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A Pegas us computer has been programmed to give the absorption coefficients and virtual heights 
a t ve rtical incide nce for the main magneto-ionic compone nts re fl ected from a s tratified ionosphere. 
using the phase integral method. Typical absorpt ion and virtual height curves are given for daytime 
ionospheri c models. For high geomagnetic latitudes the Z-trace is shown to be one of the two least 
a ttenuated traces for daytime E-layer reflections at freque ncies both above and below the gyrofre· 
quency. and it is shown that under certain c ircums tances the Z-trace may appear at a lower virtual 
height than the O-trace. The limitations of the usual ray me thod which uses the group refractive index 
for de termining virtual height s are discussed. and it is s hown that a s imple correction te rm may be 
added to the ray theory calcul a ti on of virtual heights to make it agree with the phase integral 
de termina tion . 

1. Introduction 

The reflecting properties of the ionosph ere have 
been calculated numerically by two main techniques. 
The most accurate is probably the 'full-wave' method 
in which the first order equations derived from Max­
well's equations and the ionospheric co nstitutive 
relations are solved by a step-by-step integration . 
The method, described by Budden [1955], Barron and 
Budde n [1959] and others, obtains the solutions in 
terms of the electri c and magne tic wavefi elds in per­
pendicular directions. A recent variant of thi s tech­
nique given by Pitteway [1964] considerably simplifi es 
the integration procedure by obtaining solutions in 
terms of two independe nt solutions of the wave equa­
tion which are not coupled and which in many impor­
tant cases are similar to the charac teri s tic magneto­
ionic modes. The full-wave me thod is suited 
particularly to low-frequency analysis, whereas at 
higher fr eque ncies the large number of steps required 
makes the integration prohibitively long. The results 
obtained by the full wave technique are not readily 
applicable to the propagation of pulses, especially to 
the calculation of virtual heights, since the perpen­
dicular components in the Budden method, or the non­
coupled modes in the Pitteway method, must first be 
'unravelled' and reconstituted into characteristic 
magneto-ionic modes in order to permit the differen­
tiation of phase with respect to frequency which yields 
the virtual heights of the 0- and X-traces. The diffi­
culty is enhanced whe n two modes having the same 
polarization, e .g., the 0 and Z modes, exist 
simultaneously. 

The second important technique, the phase integral 
method, has been described by Budde n [1961], 
Cooper [1961], and others. It involves integrating 
the complex refractive index n, from ground level 
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usually, up to the " height" (usually a complex quan­
tity) where n becomes zero; i.e., up to one of the 
reflection branc h points of the complex refractive 
index. There will generally be two or three suc h 
reflec tion points , depe nding on whe ther the frequency 
is below or above the gyrofrequency. In addition 
there will be a coupling branch point at a complex 
height where the refractive indices for the character­
istic magne to-ionic mod es become equal. A contour 
of integration whic h encompasses the coupling point 
(in the sense that the coupling point lies between the 
contour and the real axi s) will represent a coupling 
transition from one characteris tic mode of polariza­
tion to another. No t all paths of integration connec t­
ing the reflection points to ground are physically 
significant [Budden, 1961]. In general there will 
be four di s tinct contours of integration associated 
with modes of refl ec tion which will give independent 
traces on an ionogram - provided the absorption losses 
are not too high. The virtual height of reflection is 
deduced by evaluating the real part of Jndz over these 
integration paths for two adjacent freque ncies, and 
the imaginary part of Jndz gives the overall absorption. 
The solutions thus give the type of information which 
is directly comparable with the results of pulse re­
flection experiments and may be used to compare 
the properties of theoretical models of the ionosphere 
with those actually observed. 

2. Theoretical Considerations 

2.1. Appleton-Hartree Formula and the Branch 
Points 

The complex refractive index n is given by the 
Appleton-Hartree formula, which is used in the form 

n 2 = 1- X(l-X-iZ) . 2(} (2.1) 

(l -iZ) (l-X -iZ) - f2 sJn2 ± VF 
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where 

F y4 sin4 
() +}'2 cos2 () (1 _ X - iZ) 2 4 . (2.2) 

The symbols are the usual magneto·ionic parameters 

Ne2 • • l' d ' d 
(2 f) 2ID ratlOnalZe UnIts , e an 

Eom 7T 
X 

m being the electronic charge and mass respectively, 
I the wave frequency, Eo the electric permittivity of 

free space, and 
N the number of electrons per unit volume. 

