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The problem of propagation of plane electromagnetic waves polarized in the plane of incidence in
a plane-stratified isotropic plasma (regarded as a dielectric) is dealt with by reducing it to the solution
of an ordinary differential equation which is singular at the level of plasma resonance. The absorption
of power in the resonant layer is calculated approximately in two cases involving a linear profile. In
the first the relative dielectric constant varies linearly in a thin transition layer between two homoge-
neous regions. In the second, the dielectric constant is linearly varying over a large interval.

1. Introduction

The problem of the reflection of a plane electromagnetic wave from a plane stratified plasma
presents considerably more difficulty in the “vertical” polarization case (i.e., in the case of electric
field in the plane of incidence) than in the “horizontally” polarized case [Budden, 1961]. In the
latter, the ordinary differential equation which one obtains after eliminating the variables trans-
verse to the stratification gradient exhibits a turning point at some level of the stratification, while
in the former case, in addition to the turning point, the differential equation has a singularity. This
singularity occurs at the stratum of plasma resonance.

We will assume that the plasma is an isotropic dielectric medium, with the dielectric constant
related to the electron density N(z) by the well-known formula

€ = €1 — Ne*/meyw?), (1)

where e and m are the charge and mass of the electron, and with permeability equal to that of free
space. We assume further that a time harmonic wave (with time dependence €“!) propagates in
the medium. The physical inconsistencies arising from power loss at the level where e=0 in a
lossless medium are resolved by appealing to the infinite duration of the transient process [Ginz-
burg, 1961], to nonlinearities which must occur when the fields become large [Budden, 1961],
to coupling to plasma waves [Denisov, 1957], or to the impropriety of the dielectric model for the
plasma, or they are avoided by considering a lossy plasma [Wait and Walters, 1963]. We will
not concern ourselves here with these explanations. We shall merely obtain an approximate solu-
tion of the differential equation for a linearly varying electron density. The results will then be
compared o those obtained previously by numerical methods [Budden, 1961].

! Taken from the dissertation submitted by Peter Hirsch to the Faculty of the Brooklyn Polytechnic Institute in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, 1964.
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2. Linear Profile

In a plane stratified dielectric medium (see fig. 1), a plane wave incident in the xz-plane,
polarized in the plane of incidence constitutes an E-mode with H,, E,, and E. as the only non-
vanishing field components. After separating the field dependence on the x coordinate through
the factor exp(—jk,x), we obtain the ordinary differential equation satisfied by H:

d’H _ de/dz ﬁ+
dz? € dz

(w?pe— kf,.)H =0 2)

where the subscript y was omitted from the magnetic field H since the other components are zero,
and € and p denote the dielectric constant and permeability of the stratified medium. We see that
the differential equation is singular at the zeros of €.

We shall consider in this paper two special cases, both characterized by a linearly varying
dielectric constant. First we shall consider a transition from a region of constant negative di-
electric constant to free space, assuming that the transition layer is thin. Second, we shall ex-
amine the relationship between the asymptotic forms of the solution of the problem of an infinite,
linearly stratified medium on the two sides of the zero of the dielectric constant. Although the
latter problem has no physical significance per se, it yields the connection formula necessary for
the asymptotic solution of the problem of propagation in a medium whose stratification is both more
complicated and more realistic.

If we introduce a linearly varying dielectric constant

Z:_F’ (3)

where € is the dielectric constant of free space, ky the free space wave number and 8 is the slope
parameter, and then transform the independent variable

x=258"13kz, (4)

the differential equation (2) takes the form

d’H 1 dH _
o x dT_(x+B)H_O’ (5)

where
B = 823(k [ ko)2.

The differential equation is singular at the origin. When B =0, this singularity is only superficial.
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In this case the direction of incidence is parallel to the stratification gradient, and the solutions of
the differential equation are derivatives of the Airy functions [Budden, 1961]. We can express
the general solution of (5) in terms of power series [Forsterling, 1949]

H:y[yvl(x) A vg(x)] (6)
where
vl(x)zz Q"2 o
0
ap=1 ;=0 _B _ o3t Bans
(] 9 1 ) Gy = 3 (679 —n(n+ 2)
zx—2v1x nx 2,an ®)

_ BBnAZ +Bn—3 — B(n — Dotn2
n(n—2)

,80:1’ BIZBZZO, ,871

If we choose to normalize our solution in such a way that H(0)=1, as is convenient in this
problem, we simply set y=1 and retain yy as the arbitrary constant to be determined from the
boundary conditions of the problem.

