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Minkowski's theory of moving media is ex te nded hereby to the anisotropic case. The corre· 
s pondin~ Maxwell-Minkowski equations have been derived under the condition th a t the ve locity of 
the movlllg medIUm IS s mall compared to the velocity of light. As an application of that theory, it 
IS s hown that the characten s tl cs of a plane wave propagating in a drifting magneto- ionic plas ma can 
con~enie nt! y be de te rmin ed from the constitutive para meters of th e plas ma without drifting. The 
equivale nce be tween the convectIOn current model adopted by Bell and HelliweU and the polarization 
curre nt model sugges ted by Unz and correctly inte rpre ted by Eps tein, Bell , S mith, and Brice is also 
pointed out. 

1_ Introduction 

The foundation of the electrodynamics of moving 
media was laid by Minkowski [1908] and based upon 
the special theory of relativity. For a moving iso
tropic medium, the comple te treatment is given by 
Sommerfield [1952]. When the veloc ity of the 
moving isotropic medium is small compared to the 
velocity of light, the resultant wave equations can be 
greatly simplified [Tai, 1964b]. Several tec hnical 
problems arising from these wave equations have 
already been investigated [Compton and Tai, 1964; 
Collier and Tai , 1964; and Tai, 1964a]. 

1.1. First-Order Relativistic Transformation of Field 
Vectors 

In this report we shall prese nt an extension of Min
kowski's theory to moving anisotropic media. The 
theory is finally applied to a drifting magneto-ionic 
medium to determine the normal modes of plane 
waves which can exist in such a medium. The char
acteristic equation for the index of refraction so ob
tained by the first order relativistic transform method 
is the same as the one first derived by Bell and Helli
well [1959] using the convection current model and 
later by Epstein, Bell, Smith, and Brice [1963] using 
the polarization current model suggested by Unz 
[1962]. The equivalence between these models can 
be traced through Minkowski's theory. 

1 The resea rc h rel)Orl ed in Ihis paper was s upport ed in pari by the Na tional Ae ronautics 
and Space Administration under Grant NsG 444. 

In thi s sec tion , we shall first review the relativistic 
transformation of the fi eld vec tors de fin ed in Max
well's equations as firs t recognized by Einstein and 
later elaborated by Minkowski. Two inertial systems 
(x, y, z) and (x', y ', z') are in relative motion_ The 
primed sys tem is assumed to be moving with a velocity 
v with respect to the unprimed sys te m. The time vari
able in the two systems will be de noted, respec tively, 
by t and t'. Maxwell' s equations and the equation 
of continuity defin ed in the sys tems are 

\j ' X E, = _aB' 
at' (1) 

\j' xii' = ], + aD' 
at' (2) 

\j ' .],=_ap' 
at' (3) 

\j xE= - aB 
at (4) 

\j x H=j+ aD 
at (5) 

- ap \j .j=--. (6) at 
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If the velocity v is small compared to the velocity of 
light, the first-order relativistic transformation be
tween the two sets of field vectors, resulting from 
neglecting terms of the order of (v/c)2, is given by 
[Cullwick, 1957] 

where 

- - 1- -
D'=D+-vxH 

c2 

E'=E+vxB 

B' =B_l-;XE 
c2 

H'=H-vxD 

j' = j-pv 

1- -
P'=P-2 V -j c 

c2 = 1/ f.LoEo. 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

If two material field vectors P and M are used, such 
that one writes 

D=EOE+P (14) 

(15) 

and similarly for the primed quantities, then the first
order relativistic transformation of the material field 
vectors can be deduced from (7-10). They are 

- 1- - = --
D+"2v x H=E'· (E+vxB) 

c 

- 1- - = - - -
B - c2 V X E = f.L' . (H - v X D) 

j-pv=a-' ·(E+vxB) 

(21) 

(22) 

(23) 

By eliminating D or B from (21) and (22) and neglect
ing terms of the order of (V/C)2, we have 

D = =;, . [It + -; X (~, . H)] - c\ -; X H 

B =~' . [ H - -; X (=;, . E)] + c~ -; X E 

} =";'. [E+-; X(~' . H)] +p-;. 

Since \l . D = p, (26) may be written in the form 

} = ";, . [E + -; X (~' . H)] + -; \l . (~ . E). 