Y =lfI = JeJB where Ifl is the gyrofrequency and B 
I m 
is the induction of the earth's magnetic field. 

Z =~ where v is the electronic collision frequency . 
27TI 

() is the inclination of the earth's magnetic field to 
the vertical. 

In formula (2.1) the square root of the complex quan· 
tity F is chosen using the co mputer' s complex square 
root subroutine, so that the real part is always posi­
tive . When the plus sign is used, the wave will be 
called ordinary, and the minus sign will correspond 
to the extraordinary wave. The quantity F, (2.2) 
may be rewritte n in the form 

F = }'2 cos2 () [(Z~ _Z2) + (X -1)2 
+2iZ(X-I)] (2.3) 

where Z c 
y sin2 () 
2 cos () 

Considering an upgoing wave in the ionosphere, 
initially it will be at a level where X < 1, so that the 
quantity F, (2.3), will have a negative imaginary com­
ponent and will be in the third or fourth quadrant ?f 
the complex plane. At X = 1, F crosses the real aXIS 
and has the sign of (Z~ - Z2) . Thus if Z c > Z at X = 1 
then VF changes continuously through X = 1, and so 
too does the complex refractive index n; but if Zc < Z 
at X = 1 then VF jumps discontinuously from the 
negative imaginary to posi tive imaginary. axis and c?n­
tinuity of the refractive index n reqUlres reversmg 
the upper and lower signs as we cross the X = 1 level. 
Thus an 'initial ordinary' becomes extraordinary, and 
vice versa. 

The complex refractive index n becomes zero when 

X=I-iZ (2.4) 

for the ordinary wave and 

X=I±Y-iZ (2 .5) 

for the extraordinary wave. These reflection points, 
labelled RO, RX +, and RX - respectively occur at com­
plex heights which are usually well within a wave­
length of the real axis. 

The ordinary and extraordinary refractive indices 
(and polarizations) become equal at the coupling point 

C, at a complex height where 2 

X=I+i(Zc- Z ). (2.6) 

The four points RO, RX +, RX -, and C are, in general, 
the four branch points of the complex refractive index 
surface. 

In order to locate the bran ch points in the complex 
plane , it is necessary that X and Z be known analytic 
functions of z = x + iy, the complex he ight. If an 
arbitrary ionospheric model or ' profile' is used, e.g., 
if X a nd Z are experimentally derived functions of the 
height z, then in order to locate the branch points in 
the complex plane it is necessary in each case to 
approximate the X and Z variations at real heights in 
the neighborhood of these points by analytic functions, 
and then by substitution to solve (2.4) to (2.6) for com­
plex z. In general the branch point closes t to the 
real axis is the one chosen. 

2.2. Location of the Branch Points for Exponential 
Variation of X and Z 

In the present investigation it has been assumed that 
log X and log Z vary linearly in the neighborhood of 
the branc h points, so that 

X =Xo eaz 

Z = Zo e- bz 

(2.7) 

(2.8) 

where Xo and Zo are the values at X = 1 or X = 1 ± Y, 
and the constants a and b are determined by meas uring 
the slopes of the log X and log Z profiles, or of the 
chords across one or several tabular intervals near 
these points. 

Substituting (2.7) and (2.8) into (2.4) and (2 .5) it is 
found that the coordinates (XR, YR) of the reflection 
points , measured from the X = 1 or X = 1 ± Y levels, 
are given by 

11 [ cos bYR ] XR- - og 
- a cos (a + b)YR 

=.!. log [Zo cos(~+ b)YR] . (2.9) 
b -Xo sm aYR 

Here YR is necessarily negative and only such values 
of YR are accepted for which the arguments of the sin 
and cos terms are less than 7T/2. Inspection of (2.9) 
shows that if a a nd b are positive, i.e., if the X profile 
increases and the Z profile decreases with height, then 
XR > 0, i. e., the reflection points will lie at slightly 
greater heights than the X = 1 or X = 1 ± Y levels. 
For a positive and b negative as in the F region where 
electron-ion collisions predominate and consequently 
Z increases with height, x will often be negative . 

