t) = exp (— 2mi/3)— mt/3)PHE[(2/3)— )],
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and w'(t)=dw(t)/dt. This third-order approximation is valid when v is in the vicinity of x which
itself is to be much larger than one [Wait, 1962]. Within this same domain the Hankel function
H®(y) may be replaced by the first term of its asymptotic series. Thus, H®'(y) =—iH®(y).
Using the above approximations for the various Hankel functions, it follows without difficulty that

. - Voiew (x\"Buw(t—Y) f(rAl2)
P = (2) w(@® 1-5, (38)
where
o (@) P (%) wlt)
= <w> xy (2> w'(t)’ (59)
and

= (2/x)Bkezo, Z0=p—a.

Again, in order to simplify matters, the height zy, of the observer has been assumed to be small
compared with the radius of curvature a.

Using the third-order approximations described above, the residue series representation for
EM-type waves is found to be

/3
HEL et e "“Zw(ts Y)Ge‘d’f ke E; = qx/22/);)z(/§]’ (40)

where

(@0 ”_v;?)j(z)‘”:_- 2325(5)"“
9= L(w) xy \2) T Lazy\2 (41)

and ¢, are roots of the equation

2 /
’(t)+l ”y(g)lswmzo, (42)
and
_ [iewlV 1/2 e
== () (55) o )

The quantity H) may be identified as the field of a “delta” slot at distance a¢ on an equivalent
flat ground plane.

Equation (40), which is a fairly general result, may be simplified somewhat when ¢ is not near
7 and provided the width aA of the slot satisfies k.aA < 1.  In this case, both G¢(¢) and Av¢A/[2)
may be replaced by unity. Furthermore, under the assumption y > «x, the dimensionless factor
ge has a magnitude which is small compared with unity. Thus, the factor t;,—¢2—g.(2/x)"3 in
(40) may be replaced by ¢ to within a good approximation. Thus, the simplified version of (40)
reads

He = exp [—ixd —i(x/2) Ptsd]. (44)

2 <%)1/3 S

To determine the solution of (42), an iterative method may be adopted. For the first-order
iteration, v2 is replaced by x2? in the factor multiplying w(z). Thus, (42) may be written

w'(t) —gew(t) =0, (45a)
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where g, is given by (41). A solution of (45a) appropriate for small values of g, is written

1 1 .. .
ts=7s+— ge— 53 ¢zt terms containing high powers of g,
Ts 2(78)

where 7, are solutions of

w' (1) =0. (45b)

Values of 7. are well known from the theory of Airy functions [e.g., Fock, 1945]. Thus,

71=1.0188 exp (—im/3),
T2 =3.2482 exp (—im/3),
73=4.8201 exp (—im/3),

ete:
A higher order solution of (42) may be obtained by replacing v in (42) by x + (x/2) '/3t; where t;
is given by (45b). Then, a higher order solution T is obtained from

w'(T) — Qew(T) =0, (46)
where

Q==

® xy

i (ﬂfww @“3’

where, as usual, x=k.a and y=kpa.
Thus, the higher order approximation is

eyl 1
T.?—Ts‘*_‘rsoe 2(73)30(4" o a 6

If one wished, further iterations could be effected. However, as a practical matter, the zero-order
solution given by (45b) should be quite adequate.

In the limiting case of an incompressible (or cold) plasma where y=ky,a — =, the parameter
ge vanishes completely. The root ts; occurring in (40) is then identical to 7,. The residues series
representation then has the same form as the groundwave field for radio propagation over a spheri-
cal earth in an atmosphere of dielectric constant €[e.g., ch. V in Wait, 1962].

The preceding development indicates that the EM-type residue waves, circulating around
the rigid cylinder, are only slightly modified by the compressibility of the ambient plasma.

6. Pole Determination—A Type

We now turn our attention to the contribution from the electro-acoustic or A-type poles. As
indicated, the poles occur when v is of the order of y and since y > x, the Debye approximation
[Sommerfeld, 1949] for the Hankel function H® (x) is appropriate. Therefore, it is found that

H®) 1 1 x, , )
H(:z)('fx; = —[(v/x)z— T exp [—LP [(v/x")2—1]"2 dx ], 47

where x = k.a and x, = kep = ke(a + z).
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In view of the large magnitude of v, (47) may be further approximated to

HO(xy) k. 0
H(Vz)r-(x;) =-§8Xp [—_(X1_x):|=—7a-exp [—V%:l (48)

Within the same approximation the function 8,, defined by (31), is represented by

_ v H2(y)
== () Yoty 9

If it is assumed, provisionally, that the second order or Debye approximation is valid for H?(y),
(49) may be simplified to

