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Minkowski’s theory of moving media is extended hereby to the anisotropic case.

The corre-

sponding Maxwell-Minkowski equations have been derived under the condition that the velocity of

the moving medium is small compared to the velocity of light.

As an application of that theory, it

is shown that the characteristics of a plane wave propagating in a drifting magneto-ionic plasma can

conveniently be determined from the constitutive parameters of the plasma without drifting.

The

equivalence between the convection current model adopted by Bell and Helliwell and the polarization
current model suggested by Unz and correctly interpreted by Epstein, Bell, Smith, and Brice is also

pointed out.

1. Introduction

The foundation of the electrodynamics of moving
media was laid by Minkowski [1908] and based upon
the special theory of relativity. For a moving iso-
tropic medium, the complete treatment is given by
Sommerfield [1952]. When the velocity of the
moving isotropic medium is small compared to the
velocity of light, the resultant wave equations can be
greatly simplified [Tai, 1964b]. Several technical
problems arising from these wave equations have
already been investigated [Compton and Tai, 1964;
Collier and Tai, 1964; and Tai, 1964a].

In this report we shall present an extension of Min-
kowski’s theory to moving anisotropic media. The
theory is finally applied to a drifting magneto-ionic
medium to determine the normal modes of plane
waves which can exist in such a medium. The char-
acteristic equation for the index of refraction so ob-
tained by the first order relativistic transform method
is the same as the one first derived by Bell and Helli-
well [1959] using the convection current model and
later by Epstein, Bell, Smith, and Brice [1963] using
the polarization current model suggested by Unz
[1962]. The equivalence between these models can
be traced through Minkowski’s theory.

1 The research reported in this paper was supported in part by the National Aeronautics
and Space Administration under Grant NsG 444.

1.1. First-Order Relativistic Transformation of Field
Vectors

In this section, we shall first review the relativistic
transformation of the field vectors defined in Max-
well’s equations as first recognized by Einstein and
later elaborated by Minkowski. Two inertial systems
(x, v, z) and («x', ¥, z’) are in relative motion. The
primed system is assumed to be moving with a velocity
v with respect to the unprimed system. The time vari-
able in the two systems will be denoted, respectively,

by ¢t and t'. Maxwell’s equations and the equation
of continuity defined in the systems are
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If the velocity v is small compared to the velocity of
light, the first-order relativistic transformation be-
tween the two sets of field vectors, resulting from
neglecting terms of the order of (v/c)?, is given by
[Cullwick, 1957]
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J'=]—pv (11)
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If two material field vectors P and M are used, such
that one writes

D=e&E+P 14)
B=po(H+M)

and similarly for the primed quantities, then the first-
order relativistic transformation of the material field
vectors can be deduced from (7-10). They are

(15)

P'=P—5vXM
P'=P—5vX (16)
M'=M+vxP. a7

1.2. First-Order Constitution Relations Between the
Field Vectors Defined in the Unprimed System

Let us assume that constitutive relations for an
anisotropic medium in the primed system are known.
In the most general case, they are

D/ f— EI _E—/ (18)
B =u H (19)
J =g .E s (20)
where the sign "=" is used to denote a dyadic. If the
medium is dispersive, it is understood that €, @', and

o’ would be functions of the frequency defined in the
primed system, which will be denoted by @’. By sub-
stituting (7) to (11) into (18) to (20), we obtain
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By eliminating D or B from (21) and (22) and neglect-
ing terms of the order of (v/c)?, we have

D=¢ - [E+v><i - H) —EEZXE (24)
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Since V -BZp, (26) may be written in the form
J=q"" [E+u><(;u H)]+vV E). @1

Again, terms of the order of (v/c)? have been neglected
in deriving (27). Equations (24), (25), and (27) contain
the first-order constitutive relations between the field
quantities defined in the unprimed system in terms
of the constitutive parameters known or given in the
primed system. By substituting these equations into
(4) and (5), we obtain the Maxwell-Minkowski wave
equations for the field vectors £ and H in a moving
anisotropic medium which represent a formal exten-
sion of Minkowski’s theory of moving media to the
anistropic case.

