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An expression is derived for the external radiation conductance of an axial slot on a cylinder using 
Parseval's theorem in mode space. The result is then applied to the specific case of a thin half-wave­
length axial slot and agrees identically with that obtained by J. R. Wait, using an integration of Poyn­
ting's vector over physical space in the radiation zone. A brief discussion of the two methods is then 
given. 

Consider an axial slot of length l and width w = acPo cut in an infinitely long, perfectly conduct­
ing cylinder as depicted in figure 1. From the work of Wait [1959], it follows that if the electric 
fields over the cylinder surface p = a are specified as 

Eq,(a, cP, z) = Eo cos (~z), on slot (
0 off slot 

(1) 

Ez(a, cP, z) = 0 (2) 

then the fields produced at any point (p, cP, z) for p;:,; a are given by eqs (342) through (347) of Wait 
[1959] with em = 0 and with dm given by 
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FIGURE 1. Axial slot on a cylinder. 
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with all symbols defined in Wait and where E<J> is the cylindrical Fourier transform of (1) defined by 

(4) 

which becomes 

(5) 

It is noted that E<J>m(h) is written for brevity as E<J> and is a function of m and h. The axial 
magnetic field produced on the cylindrical surface p = a by the specified electric fields (1) and (2) 

is then, from (345) of Wait [1959]. 

where Hzm(h), written for brevity as Hz(h), is given by 

uoHW(uoa) 
Hzm(h) == Hz= . H(2)'( ) Eq,. 

JWJLo m uoa 

(6) 

(7) 

Since the z component of electric field is assumed to be zero over the slot, the real power which 
flows through the slot into the exterior is given by 

P=~ f f Re (E!Hz)ad1Jdz (8) 

slot 

where Re means real part of and * is a conjugate operator. The external radiation conductance, 
G, is defined by [Wait, 1955] 

G=2P/~ (9) 

where Vo = Eow is the applied voltage across the center of the slot. 
To evaluate P by means of (8) requires that Hz first be obtained via (6) and then the integration 

of (8) over the slot be performed. Thus, a double operation (i.e., (6) and (8)) is required. Rather 
than perform this extra labor use is made of Parseval's theorem, which states that P can also be 
expressed as an integration of the cylindrical Fourier transforms of the pertinent fields over mode 
space, as 

(10) 

This is nothing more th~n an extension of Parseval's theorem in rectangular Fourier transforms 
[Harrington, 1961] to cylindrical Fourier transforms, and is derived in appendix A. 

Using (7) and the conjugate of (5) with (10) in (9) then gives 

{ 

' . 2 (m1Jo) 1 1 . 00 sIn -2-

G = wJLoa(kol)2 Re - } m~oo (mto ) 2 1m (11) 
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with 

(12) 

where y=hl/kol is the dimensionless dummy variable of integration and C=koa is the circumference 
of the cylinder in free space wavelengths. It must now be noted that (12) can~ot be meaningfully 
integrated prior to spe.cifying the proper roots of the quantity v'1- y2. These roots are chosen in 
accordance with the physical consideration that e-jUoP (which represents the asymptotic wave be­
havior of the Hankel functions appearing in the integrand of (12) must represent outward going, 
bounded waves. Hence, uo=+v'k02-h2 for Ihl < ko and uo=-jv'h2-k~ for Ihl > ko. Accord­
ingly, the roots 

must be chosen. 

{
+v'I- r Iyl < 1 

v'1-r= 
- j v'r - 1 Iyl > 1 

This recognition in conjunction with the identities 

Jm( -jx) =r (_1)m 1m (x) 

Ym( -jx) =j'" [-;'Km (x) -j (-I)mlm (x)] 

giving 

Hm(2) ( - jx) = j;'i'" Km(x) 

(13) 

(14) 

Hm(2)' (-jx) =-;"i"'K,:, (x) (15) 

shows that only the integration over y in the interval-l to 1 contributes to G. Use of the Wron­
skian relation Jm(X)Y;"(x) - Ym(X)J~,(x) = 2/7TX then gives 

(16) 

Expression (16) is valid for any size axial slot provided it is thin enough so that the tangential 
electric fields across it are indeed given by (1) and (2). 

. (mcf>o) 
(

sm - ) 
If one now con,;de" ,he 'pedal c",e of a my ,h;n (~) ~ I ,e,onan' hill-wavelength 

(kol=7T) slot then G becomes, after making the change of variables y=cos fJ, 
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~o (I + 80m) 1 Hm(2)' (C sin 0) 12 dO. 
(17) 

Where the relation IHm(2)'(X)1=IH-m(2)'(X) 1 has been used and 8om=I, m=O; 80m = 0, 
m # 0, is the Kronecker delta. Expression (17) is identical to that obtained by Wait [1955, eq 
(IS)] using integration over physical space of the radiation fields. A plot Of G versus C is given 
in Wait's work [1955, fig. 11; 1959, fig. 10] and shows that for C:> 10, G is within 10 percent of 
the conductant::e of the same slot cut in an infinite flat ground plane. 

In conclusion, from the above, it is seen that use of Parseval's theorem offers another method 
for determining the radiation conductance of a slot on a perfectly conducting cylinder. It has 
the advantage of not requiring a determination of the spatial variations of the fields as is required 
when using integration of Poynting's vector, since it only involves operations with the cylindrical 
transforms of the fields. Additionally, it can also be used to determine the susceptance of the slot 
by extraction of the imaginary part of the bracket in (10). This method can also be extended to 
the case of a slot on a coated cylinder. This is presently being done. 

Appendix A. Parseval's Theorem for Power Flow Through an Axial Slot 

Consider an axial slot on a metal cylinder as depicted in figure 1. If the tangential electric 
fields are given by (I) and (2), it follows that the power flowing through the slot is given by (8). 
Now since Eq, (a, cp, z) is zero off the slot, (8) can also be written as an integration over the entire 
cylindrical surface p = a, i.e., 

where in both (8) and (18) the arguments (a, cp, z) on the fields are understood. Now Hz can be 
expressed as (6) and similarly 

m'=oo E; (a, cp, z)= L 
m'=-oo 

E* (h') eih'z dh' eim'q, 
q,m' (19) 

where h' and m' are dummy variables. 
Substituting (6) and (19) into (18) gives 

(20) 

Rearranging: 

p ~ ~ Re ~.. L: ii •• (h) {f. E;., (h')' [t t ";"'-" .,;".,-., d4> m 1 dh') dh 1 (21) 

450 



and recognizing that 

J1T &<I>(m'-"') d~ = 217 om' = {217 m' = m 
- 1T mOm' # m 

f' &z(h'-h) dz = 2170(h' - h) 
- "" 

(22) 

(23) 

where 0:::' is the Kronecker delta and 0 (h' - h) is the Dirac delta function, which when substituted 
into (21) gives 

(24) 

Since the delta function has the property L"" 1(x)0 (x - xo)dx = f(xo) , the above expression becomes 

This result is a statement of Parseval's theorem in terms of the cylindrical transforms of E<I> 

and Hz. 

Acknowledgment is given to H. Hodara of NESCO for disc ussions leading to the derivation 
of (25). 
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