To make use of this solution in a physical problem we must resolve the question of the proper
sheet of the logarithmic function; this can be done by considering the medium to have small losses,
or by requiring the singularity to be a power sink rather than a power source.

3. The Thin, Rapidly Varying Layer

If the linearly stratified layer occurs as a transition between two homogeneous regions (cf.
fig. 2) of relative dielectric constants 1 and —e;, we can solve the reflection problem by making
use of the power series (7) and (8) directly. In order that the series converge rapidly, we shall
assume that the layer is thin; i.e., that the values of the dimensionless variable x at both boundaries
of the layer be small compared to unity in magnitude.

Recognizing that in region IIl the wave is exponentially decaying, we apply, at x3 = §*/3¢; the
boundary condition

dH/de-(\/e;;b‘Z/:*-FB) H. 9)

FIGURE 2. The thin, rapidly varying layer. I
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Applying this boundary condition permits us to evaluate vy in the normalized general solution (6)

~ V €3k(2)+k‘2l. [1_ V E3kg+ki. €3
Y 26361/3ko 2k0

o+ 0(82)] (10)

where only the linear term in 8 was retained in the bracket since the present discussion applies
to the thin, rapid transition only. By matching boundary conditions at x;, we obtain the reflection
coefficient in region I, I', again to first order in &

=& VE—E+j Vel + [1 _ 526 V(K= B2)eski +12) (Q+P)

+0$]
& Vi —ki+j Vekd+ k2 €Ak — K2)+ eah3 + 2 (%) (11)

_ mesk/k3
R ey (11a)

Q . 53\/ €;+k§./k§

2
P=§;an 8—% 5 (1+€2). (11b)

The power absorption coefficient is the quantity of physical interest here; we obtain

_Amd(k2/k)es VI—K2RE
(1— k2/k2) +es + K2/ K2

e (12)

One can obtain this result most conveniently by considering the energy transport associated with
the wave propagated in the inhomogeneous medium. The dependence of this fractional power loss
(divided by the factor 47r8€3), on angle of incidence is shown on figure 3. Since 8¢3 remains con-
stant if the transition layer thickness remains constant, these curves represent the dependence
of loss on angle of incidence and plasma density for a fixed transition layer thickness. We see
that maximum absorption occurs at an angle of incidence of about 60° and €3 =~ 1.7.

4. Connection Across the Singular Point

To obtain connection formulas for asymptotic forms of the solution of (5) we resort to Langer’s
method [Langer, 1949]. In order to eliminate the first derivative term, we transform the depend-
ent variable

U(x) =x""2H(x) (13)
so that

d?U/dx?>—[x+ B+ 3/(4x?)|U=0. (14)
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The comparison equation must have identical singular and constant terms and an appropriate
monotonic term in the coefficient of U. The equation which will be used here has a quadratic
rather than linear term. This has the consequence that, in order to accomplish the change of
sign of that term at the origin, we must employ different comparison equations for x > 0 and x < 0.
The procedure to be followed is thus going to be slightly more complicated than the usual phase
integral method. In the first step, we derive the approximate behavior of the solution at x=0
from the boundary condition at x——>+%. Normally we would, say, evaluate the logarithmic
derivative (or impedance) at x=0; in the present case this is zero for all solutions of the differen-
tial equation. As was mentioned above the information needed in our case is the value of the
coefficient y. Once the value of y is obtained, we make use of it as a boundary condition at the
origin to obtain the asymptotic solution for x—> — oo,

In the region 0 < x <, we will obtain an approximation to U in terms of the solution of the
equation

d*V . |d€*—[aé?*+ B+ 3/(4€3)V,.=0. (15)