(24) 

(25) 

(26) 

(27) 

Again, terms of the order of (V/C)2 have been neglected 
in deriving (27). Equations (24), (25), and (27) contain 
the first-order constitutive relations between the field 
quantities defined in the unprimed system in terms 
of the constitutive parameters known or given in the 
primed system. By substituting these equations into 
(4) and (5), we obtain the Maxwell-Minkowski wave 
equations for the field vectors E and H in a moving 
anisotropic medium which represent a formal exten-
sion of Minkowski's theory of moving media to the 
anistropic case. - - 1- -

P'=P--vxM 
c2 (16) 2. Magneto-Ionic Theory for Drifting Plasma 

M'=M+vxP. (17) 

1.2. First-Order Constitution Relations Between the 
Field Vectors Defined in the Unprimed System 

Let us assume that constitutive relations for an 
anisotropic medium in the primed system are known. 
In the most general case, they are 

D'="i' ·E ' (18) 

B'=f.L'·H' (19) 

(20) 

where the sign /I = /I is used to denote a dyadic. If the 
medium is dispersive, it is understood that E", Il', and 
0' would be functions of the frequency defined in the 
primed system, which will be denoted by w'. By sub
stituting (7) to (11) into (18) to (20), we obtain 

In this section, we shall apply the above formulation 
to derive the characteristic equation for the index of 
refraction for a plane wave propagating in a drifting 
magneto-ionic medium. The convection current 
model will be treated first. In such a model the 
plasma is assumed to consist of free electrons with 
a drift velocity v: The primed system is attached to 
the drifting electrons and the unprimed system is 
fixed to an observer. According to the well-known 
theory of a s tationary magneto-ionic _media, the rela
tion between the convection current J' and a harmon
ically oscillating. electric field E' with frequency w' 
can be written in the form 

-
r' · j'=E' (28) 

where the dyadic r' is given by 

~ ] [(1 ·Z')=J + .=y,] r =X'W'Eo -] ]. (29) 
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The p arameters contained in (29) are defin ed as follows: 

W p = pl as ma freque ncy 

Z'= WC , 
Wi 

W~ = collis ion frequency, 

-y; 

Y] 
0 -y.X' 

y~. 0 

Wm 
W " 

W Ilt = gyromagneti c freque ncy. 

The dyadic=;' is clearly the recriprocal of (; ' pre viously 
introduced in (20), i.e., 

plane wave to be propagating in the z-direction in the 
unprimed system so tha t all the field components 
have a dependence of &(wl - h-z) . The wave number k, 
the index of refractio n n , the phase velocity Vp and 
the a ngular freque ncy w are rela ted as follows : 

(38) 

As a result of the assumption of a pla ne wave propa
gating in the z-direction, (36) and (37) can be writte n as 

- jkz X E = - jw/-toH (39) 

- jkz X H = } + jWEoE . (40) 

Eliminating H between (39) and (40), we obtain 

Subs tituting th e expressions for H and} as give n by 
(39) qnd (41) into (35), we obtain a homogeneous equa-
tion for E 

- jw:;? . [(1 - n2)E + (n2z - n/3)Ez] = E + n/3 X ('2: X E) 
(42) 

(30) where 

In the convection c urre nt model, the medium is con
sidered to be unpolarized a nd un magneti zed, hence, 

E' = EJ (31) 

Equations (24), (25), and (27), therefore, r educe to 

D= EoE (33) 

B = /-toH 

,.' . [) - v V' . (/-toE)] = E + /-tovx H. 

(34) 

(35) 

On account of (33) and (34), (4) and (5) become, for a 
harmonically oscillating field, 

{3 = vic. (43) 

To find the charac teris.!ic equati on for n, the primed 
quantities contained in {" must firs t be co nverted into 
explicit func tions of n. Because of the Dopple r shift, 
the relationship between Wi and w, accurate to the 
order of vic, is given by 

W i = w(l-!!.. vz) 
W 

n 
= w(I- - vz) 

c 

=w(l-n{3z). (44) 

V' X E = - jw/-toH 
The parameters contained in r', therefore , can be 

(36) written as: 

V' X H =} + jWEoE. (37) 

Equations (35Uh~ugh (3]) are the three basic equa
tions relating E, H, and) in a drifting magneto-ionic 
medium. They have been derived by applying 
Minkows ki 's first-order rela tivi sti c transform method. 