2. Magneto-Ionic Theory for Drifting Plasma

In this section, we shall apply the above formulation
to derive the characteristic equation for the index of
refraction for a plane wave propagating in a drifting
magneto-ionic medium. The convection current
model will be treated first. In such a model the
plasma is assumed to consist of free electrons with
a drift velocity . The primed system is attached to
the drifting electrons and the unprimed system is
fixed to an observer. According to the well-known
theory of a stationary magneto-ionic_media, the rela-
tion between the convection current J' and a harmon-

ically oscillating. electric field E' with frequency o'
can be written in the form

r J/ =F' (28)
where the dyadic s given by
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The parameters contained in (29) are defined as follows:
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oy, = gyromagnetic frequency.

The dyadic:r' is clearly the recriprocal of o' previously
introduced in (20), i.e.,

’
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In the convection current model, the medium is con-
sidered to be unpolarized and unmagnetized, hence,
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m ||
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(31)

o' = . (32)

Equations (24), (25), and (27), therefore, reduce to

(33)
B = uoH (34)
- [j—;V . (M(E)]zf-l-;m;)(ﬁ. (35)

On account of (33) and (34), (4) and (5) become, for a
harmonically oscillating field,

V X E =—jouH (36)

V X H=]+jwekE. (37)
Equations (35)_through (37) are the three basic equa-
tions relating E, H, and J in a drifting magneto-ionic
medium. They have been derived by applying
Minkowski’s first-order relativistic transform method.

To derive the characteristic equation for the index
of refraction, let us assume a harmonically oscillating

plane wave to be propagating in the z-direction in the
unprimed system so that all the field components
have a dependence of e¢!@~%2)_  The wave number £,
the index of refraction n, the phase velocity 7}, and
the angular frequency w are related as follows:

(38)

As a result of the assumption of a plane wave propa-
gating in the z-direction, (36) and (37) can be written as

_jk2 X E_: —jw/,u,_ﬁ

(39)
—jkz X H=] + jwe k. (40)

Eliminating H between (39) and (40), we obtain
J=—jweo|(1 —n2)E + n2E.3|. (41)

Substituting the expressions for H and J as given by
(39) and (41) into (35), we obtain a homogeneous equa-
tion for £

—jwor’ ~[(1—n)E + (n2% — nB)E-]=E+nB X 3 X E)
(42)

where

B=vlc. (43)

To find the characteristic equation for n, the primed
quantities contained in 7' must first be converted into
explicit functions of n. Because of the Doppler shift,
the relationship between ' and w, accurate to the
order of v/c, is given by

o' =w(l —ﬁ v2)
w
=wl1-=20v)
C
=o(l—np-). (44)

The parameters contained in r', therefore, can be
written as:
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hence,

_ .—_,_l_nBz o Z = o ? :|
joa =72 | (1= 7205 T =

=)1—( (—nB: —jZ)I+jY. (48)

On account of (48), the explicit expression for (42) is
given by

[(1—nB:—jZ)T+;Y] - [(1— ndE + (n22 — nP)Ey]

=X[E+nB XX E)]. (49)
Equation (49) can be written in the form
A-E=0. (50)

Where the element of the dyadic 4 are found to be
Azz=(n*—1) (1 —nB,—jZ)+ (1—nB)X
Azy=—jn*—1Y,
Aze=1—nB:—jZ)nB:—jnB,Y.—j1 —nB,)Y,
Ayr=jn*— 1Y,
Ayy=n*—1)(1—np:—jZ)+(1—nB)X

—nf:—jZ)nB:+jnBY. +j(1 —nf:)Yx
Azr=—jn?—1)Y,+nB.X

Azy=jn*— 1Y, +nB,X

Az =—(1—nB2) (1 —np:—jZ) = jnBsY, +jnByYs+ X.
(51)

Ay=(1

By setting the determinant of 4 equal to zero, one
obtains the characteristic equation for n. Equation
(50) is the same as the one first obtained by Bell and
Helliwell [1959]? if we discard in their work the part
contributed by the ambient plasma. It is also identical
to the one obtained by Epstein, Bell, Smith, and Brice
[1963] after correctly interpreting the work of Unz
[1962]. The alternative derivation presented here
appears to provide a clearer view as to how the original
Appleton-Hartree matrix was transformed as a result
of the motion. It also shows another application of
Minkowski’s powerful theory. While the treatment of
Bell and Helliwell may be considered as ‘“classical”
if one accepts the Lorentz force equation as a prere-

2Bell and Helliwell considered only the case where v and H, have the same direction.
This restriction can easily be removed. They also included a stationary plasma in addition
to the drifting one. The part contributed by the stationary plasma can be included in our
treatment if necessary. There are some minor algebraic mistakes in Bell and Helliwell’s

work. For example the matrix for T, equation (12), contains a parameter p, which is
defined as k/k,Y,. that appears to be incorrect. The parameter {? defined in the list of sym-
bols does not seem to fit the dimensional analysis.

lativistic postulate, as we normally do, instead of as a
consequence of the relativistic transformation, the
treatment of Unz, Epstein, et al., is not. This is be-
cause the £ and H fields in the EPHMv formulation
are only partial fields [1964b]. The force equation
in that formulation therefore does not have the same
structure as the Lorentz force equation. In order to
justify that treatment, we shall treat the same problem
based upon the polarization current model and point
out its implications.