The relationship between & and x is the usual one in phase integral procedures:

j A FBF 3R di' = f Na@E LB IAE) de (16)
0 0

which, for small x, reduces to
28P
(x)=x [1 +§ s ar 0(x4)]~ (16a)

The solution of (15) which decays exponentially as é&—— = is related to the Whittaker function
[Buchholz, 1953]W\. . by

Vi=Ci& W -5 1 (Va8
Wa 2
(17)

One can verify readily that (16) and (17) define a function which has the same asymptotic character
for large positive x as U, has the same behavior at the origin, and satisfies a differential equation
which differs in the coefficient of the term in U by a function which is everywhere small compared to
unity [Langer, 1949]. The parameter « has been left undetermined, so far. Let us compare the
series expansions for the exact solution of (5) and the approximation in terms of Whittaker func-
tions. We have

H(x)=H(0) l+g x% In x +yx% + 0(x?) (18)
and
ht(x)= SC [l B 2% In x+y(B)x?+ 0(963)] (19)
I'(1+B/4 Va) 2
where
B 5 1
V(B)=; [¢(1B/4 V@) +2Ce—5+5 In a] —2—\/‘;, (20)

' is the Gamma function, ¥ its logarithmic derivative, and C. Eulers constant.
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FIGURE 4. Three approximations to y(B). FIGURE 5. Plot of B(B).

The constant vy in the exact solution is a function of B. If we regard « in (20) as a constant
and evaluate it so that y,(0) is exact then it turns out that y.(B) is a good approximation to y(B)
for all values of B. We obtain y.(0) (in terms of Airy functions) from the known solution of the
normal incidence problem [Budden, 1961]. Figure 4 shows a comparison between the function
v+(B) thus obtained and another approximation in terms of Hankel functions used by Denisov
[1957]. The zero order approximation is yo; the first order approximation, obtained by converting
the differential equation into an integral equation and iterating once, is y;. We see that for large
values of B, v,, y1, and y; are nearly identical. The agreement between y; and y, is good for all
B except at B=0, where vy; is known to be in error and vy, is exact.

Having calculated y, we can now determine the asymptotic form of the solution for x — — oo,
In this case the comparison equation is

d2V,/dn2—-<—Bn2+B+4inz> V_=o. @1)

The transformation of variables is again obtained by equating the phase integrals

foy V—y' +B+3/[4y)2] dy' = f "B )+ B+3/[4m )] &y’ (22)

where
=

Here the constant B is determined, and not arbitrary as in the preceding case, by the requirement
that (22) must map the turning point of (14) into the turning point of (21). Thus, if ¥y and 7o are
the zeros of the radicands in (22), 8 is determined by

Joyo —y+B+3/(4y?) dy= Lm —Bn*tB+3/(4m?) dn. (23)

Thus B is a function of B. The solution of (23) is shown in figure 5.
The function U(x) is now approximated for x < 0 by

V_()=Con2W -, 1(—jVB m2) + Can~2W 18 1(GVB 1) (24)
4VB 2 4VB 2

where 7 is given by (22). The magnitude of the reflection coefficient is simply the magnitude of
the ratio C3/C,. This is determined by expanding the approximation (24) in a power series, nor-
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FIGURE 6. Power reflection coefficient from a linearly
stratified plasma.
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malizing it to unity at x =0, and equating the coefhicient of the x> term to y.(B). The result is

s
IT)=|&|=|—2— 25
C. B, 26}

L e

where vy is given by (20) and y_ is defined as follows:

B jB 5 .7 1 VB

B)== [ (1+—>+2C,)——— Lon ]+—~
i VB B {2e)
The magnitude of the reflection coefficient thus calculated is shown in figure 6, in comparison with
results obtained by Budden [1963]2 by numerical integration of the differential equation. The

agreement between the two curves is good.

2 Private communication (unpublished numerical data).

We are indebted to L. B. Felsen for valuable critique and stimulating discussion. The research
which forms the basis of this paper was sponsored by the Air Force Office of Scientific Research
of the Office of Aerospace Research, under Contract No. AF—49(638)—1402.
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