2 A second coupling point at 

X = l - iZc - iZ 

whic h would be located far the r away from the real ax is, and would hence be less significant 
phys ically , has bee n ignored . 
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Substitution of (2.7) and (2 .8) into (2.6) yields the 
coordinates (xc, Yc) of the coupling point, measured 
from the X = 1 level, as given by 

Xc =! log [cos byc - Z c sin bYe ] 
a cos (a + b)yc 

=! log[ Zo cos(a+ ~)ye ]. 
b Z e cos aYe - sm ayc 

(2.10) 

Whe n Zc > Z at X = 1, the case of most general interes t 
at high frequencies, the positive value of Yc is chosen, 
and for Z c < Z at X = 1, the negative value of Ye· 
In general Xc may be pos itive or negative and Xc may be 
greater or less than XRO, i. e., the coupling point C 
may be either above or below the ordinary wave re­
flection point RO. 

Equations (2.9) and (2. 10) may be solved numerically 
on a computer. Equating the express ions involving 
y only, allows y to be found by means of a s uitable 
zero searc h proced ure, and X is the n give n explicitl y 
as a function of y. 

2.3. Phase Integral Calculation of Absorption 
and Virtual Height 

Having located the main branc h points , zo, the com­
plex refrac tive index must now be integrated from the 
starting level, us ually the ground , along suitable con­
tours up to these points and bac k again. The complex 
refl ection coeffi cie nt , measured at the ground , is give n 
by 

exp [2;il (et - 2 (0 ndz)] 

and the total absorption A suffered by the wave is 
(in nepers) 

(2 .11) 

Representing a pulse or wave packe t at the ground, 
by an ex pression of the type 

f [47Ti (let [ZO ) ] 
B(f) exp ~ 2:-1 }0 ndz dl 

we see that the phase at the ground will be stationary 
with respec t to I at a time t = T given by 

(2.12) 

yielding the virtual height of refl ection, hi. 
When X and Z are known analytic functions of z 

it is frequently convenient to choose as contours of 
integration s traight lines in the complex plane joining 
the origin to Zo [Cooper, 1961]. But when X and Z are 
arbitrary tabulated functions of z it is necessary to 
perform the integration mainly along the real axis. 

A convenient path is along the real axis to Xo =M (zo) 
and then parallel to the imaginary axis to Zo = Xo + iyo, 
X and Z having the assumed variation in this region 
given by (2.7) and (2.8). This particular choice of 
contours has the advantage of allowing a direct com­
parison with simple ray theory. 

Broadly s peaking, the real axis integration (excluding 
possibly the last wavele ngth of contour path in the 
reflection region) represents the W.K.B. solution of the 
propagation equations. The 'co mplex plane integra­
tion' from the real axis down to the branc h point 
Zo, together with perhaps the las t wavelength of contour 
path on the real axis, serves as a 'connec tion formula' 
linking the ' upgoi ng' to the 'downgoing' W.K.B. 
solutions on the real axis. This co nnec tion formula 
represents the asymptotic approximation to the Airy 
integral solution of the propagation equations near the 
branch point where the W.K.B. solutions break down 
[Budde n, 1961]. The 'co mplex plane integration' 
is thus a mathe matical procedure for calculating the 
absorption loss and phase change spec ific to the re­
flection (or coupling) process where the W.K.B. 
approximations are invalid . 

The four main integration paths are shown sche­
matically in fi gure 1. There are two paths correspond­
ing to th e extraordinary waves (X waves) reflected 
at RX + and RX -, respectively, whic h are important 
above and below the gyrofrequency, respec tive ly. 
The ordin ary wave (0 wave) is reflected at RO, and 
the path yielding the Z-trace is tha t which proceeds 
from ground to the coupling point C in the ordinary 
mode and thence to RX + as ex traordinary. We s hall 
call the wave travelin g along this pa th the Z-wave . 

