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The field of a cylindrical dipole antenna in a compressible, isotropic, lossy plasma is represented
by the field of a cylindrical current sheet immersed in the plasma. The antenna is short compared
to a free space wavelength and for this reason a triangular current distribution is assumed. A formula
for the input impedance is derived and compared with existing formulas for spherical, cylindrical
and planar geometries. In addition, the effect of contact between the plasma and a metal antenna
is estimated in the low frequency limit for the case of an antenna biased to the point of ion sheath
collapse.

1. Introduction

Electroacoustic oscillations in isotropic, uniform plasmas are characterized by the absence
of an oscillating magnetic field. A propagating electroacoustic wave (plasma wave) is longitudinal
and can exist at all frequencies above the plasma frequency if the electron gas is compressible
(i.e., has a finite temperature). Electroacoustic effects have been studied extensively and a
thorough discussion on the subject has been presented by Cohen [1961, 1962], whose work includes
a calculation of the radiation resistance of a filamentary, sinusoidal current distribution; radiation
resistance calculations have also been done by Chen [1963]. Hessel and Shmoys [1962] have
calculated the field of an infinitesimal electric dipole in an infinite medium, and Hessel, Marcuvitz,
and Shmoys [1962] have considered the problem of a magnetic current filament in free space over
a compressible plasma half-space. Hall [1963] has obtained the impedance of a parallel plate
capacitor and Fejer [1964] has carried out a similar computation for a single spherical electrode.
Wait [1964] has studied the field of a slotted sphere and also [1965] the fields of finite and infinite
cylindrical dipoles. In addition, Whale [1963], Mlodnosky and Garriott [1962], and Crawford and
Mlodnosky [1964] have estimated the electroacoustic effect on impedance when an ion sheath is
present.

The small-signal impedance of an antenna in a plasma is determined principally by three
phenomena, electroacoustic oscillations, electromagnetic oscillations and contact (or ion sheath)
effects. At present it cannot be said that any one of these is negligible. In fact, all three pheno-
mena would be closely coupled in any practical situation. Nevertheless, in the following analysis
of a dipole antenna, contact phenomena will be disregarded at first and the antenna fields will be
approximated by the fields of a given current distribution in a uniform medium. Under such
conditions the electroacoustic and electromagnetic oscillations make separate and distinct contri-
butions to the input impedance.

! This research was supported by the National Aeronautics and Space Administration under contracts NsG-395 and NsG-511 and by the Air Force Cambridge
Rest"arch Laboratories under contract AF 19(628)-3900. Some of the material in this paper was contained in a dissertation submitted in partial fulfillment of the
requirements for the Ph.D. degree, University of Illinois, Urbana, Ill., 1963.
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The approach outlined above requires a good estimate of the current distribution on the dipole.
It is assumed that the dipole is short compared to a free space electromagnetic wavelength and that
the electromagnetic oscillations alone determine the current distribution which, consequently,
is approximately triangular (zero at the ends of the dipole and maximum at the center). Further-
more, although the antennas considered here are short and thin compared to an electromagnetic
wavelength, they are generally very long and moderately thick compared to an electroacoustic
wavelength. Therefore, in order to take the thickness into account, the antenna must be repre-
sented by a cylindrical sheet of current and not by a current filament.

2. Theoretical Development

In rationalized MKS units and for e/’ time variation, Maxwell’s equations are
V XE =—jopH 1)
V X H=jweE — Nev+J )

in which J is the source current, v the electron velocity (the ions are stationary), e the electron
charge magnitude and N the average electron density in the plasma. Conservation of the number
of electrons (continuity) is expressed by

NV-;+jwn=0 (3)
in which n is the oscillating part of the electron density. The equation of motion is
ijm17=—NeE—'— Vp—Nmvv (4)

in which p is the scalar pressure, m the electron mass and v the collision frequency. The adia-
batic equation of state is

p=vkTn 5)

where k is Boltzmann’s constant and T is the electron temperature. The factor vy is the ratio of
specific heats and may be set equal to 3 for one-dimensional adiabatic compression [Spitzer,
1962]. Combining the equations of motion and state gives

joUNmv=—NeE — mV*Vn (6)

in which U=1—jZ, Z=£, and sz%'. The quantities E and v may be eliminated from (2),