3. Polarization Current Model

In the book by Ratcliffe [1959], the Appleton-
Hartree equation for a stationary magneto-ionic me-
dium was derived by considering the medium to be
made of polarized matter or bound electrons. We
shall call such a model “the polarization current
model” in contrast to the convection current model
presented in the previous section. In the polariza-
tion current model, one has

J'=0 (52)
M =0 (53)

and
P'=ex -E' (54)

where, numerically, the dyadic susceptibility ;’ is
related to o’ defined by (30) in the following way

Jjo'€x' =0o’.

(55)
As a result of using ﬁ’, (24) and (25) become
5=?-(E+,u.o;x@—cl25xﬁ (56)
B= o [H—vx(?-f)]+gle (57)
where
e=’=eo(7+ ;'). (58)
Two alternative expressions for (56) and (57) are
5=5(E+e(§’ . (E—F ;uo;xﬁ) (59)
B= poH — pov X (€0’ - E). (60)
If we denote
€X' - (E+ pov X H) =P (61)
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then

D=eE+P 62)
B=po(H—vXP). (63)
Within the order of accuracy of v/c, the apparent dif-
ference between (60) and (63) is of no consequence.
The basic equations involved in the polarization current
model are summarized below:

V X E =—jopsH—v X P) (64)
V X H=jo(eE + P) (65)
P=cox’ * (E+ pov X H). (66)

These equations play a role similar to (35) through
(37) in the convection current model. As far as the
result is concerned it will be shown that two models
do yield the same answer as far as the characteristic
equation for n is concerned. Equations (64) through
(66) may be transformed into another form by intro-
ducing a field vector H, defined by

H,=H—vXxP (67)
that gives
V X E=—jopoH, (68)
V X Hy,=jw(€k + P)—V X (v X P) (69)
F‘—“GO;' : (E'f‘ILO;X ﬁp) (70)

A term of the order of (v/c)? is discarded in converting
(66) into (70). Equations (68) and (69) are identical in
form to the two equations used by Unz [1962] who
originally investigated that problem based upon the
so-called EHPMv formulation. Equation (70) can
be transformed to the force equation interpreted by
Epstein [1963]. Thus, if we write (70) in the form

jo'P=0a" - (E+ pov X Hy) 11)

or
jo'r' - P=(E+ pov X Hy). (72)
Using T given by (29) and substituting it into (72) we

may reconstruct the differential equation correspond-
ingto (72). We consider

e_TXI' [(1 —jZI+ j?’] ‘P=E+pwxH, (13

which is the same as

_m(()’2 _0_):_ = .[Lolelﬁ() = = = T
Nle[? [(1 jw')P+] me’ XP_E+“"”XHZ4)

If we let

P=— Neﬁ,, (75)

then, (74) is equivalent to

’R ,0R = R, — - =
m at,zp P#Z—C(E+[L0#XH()+}L01)XHP).
(76)

+ mo

Since t' is defined in the primed system, the partial
derivation of a function with respect to ¢’ is the same

as the material derivative iz;—t—l-(; - V) evaluated in

dt

the unprimed system as a result of the first-order
Lorentz transformation, i.e., neglecting terms of the
order of (v/c)>. Equation (76), therefore, is identical
to the force equation in the EHPMv formulation. As
we have mentioned earlier, as far as the character-
istic equation for n is concerned, both the convection-
current model and the polarization model provide the
same answer. However, it is obvious from this dis-
cussion that there are several delicate concepts in-
volved in the polarization current model. It appears
that these concepts and their acceptance can best be
understood and justified with the aid of Minkowski’s
theory. Finally, it should be pointed out that although
the classical method provides the correct answer
when (v/c)? << 1 it fails when v is comparable toc. In
that case, one must depend upon Minkowski’s exact
theory to formulate such a problem.
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