Writing the complex refractive index 

n= /1- - iX (2.13) 

where /1- a nd X are the refrac tive and absorption indices 
respectively, and substituting Zo = Xo + iyo in (2.11), 
we obtain 

y 
(X= l+lZc -lZl 

C 

t 
f--------' I 
~ - -- ~-- - _I __ ~ __ ..., 

(2.14) 

t--.;.---, I 
o~--~~I~----4-----------1~---x 

r t 
1 1 

RX­
(X=I -Y-lZl 

RO 
(X = 1- lZl 

RX+ 
(X =1+Y-lZl 

F IGURE 1. Schematic representation of the four main integratIOn 
paths. 

Key: ordin ary waves; ------ - extraordinary waves. 
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Yo is of course negative and the real axis and complex 
plane absorptions are additive . The Z wave absorp­
tion may similarly be split into real axis and complex 
plane contributions. 

The virtual height calculation (2.12) is performed by 
calculating 

[ r Zo ] [r Xo r x.,+iyo ] 
.:n I Jo ndz =1 Jo f-tdx + J x o Xdy (2.15) 

for two nearly equal frequencies, thus gIVIng the 
derivative. 

3. Results for Daytime Models 

3.1. Ionospheric Models Used 
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FIGURE 3. Absorption curves for the Oslo model. 

In order to demonstrate typical results of the com- The X + trace l/ < f ,,) is off scale . 

puter programme two daytime ionospheric models 
have been chosen. In figure 2, curve A shows the 
electron density distribution in the D and E layers 
over Oslo at noon during a sunspot maximum equinox. 
This curve has been proposed by Piggott and Thrane 
[1964]. Curve B shows the variation over Slough at 
noon during a sunspot minimum equinox. The 
D-Iayer curve has been determined by Deeks [1964] 
and the E-Iayer 'nose' has been tentatively fitted to it 
by Piggott [1964, private communication]. The 
inclination of the earth's field to the vertical at Oslo 
and Slough are e = 17° and e = 22°, respectively, and 
the gyrofrequencies are If! = 1.3 Mc/s and If! = 1.28 
Mc/s, respectively. The dashed curve represents the 
mean collision frequency adopted. The two electron 
density distributions contrast cases with relatively 
dense and relatively weak D-region electron densities, 
but also differ significantly in that the slopes, dN/dh, 
are quite different for most of the reflection levels at 
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FIGURE 2. The assumed variation of electron density, N, with height 
at equinox noon. 

C urve A is for Oslo a l sunspot maximum and Cu rve B is for Slough, sunspot minimum. 
Curve C is the assumed height variation of elec tron coUision frequency II. 
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FIGURE 4. Virtual height curves for the Oslo model. 
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FIGURE 6. Virtual height curves for the Slough model. 

3.2. Variation With Frequency of Absorption and 
Virtual Heights 

Figures 3 and 4 show the absorption and virtual 
height variation for the Oslo model, and figures 5 and 
6 repeat these for the Slough model. For all values 
plotted , Z < Zc at X = 1. Below the gyrofrequency 
the Q- and Z·traces are the least attenuated, and in 
the case of the Oslo model the X + absorption does not 
appear as it is off scale for freque ncies above 0.9 Mc/s. 
For both models used, an ionogram might be expec ted 
to show only an Q·trace toge th er with a muc h fainter 
Z·trace below about 2 Mc/s, while an X·trace would 
only appear near the penetration frequency of the 
Q·trace. 