(3), and (6) to yield the differential equation for n,

Ne T
2 — 2 —_—— .
(Ve jweoszv J (7)
2(X —
inwhicha2=LVlU), =%§’andw§,=lrx—zz-

At this point it is convenient to separate £ and v into electromagnetic and plasma (electro-
acoustic) components, designated by the subscripts e and p, respectively [Cohen, 1961]. Thus (6)
can be written as two equations:

joUNmv, =— NeE, )
ijNrm;:—NeEp—szVn. 9)
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The differential equations now may be separated into two groups. The electromagnetic group is
V X Ee=—jopoH (10)
V x H = jweKoEe+ ] (11)
and the electroacoustic group consists of (7) and

= _, I”
vp -—ijn

e 2] —
Ep: mV: (]. K())

(12)

NeK, V" (13)

in which Kg=1—XU-'. Combining (7) and (13) gives the differential equation for the electro-
acoustic part of the electric field strength:

_ 1—K, _
2 — o2)E, = .
(V2—?)E, jweoKovv J. (14)

In order to evaluate the electroacoustic contribution to the impedance of a dipole it is neces-
sary to select an appropriate current density function J, find the component of E, parallel to J
by solving (14) and evaluate the impedance using the Poynting theorem. If J is taken to be in
the z-direction and if E. is the z component of E,, then (14) becomes

For the case of unit input current, the current density is given by

_8(r—=p)
Jz 27Tp J(z) (16)

where p is the dipole radius, r is the cylindrical radial coordinate and J(z) is the triangular func-

tion shown in figure 1.
Equation (15) will be solved using the transform pair

f(‘)’a k) = J‘f f:f(r, z)e‘j"z./o('yr)rdrdz (1 7)

1 (= (%7
P = [ |7 For bemesyrvaya a8

FIGURE 1. The assumed longitudinal current distribution
function.
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The transformed current density is

Je= g (e 4 =2) Joop) (19)

in which Jo(yp) is the Bessel function of the first kind. The electric field can be expressed as

_ Kol r jw eH 4 gkl — 2

Ez—m %2 ]o(yp)Jo(yr) ydydk.

Lo Eryira -
In order to simplify the calculations, the impedance of a monopole of height L over a ground plane
will be computed and the dipole impedance will be obtained by doubling the monopole impedance.
Thus the field calculations may be limited to the range 0 <z < L. Furthermore, for impedance
calculations only the field at r=p is needed. If, in addition, Vy*+ «? is taken to have a positive
real part then integration of (20) with respect to £ gives

Ko =1l ® @—(L=2)V W +a2 dL e—(L+z)\/y2+a2 — 26—2\/72+a2 j2
== (yp)ydy. 21
Jwdame KoL Jo \/m U (21)

The use of the formula

2
%(YP)=%L Jo(2yp cos 6) db (22)

and the assumption that « has a positive real part permits integration with respect to vy (it is a form
of “Sommerfeld’s integral”):

Ko—

Twkme [I(L)+I L)—21(0)] (23)

Z

where

e« V(z—L)2+(2p cos ) )2+(2p cos 6)2
f do.
Vi(z + (2p cos 6)?
Integration with respect to 6 will be delayed in order to simplify subsequent calculations.
For the case of unit input current the dipole impedance due to electroacoustic oscillations

is found by integrating the product (—J*E.) over the volume occupied by the current, a procedure
which may be deduced from the Poynting theorem. Thus

_ L _E
zp, =—2 L <1 L)Ezdz. (24)

Under the assumption that L?> p?, integration with respect to z gives

K—1 2
jw7T€0KOL v

2
f [K()(Zap COS 0) - 2E1((XL) r E1(2QL)
0

=
m

1

— —al — p,—2aL —2ap cos 6 1=
+2aL {46 e 3ez2apc }] deo. (25)

In this formula the modified Bessel function of the second kind is given by

Ko(ax) = /: \/——u:{—T;‘ du (26)
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and the exponential integral is given by

Flial= f lx e: 1. (27)

Integration with respect to 0 gives

Ko—

1
p —— —_
Lh= P [lo(ap)Ko(ap) 2E (al)+ E1(2aL)

1
s el {4e““" —e 22l —3[)(2ap) + 3L0(2ap)} ] (28)

in which Iy(x) is a modified Bessel function of the first kind and Ly(x) is a modified Struve function.
In most cases of interest al is very large and ap is fairly small; under such conditions only the
first term in (28) is significant.