L (%)>2 ; [(V/y)zl— 1

The pole condition §,=1 then leads to the simple result that

w4 -1/2 wa (02 -1/2
i (e

This corresponds to an unattenuated surface wave propagation along the rigid surface with a
propagation constant

2 -1/2
kpl1 — (wo/@)*]- ‘/20r;<1+4) :

This is precisely what one would expect for a compressible plasma medium bounded by a plane
rigid surface. The applicability of the result to a curved surface rests on the validity of the Debye
approximation for the Hankel function H'?(y). Certainly, when wj/w* <1, this situation would
be violated. Therefore, it is necessary to use a third-order type approximation for H®\(y).

Using the Airy function representations for the Hankel functions, as given by (36) and (37),
it is now found that for the A-type poles,

where

i=—y)(2/ly)1s.

The contribution from the A-type poles may now be written

Hy =~ 20(1)" 5 HG () gaiz) SHEDEE. 62)
where
o] =en(ce3
and
=y + (12, 6
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Here, #; are solutions of

w' (£) — gaw(F) =0, (55)
where

ga= (y/2) 3 (wolw)?. (56)

The root of (55) of greatest interest is the one which has a surface wave character. Since g, is
essentially real, it may be shown that [Wait, 1964c] the surface wave root of (55) is

to=Rety+ ilmi,, (57)
where
- 1 1 5
Refo~ g2 +5—+=—+ot. . .
e e o0, " 8qh " 3247 ’ (58)
and
~ 4 7 31
- ~ 992 D ]| e .
Imt, ~ 242 exp [ 3 @—1 g g ] (59)
When g, becomes greater than about three, the imaginary part of f, is negligible. Then,
to= gz, (60)
which corresponds to
Ve =y + (¥/2) 3% = y[1+ (wo/w)*/2]. (61)

Provided (wo/w)* is sufficiently small, this result agrees with (50). The height-gain function H,
for this surface wave mode is given approximately by

Ho=exp [—vi&o/a] = exp (—kpzo), (62)

which indicates the strong trapping or “clinging” effect.

When g, becomes small the attenuation, which is proportional to —Im #, is appreciable. For
example, if g, is 1.00,—Im #,=0.1551, and if ¢, is reduced to zero,—Im %, approaches 0.5094.
This corresponds to the cold plasma limit.

There are other roots of (55) which are somewhat analogous to the conventional EM poles
discussed in connection with (44). The height-gain functions for these modes are given by (53)
with s=1, 2, 3, . . . . However, it would appear that for all practical purposes, contributions
from these roots are negligible.

In (52), the function f for the A-type poles is approximately represented by

IR

fwiA[2) = flkpal[2)
__sin (kpal/2)

= W for the uniformly excited slot

IR

Jo(kpaA/2) for the nonuniformly excited slot.

Because kpa is a very large parameter, the function |f| will be somewhat less than unity unless
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al, the slot width, was made exceptionally small. This points up the difficulty in exciting the
electroacoustic-type waves by a finite source.

In the preceding discussion, it has been assumed implicitly that w?/w? < 1. Thus, the propa-
gation constants k. and k, are real. However, if w?/w?> 1, k. and k, become purely imaginary.
The analysis given in this paper is applicable to this case if the factor (1 —w3/w??? is replaced
everywhere by —i(w?/w*—1)"2. An interesting consequence is that the modes v¢ and »? have
large imaginary parts except the surface wave mode v¢ which is of the acoustic type. As seen
by (50), this particular mode does not become highly attenuated as w?/w? increases beyond unity.

7. Concluding Remarks

From the analysis given in this paper, it is evident that the finite compressibility of the plasma
will modify the characteristics of the electromagnetic field in the vicinity of the rigid cylinder. In
fact, for excitation by an axial slot of infinitesimal width, a strongly trapped surface wave is excited
which travels around the cylinder with exceptionally low attenuation, provided the plasma is a
non-dissipative medium.! However, the excitation of the surface waves is quite weak compared
with the excitation of the electromagnetic-type modes. (As seen by (40) and (52), the ratio of the
excitation factors is approximately (u/c)??® where u is the velocity of sound waves in the electron
fluid.) Nevertheless, if the field is measured within a distance k! from the surface, the field
amplitude of the surface wave may be comparable with, or even much greater than that of the
electromagnetic-type modes. Of course, in the limiting case of an incompressible (or cold)
plasma, the surface wave is no longer excited.

! This means that collisionless damping is also neglected.

I would like to express my appreciation to K. P. Spies for various comments and for his very
careful reading of the manuscript.
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