3.3. Complex Plane Contribution to the Total 
Reflection Loss 

The complex plane contribution to the total absorp· 
tion (given by the second term in (2.14)) has been cal· 
culated for all branch points. It never exceeds 
0.05 N p for the X = 1 + Y reflection in the Slough 
model and 0.015 Np in the Oslo model, and is quite 
negligible compared with the large real height absorp· 
tion in thi s mode. For Oslo the X = 1- Y absorption 
in the complex plane (expressed in nepers) is less than 
1 percent of the total for all freq uencies above 2 Mc/s , 
and for Slough it constitutes some 5 percent (0.56 Np) 
at 2 Mc/s falling off to about 3 percent (0.18 Np) at 
3 Mc/s. The Q·mode complex plane absorption 
near X=l is more significant. For Slough it constitutes 
0.48 Np out of a total of 3.37 Np at 0.8 Mc/s, falling 
off to 0.24 Np out of 4.31 at 2.8 Mc/s. The Oslo figures 
are 2.67 out of 14.56 Np at 1 Mc/s falling to 0.26 out of 
3.70 Np at 2.7 Mc/s. The main conclusion is that the 
complex plane absorption is generally significant only 
for the Q·wave and especially at the lower frequencies 
whic h are reflected in regions of higher collision 
frequen cy. 

3.4. Virtual Height of the Z-Trace 

An interesting feature of the Oslo virtual height 
curves is the appearance of the Z·trace below the 

Q·trace at the low-frequency end. This is at first 
sight surprising when analyzed in terms of simple ray 
theory, which considers the Z·mode wave packe t to 
travel up to the coupling level near X = 1 in the Q·mode 
and then to travel in the X-mode to the 1 + Y refl ec tion 
level. The firs t part of the journey might be expec ted 
to contribute a virtual height equal to that of the 
Q·trace, and the second part to add an additional virtual 
height equal to the real height difference between 
the X = 1 and X = 1 + Y levels plus any retardation in 
this section. The explanation of this anomalous result 
in the light of the phase integral analysis is given in 
section 4. 

3.5. The Z-Trace Intensity as a Function of Magnetic 
Latitude 

The effect of increasing the angle of inclination 
8 between the earth 's magnetic field and the vertical 
is to decrease sharply the amplitude of the Z·trace 
by increasing the coupling loss or, in terms of the phase 
integral, by increasing the complex plane contribution 
to the absorption integral, (2. 11). We find, for in· 
s tance, by using the Slough model di s tribution for a 
frequency of 1.1 Mc/s, and le tting the inclination 8 
take successive values , 11.50 , 17°, 22°, 300 , and 45°, 
that the complex plane contributes an absorption loss 
(for two traversals, upgoing and downgoing) of 0.04, 
1.2, 3.0, 7.1, and 19.2 Np respec tively. At 1.5 Mc/s 
the corresponding fi gures are 0.10, 2.5, 5.5, 12.9, 
and 30.0 Np respectively. 

3.6. Accuracy of the Computations 

The Q-mode absorption calc ulations for the above 
and other ionospheric models have been c hecked 
against calculations made by a phase integral pro­
gramme developed by K. G. Budden for the Cambridge 
Edsac II computer. Agreement is good in all cases . 
Slight di screpanc ies can be traced to the different 
analytic approximation made to the electron dis tri· 
bution near branch points . In our programme the 
curves are assumed to be exponential over short 
distances; in the Edsac II programme various other 
methods of curve fitting were used. This has an effect 
both on the computed location of branch points, and 
also on the interpolated values of X and Z between 
relatively widely spaced tabular intervals. The 
Edsac II programme checks against Budden's and 
against Pitteway's full wave computations. 

Virtual heights for the above and other models for 
the ordinary and extraordinary modes have been com­
pared with results given by a Mercury computer 
programme developed by E. B. Thran e in Oslo. 
Agreement is again good in all cases. 

4. Calculation of Virtual Heights by Simple 
Ray Theory and by the Phase-Integral 
Method 

4 .1. Phase-Integral Correction to Ray Theory 

In sec tion 2 it was s hown (2.12) that the virtual height 
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of reflection is given by the expression 

d [( ZoJ) ] 
h' = dl'Yt I Jo n (z) dz . (4.1) 

Since the upper limit of integration Zo is a function of 
I this may be written 

(4.2) 

where 

n'= ~(fn) (4.3) 

defining the complex group refractive index. 
Since Zo represents a reflection branch point, n(zo) 

= 0, and hence we obtain 

( Zo 

h' = 'Yt Jo n'dz. (4.4) 