A complete impedance formula can be obtained by combining the first term of (28) with the
electromagnetic impedance contribution Zf,. For the case of a very short dipole, Z{, is pre-
dominantly reactive and the expression for it may be deduced readily from the free space expression
[see for instance Schelkunoff and Friis, 1952]. Thus the complete formula is

1 1L

Z”, Z +7l:,_m [/ﬂ ——1— (1 —K())I()((XP)K()((IP):l . (29)

This expression is convenient to use when o < wy. However, when w > wy, it is preferable to set

a=jB. Thus (29) becomes

L

N S P 2(
Zin= KT [1" 1+(1—Ko) 5 {Jn BpINo(Bp)+J3(Bp) }] (30)

For a lossless plasma, Z;, has a positive real part which may be associated with the radiation of
electroacoustic waves.

Similar formulas have been worked out for a lossless medium by Hall [1963] and Fejer [ 1964 ]
who used boundary-value techniques to derive impedance formulas for a single sphere and a par-
allel-plate capacitor, respectively. The following is a summary of the various formulas; note
that R is sphere radius and S and D are parallel plate area and spacing, respectively.

1 X
Sphere ZI"_JQ)47T€0(1—X)R[1_1+C¥R:| (31)
2D X tanh aD
Plates: Zm ](JJEO(I X)S' l:l_ aD :I (32)
Divole: Z, __1__[1 L 1 XIepKo )]-
RARS Lan e ST P R )

Of the three expressions only (32) has no positive real part for @ > wy. The similarity of the
formulas is most apparent if ® < wy and if the temperature approaches zero (a — «):

- y 1 [[_X
Sphere: Zi,  jwdmell —X)R [l aR] (34)
g o—_ 2D  [,_X
Plates: Zi, joedl —X)S |:1 aD] (35)
1 It X
R
Dipole: Z Soeid —X)L[ n 1 2ap] (36)
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FIGURE 2. Impedance calculations for N=10* el./cm.’ FIGURE 3. Impedance calculations for N=10° el.[cm.?

3. Discussion of Results

Equation (36) is helpful in estimating the magnitude of electroacoustic effects; for instance,
if X is set equal to 2, a value of (ap)~! of the order of unity clearly indicates an appreciable effect.
V. F\

—1l=—_= ==
(ap) P at X=2. (37)

Representative parameters in the ionosphere are 7=300°K, A=300 mand p=1cm. Under these
conditions, (ap)~!=1.86 and thus strong electroacoustic effects may be anticipated. In labora-
tory plasmas [see, for instance, Balmain, 1964] representative parameters are T =300 °K, A =30
cm, and p=1mm. Under these conditions, (ap)~!=10.0186 and thus electroacoustic effects are
negligible according to the theory developed so far.

Computations were carried out for a dipole with dimensions p=>5 mm. and L=>5 m. and the
results are shown in figures 2 and 3. In the computations v=0 and N and T are representative
of the ionosphere. Figure 2 shows a low frequency resonance at X = 2 (all the curves would indi-
cate a resonance . if the X axis were extended far enough). Such a resonance has been noticed
by Fejer [1963] and is contained in the formula derived by Hall [1963]. Inspection of (31) to (36)
reveals that the resonant frequency depends on the size and shape of the antenna.

The radiation of electromagnetic waves has not been included in the discussion so far but its
effect can be estimated by the use of the familiar formula for the radiation resistance of a short
dipole [Jordan, 1950, for instance]. Upon insertion of the relative permittivity of a lossless plasma,
the radiation resistance formula becomes

80w L2VI—X
e (38)

in which X is the free space wavelength..' With suitable normalization (38) is plotted on figure 3
where it can be compared directly with the function G. The effect of electromagnetic radiation
is appreciable only for small X in figure 3 and is entirely negligible in figure 2.