Equations (4.1) and (4.4) are two equivalent phase 
integral expressions for the virtual height, but the 
method of evaluation will be different for each. 
Consider (4.4) first. Since n and hence n' are known 
analytic functions of frequency, n' may be calculated 
for all points on the integration path and then inte· 
grated to zoo This method is adopted by Cooper 
[1961]. If we compare this method with the ray theory 
formulation 

Ix o 
h'= 0 p.,'dx (4.5) 

(where p.,' =~(n') is the group refractive index) 
and ignore for a moment the fact that Xo in (4.5) is 
not quite equal to .'Yt (zo) of (4.4), we find one form of the 
phase integral correction t:.h', to the ray theory esti· 
mate. If OAIRI (fig. 7) is the integration path chosen, 
then 

t:.h' = 'Yt ( n'dz= fYO X'dy (4.6) 
JAIR I A,R, 0 

where X' is the group absorption index. The evalua· 
tion of this correction term necessitates doing a com· 
plex plane integration and is not readily evaluated 
if a phase integral computer programme is not avail· 
able. 

The alternative method of evaluating h' as adopted 
in the present investigation is based on (4.1) and gives 
a clearer insight into the cause of retardation, yielding 
also a more useful expression for the correction 10 
ray theory. The quantity 

'YtvJozo(j) n(z)dz] 

y 

xO(fI) xO(f2) 
AI A2 

-----~---~-~. x O~----------------T----r--------~ 

FIGURE 7. Contours in virtual height calculation. 

OA1R 1 represent s an integration path 10 reflection point R, for a frequency /1 and OA2R'l 
is the same for a slightly higher freque ncy /'lo 

is evaluated for two neighboring frequencies, It and 
/2, the integration paths being represented scnemat· 
ically by OAIR I and OA zR2, respectively (fig. 7). As 
II ~ /2 the virtual height is given by 

or 

h' = [f XO(fI\f2p.,(f2) - 11p.,(fI)}dx+ h Jxolf2) p.,(h)dx 
o x.(f,) 

+ {fz J x(f2)dy 
A2R2 

-II f x(fl)dy }] ((f2-/d (4.7) 
AIRI 

Now the last bracketed term in the numerator repre­
senting the difference between the complex plane 
integrations at neighboring frequencies is usually 
negligible compared with the first two terms. For 
instance for the Slough model in the entire frequency 
range considered, this contribution never exceeds 
0.2 km for the 0, X, or Z waves (unless the absorption 
IS III excess of 100 Np). Hence (4.7) in the limit reo 
duces to 

JX o dxo 
h'= p.,'dx+lp.,-· 

o dl 
(4.8) 

This equation may have been derived directly from 
(4.2) if the complex plane contribution were ignored. 
The second term on the right-hand side of (4.8) 

t:.h' = Ip., ~;o 
(4.9) 

which we shall call the 'real axis correction term' 
represents quite closely the difference between the 
phase integral and the ray method estimates of vir­
tual height. We have thus reduced the complex 
plane correction to ray theory to a term involving 
quantities on the real axis only, the real axis coordi­
nate Xo of the branch point and its frequency variation 
being all that is required. 
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4.2. Magnitude of the 'Real Axis Correction' to Ray 
Theory 

Referring to (4.9) it is seen that I1h' is zero only 
when there are no colli sions a nd J.L (xo) = 0. Its mag­
nitude will be e nhanced when dN/dh is small, i_e. , 
near a peak or in a 'ledge' of the electron density 
distribution. For the E region J.L(xo) is generally 
appreciably larger for the O-wave (i.e., near X = 1) 
than for the X waves (i.e., near X = 1 ± Y) except when 
the latter are heavily attenuated, so that the correction 
term is usually more important for the O-mode reflec­
tion . Neglect of thi s term in a true height analysis 
will cause overestimation of layer heights_ 

The term dxo/df and I1h ' have been calculated for 
a number of frequencies for the Oslo model, and values 
of I1h' for the O-mode are shown in table 1. Values 
of J.L (xo) are also given for the X = 1 and X = 1 ± Y 
r eflection points, labeled RO, RX +, and RX -, re­
spectively. The quantity t:.xR is the amount that xo 
lies beyond the X = 1 level. 

TABLE 1. Variation of the 'real axis correction term' 6.h ' with 
freqaency for the Os lo equinox noon value 

(Symbols are defin ed in the text ) 

f /"(Xo) 
tu. fl./t ' 

Mcls (O-mode) 
RX - RO RX+ 

km km 
1.0 .... ... 0.41 0.056 0.0066 7.75 
1.2 .... . .30 .053 .029 2.06 
2.0 0. 11 .20 .00J .022 0.48 
2.5 .076 .16 .030 . 001 .92 
3.0 _060 .11 .020 .007 2.65 

We observe that I1h' may be quite appreciable in 
the E layer. It is see n that Xo is usually very close to 
the ray theory reflection level X = 1 (the same is true 
for the X = 1 ± Y levels). This means that . little error 
is introduced by performing the real axis integration 
to the X = 1 and X = 1 ± Y le vels. It cUso means that 

the quantity ~; appearing in the formula for I1h' can 

be approximated by calculating the frequency varia­
tion of the X = 1 (or X = 1 ± Y) levels, which is a rela­
tively simple procedure . 

We note finally that near the peak of a noon F21ayer, 
I1h' is of the order of 5 km, but lower down it is very 
much smaller. 

4.3_ Virtual Height of the Z-Trace 

The virtual he ight" of the Z-trace may be calculated 
by similar considerations. We calculate the expression 

FIGURE 8. Integration contours for determining the virtual height 
of the Z-trace_ 

Key: --- 0 wave; ------- X wave 

for two neighboring frequencies and hence for two 
slightly differ ent integration paths (fig. 8), and then 
calculate h' as in (4.1). This yields three main terms 
as in (4.7), the first corresponding to a simple ray 
theory calculation, the second representing a ' real 
axis correction term', and th.e third representing the 
difference between two pairs of complex plane inte­
grations, which again turns out to be negligible com­
pared with the other two terms. 

The 'real axis correc tion te rm' turns out to be 

I1h' = [J.Lo(C) - J.LxC) ]f~; + J.Lx (R)f ~l (4 .10) 

where the subscripts 0 and x refer to the ordinary and 
extraordinary polarizations, and C a nd R refer to the 
coupling and RX + reflection points respectively . 

The firs t term 

is the real axis correction term corresponding to the 
coupling point integration. It is made up of two parts, 
the firs t 

being roughly equal to the usual O-wave real axis 
correction, and the second 

whose effect is to decrease the Z-trace virtual height by 
this amount with respect to the O-trace. In the Oslo 
model at 1000 kc/s where the O-trace is 11 km above 
the Z-trace, this term is equal to - 20.5 km and is 
only partially compensated by the additional integra­
tion to the RX + reflection point. 

In physical terms one might say that the fact that a 
Z-trace may appear below an O-trace expresses the 
fact that the concept of a wave packet traveling to a 
fixed point near the X = 1 level and there being either 
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reflected, or by coupling continuing to the RX + level, 
has only limited validity. For, in fact, each frequency 
component of the wave packet travels along a slightly 
different path and undergoes coupling or reflection at 
slightly different levels. This gives rise to a correction 
term in the virtual height determination which can 
produce, for instance, the appearance of a Z-trace 
below an O-trace. 

5. Z-Trace Both Above and Below the 
Gyrofrequency 

In the F-region Zc ~ Z, unless () = 0, and the com­
plex plane absorption loss for the Z-trace is usually 
very large. Using typical F-region distributions of 
electron density and collision frequency [Johnson, 
1961] values of complex plane absorption above 100 
Np are common, even for () = 17°. Hence the appear­
ance of F-Iayer Z-traces in high latitude ionograms 
cannot be interpreted by means of simple magneto­
ionic coupling in a horizontally stratified ionosphere 
as described here. Budden [1961] comes to the same 
conclusion. 