It is worthwhile to compare the electroacoustic radiation resistance as given by (30) with the
resistances calculated by other authors for filamentary source currents. Cohen [1962], Chen [1963]
and Wait [1965] all have carried out such calculations, and in all three cases the electroacoustic
radiation resistance approaches a finite value as the electron temperature approaches zero. This
behavior is entirely the result of having considered a source current of infinitesimal radius rather
than one of finite radius. Equation (30) indicates that, for a dipole of finite radius, the entire electro-
acoustic part of the input impedance approaches zero as the electron temperature approaches
zero. For finite temperature and vanishingly small radius, however, the electroacoustic radiation
resistance in (30) is identical to that derived by Wait [1965] for a filamentary source current.
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The computations shown in figures 2 and 3 indicate that the input reactance is very strongly
affected by the compressibility of the plasma. This theoretical result is ample cause for a re-
examination of the assumptions made at the beginning of the analysis. The assumption of a
triangular current distribution is particularly suspect since it implies that the electroacoustic
oscillations do not affect the current distribution. Without electroacoustic effects, the triangular
current assumption is justified provided that the antenna is short compared to a wavelength under
propagating conditions and short compared to the penetration length under cutoff conditions.
However, the strong electroacoustic effect in the impedance suggests that there may be an equally
strong electroacoustic effect in the current distribution. Such a conclusion has also been reached
by Wait [1965] following his analysis of an infinitely long dipole.

Also open to question is the assumption that the antenna can be represented by a current
sheet in a uniform medium. This is the approach used in the “induced EMF”’ method of impedance
calculation, and such an approach to a certain extent neglects the physical presence of the antenna
surface; consequently a high order of accuracy cannot be expected in the reactance calculations.
Furthermore, the equation of continuity shows that the antenna model is one in which the electrons
in the medium are not taken into the metal surface to become part of the antenna current. In
this respect the model is similar to the one used by many authors who employ the rigid boundary
condition [Fejer, 1964, and Hall, 1963 for instance]. It is evident that a better plasma-metal
boundary condition must be found before full confidence can be placed in any impedance calculation.

4. Contact Effects

Any antenna immersed in a plasma is surrounded by an ion sheath and consequently the
electron density is highly nonuniform within a few Debye lengths from the surface. If a uniform-
medium impedance theory is to be compared with experiment, the sheath must be collapsed by
giving the probe a positive d-c bias with respect to some large reference electrode. Although
sheath collapse ideally results in a uniform electron density adjacent to the antenna surface,
it also introduces an appreciable steady flow of electron current. If the plasma is compressible
the application of an RF signal causes a density modulation and consequently an RF current in
the stream of electrons flowing to the antenna surface.

The impedance contribution due to this effect may be computed very easily in the low fre-
quency limit. When =0 and »=0, (6) becomes

—NeE=mV*V n. (39)
fE=—V y where  is a scalar potential, integration of (39) between two plates of a capacitor gives
Ne( — p2) = mV*(ny — na). (40)

For a symmetrical geometry it is possible to set Yr=—1; and n.=—n; from which
Nellll = m'V2n1. (41)

The oscillating current to an electrode with area 4 may be expressed as

kT
I=Anse p— (42)

Thus the input resistance for a cylindrical dipole is given by

R. =%=2y\/27rmk7 __ %y [mKT
HELE ANe? pLNe* N 27~

(43)
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Rin would constitute the total input impedance in the limit as frequency approaches zero and at
higher frequencies one would expect to find a shunt resistance similar to R;,. The influence of the
high frequency resistance is difficult to predict but, since Ry < N1, little contact effect would be
expected at low electron densities (say 10* el/cm?).

Under isothermal conditions y is equal to unity and thus (43) reduces to the resistance dis-
cussed by Mlodnosky and Garriott [1962] whose formula is derived by taking the slope of the Lang-
muir probe voltage-current characteristic. Thus one might expect a transition from adiabatic to
isothermal behavior as frequency is lowered; calculations by Pavkovich [1964] suggest that there
is such a transition but that it is very gradual as frequency changes from wy to zero. It should be
noted that the isothermal resistance has been used by Balmain [1964] to account for high apparent
losses in laboratory impedance probe experiments. Evidently, contact effects are appreciable
even in laboratory plasmas, and furthermore these effects are closely related to electroacoustic
oscillations.
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