We have seen that the E-region Z-trace, which IS 
normally ignored in theoretical analyses for frequencies 
below the gyrofrequency, in fact continues smoothly 
downwards to frequencies well below the gyrofre­
quency where it becomes one of the least attenuated 
traces. For the daytime E layer when / </11 the 
Z-trace coupling region lies well below the E-layer 
peak and Z is comparable with Zc. As we proceed to 
lower frequencies the RO and C branch points appear 
at lower heights, where Z is larger, and the coupling 
point C (fig. 1) moves down until it reaches the real 
axis when Z = Zc at X = 1. For the Slough model this 
would occur at 0.25 Mc/s, and for Oslo at 0.8 Mc/s. 
At this stage the upgoing ordinary becomes an upgoing 
extraordinary, with the coupling loss having just be­
come zero. As/is decreasedfurther,Zc< Z atX=l, 
and the upgoing ordinary becomes an upgoing extraor­
dinary at X = 1 without coupling, and after reflection 
eventually reaches ground with the ordinary wave 
polarization. The 'initial 'tlrdinary' trace thus pro­
duced would hence be a continuation of the Z-trace 
and would usually be the strongest trace in this fre­
quency region. Piggott, Pitteway, and Thrane [1964] 
have indeed found in their full-wave analysis at low 
frequencies that very little reflection takes place at 
any height besides the X = 1 + Y level. A second, 
weaker trace produced by reflection at the X = 1 + Y level 
would be due to the (initial) extraordinary wave, which 
by coupling would continue past the X = 1 level as 
extraordinary, involving a di scontinuity, i.e., the phase 
intregal contour path would have to go below the 
coupling point in the negative imaginary plane [Cooper, 
1961] . 

Figures 9 and 10 are daytime ionograms taken at 
Fort Churchill (() = 6°) showing 0- and Z-traces for 
the E and F regions. At the low frequency end of 
figure 9, we see that the Z-trace is the only remaining 
trace. In figure 10 we see that for a small frequency 
range the Z-trace is unmistakably below the O-trace. 

600 

500 

E 400 
:::s 

-J:: 300 

200 

100 

f (Me/5) __ 

FIGURE 9. lonogram taken at Fort Churchill at 5:30 p.m. on 
Sept. 13, 1958. 
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At the extreme low frequency end only the Z-trace is prese nt. 
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FIGURE 10. tonogram takell at Fort Churchill at 10:01 a.m. all 
Sept. 6 , 1958. 

The Z-Irace is below the O-trace for a smaU freque ncy range. 

6. Conclusions 
The use of a phase integral computer programme to 

produce absorption and virtual height versus frequency 
curves allows direct comparison with ionograms and 
pulse absorption measurements. We have shown 
that the Z-trace, which is normally ignored in the the­
oretical analysis for frequencies below the gyrofre­
quency, continues smoothly, in fact, to frequencies 
well below the gyrofrequency, where it becomes one 
of the two least attenuated traces. 

It has been shown that the phase integral calcu­
lation of virtual heights can be approximated quite 
accurately by using the simple ray theory calculation 
together with a 'real axis correction term' only (4.9), 
requiring only the location of the branch point in the 
complex plane at two neighboring frequencies. In 
many cases this correction term can be approximated 
by calculating the simple ray theory reflection heights 
where X = 1 and X = 1 ± Y, for two neighboring fre­
quencies, together with the value of f-t at these heights. 

Finally it has been shown that the Z-trace virtual 
height calculation will include a term 

dzc 
- f-tx( C)/ d/ 
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which in some cases may be sufficient to produce a 
Z-trace at a lower virtual height than that of the 
O-trace. 

The 'real axis correction term ' is usually more sig­
nificant in the E region than in the F region, where it 
is doubtful whether it wo uld be an important factor 
in explaining the overes timation of heights in electron 
density profiles whic h has sometimes led to a crossing 
over of 'topside' and 'bo ttomside' F-region profiles. 

This communication is published by kind permis­
sion of the Director of the D.S.I.R. Radio Research 
Station. The ionograms for Fort Churchill are pub­
lished by permission of the World Data Centre for the 
ICY in Slough. The author is, indebted to Mr. W. R. 
Piggott for valuable discussions in the later stages 
of this work, and in particular for pointing out the 
existence of the E-region Z-traces for high latitude 
stations. 

(Pape r 69D4-487) 
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