To de rive the c harac teri sti c equation for the index 
of refrac tion, le t us assume a harmonically oscilla ting 
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X' = (:~ r = (I - ~{3z)2 (:; r = (1-:{3z)2 

Z I = We = 1 (we) = Z , 
Wi 1- n{3z w 1 - n{3z 

'V' = w1ll = 1 (W1/! ) 
Wi l - n{3z w 

y 

1- n{3z 

(45) 

(46) 

(47) 



he nce, 

. =, _1 - nf3z [(1 . Z ) =1+ . Y ] 
-]WEOT - X -] I-n{3z ] I-n{3z 

1 - -
= X (l-n{3z - jZ)! + j"Y. (48) 

On account of (48), the explicit expression for (42) is 
given by 

[(1- n{3z - jZ)! + jYJ . [(1- n2)E + (n2z - n/3)Ez] 

= X[E + n/3 X (z X E)]. (49) 

Equation (49) can be written in the form 

A· E=O. (50) 

Where the element of the dyadic A are found to be 

Axx = (n2 - 1) (1- n{3z - jZ) + (1- n{3z)X 

Axy =- j(n2 -1)Yz 

Axz = (1 - n{3z - jZ)n{3x - jn{3yYz - j(1 - n{3z)Yy 

Ayy = (n2 - 1) (1- n{3z - jZ) + (1- n{3z)X 

A yz = (1 - n{3z - jZ)n{3z + jn{3xYz + j(l- n{3z)Yx 

Azx = - j(n2 - I)Yy + n{3xX 

A zy = j(n2 - I)Yx + n{3yX 

Azz = - (1 - n{3z) (1- n{3z - jZ) - jn{3xYy + jn{3yYx + X. 

(51) 

By setting the determinant of A equal to zero, one 
obtains the characteristic equation for n. Equation 
(50) is the same as the one first obtained by Bell and 
Helliwell [1959)2 if we discard in their work the part 
contributed by the ambient plasma. It is also identical 
to the one obtained by Epstein, Bell, Smith, and Brice 
[1963] after correctly interpreting the work of Unz 
[1962]. The alternative derivation presented here 
appears to provide a clearer view as to how the original 
Appleton·Hartree matrix was transformed as a result 
of the motion. It also s hows another application of 
Minkowski's powerful theory . While the treatment of 
Bell and Helliwell may be considered as "classical" 
if one accepts the Lorentz force equation as a prere· 

'2 Bell and HelliweU cons idered only the case where v and lio have the same direction. 

lativistic postulate, as we normally do, instead of as a 
consequence of the relativistic transformation, the 
treatment of Unz, Epstein, et al., is not. This is be
cause the E and H fields in the EPHMv formulation 
are only partial fields [1964b]. The force equation 
in that formulation therefore does not have the same 
structure as the Lorentz force equation. In order to 
justify that treatment, we shall treat the same problem 
based upon the polarization current model and point 
out its implications. 

3. Polarization Current Model 

In the book by Ratcliffe [1959J, the Appleton
Hartree equation for a stationary magneto-ionic me
dium was derived by considering the medium to be 
made of polarized matter or bound electrons. We 
shall call such a model "the polarization current 
model" in contrast to the convection current model 
presented in the previous section. In the polariza
tion current model, one has 

J'=O (52) 

(53) 

and 

p' = EoX' . E' (54) 

where, numerically, the dyadic susceptibility X' IS 

related to (i' defined by (30) in the following way 

jw' EoX' = cr'. (55) 

As a result of using P', (24) and (25) become 

- = - - - 1--
D=E' . (E+ /-tov X H)-zv X H (56) 

c 

where 

? = Eo(! + X')· (58) 

Two alternative expressions for (56) and (57) are 

D= EoE + EoX' . (E+ JJ-oV X H) (59) 

(60) 
This res triction can easi ly be removed. They a lso included a stationary plas ma in addition If we denote 
10 the drifting one. The part contributed by the stationary plas ma can be included in our 
treatment if necessary. There are some minor algebraic mistakes in Bell and HeUiwell' s 
work. For example the matrix for JMh equation (12), cont ains a parameter PI which is 
defined as k/k, Y,. that appears 10 be incorrec t. The paramete r {2 defined in the li sl of sym· EO-X' . (E + "OV X H) = P 
bois does nol seem 10 fil the dimensional analysis. ,.,.. (61) 
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then If we let 

D= EoE+P 

B = /-to(H - v X P). 

(62) P=-NeRp 

(63) then, (74) is equivale nt to 

(75) 

Within the order of accuracy of vIc, the apparent dif
ference between (60) and (63) is of no consequence. 
The basic equations involved in the polarization current 
model are summarized below: 

V xE=-jW/-to(H- v X P) (64) 

v XH=jW(EoE+P) (65) 

P = EOX' . (E + /-tov X H). (66) 

These equations play a role similar to (35) through 
(37) in the convection current model. As far as the 
result is concerned it will be shown that two models 
do yield the same answer as far as the characteris ti c 
equation for n is concerned. Equations (64) through 
(66) may be transfo!:...m ed into another form by intro
ducing a field vector Hp de fined by 

(67) 

that gives 

v X Hp = jw(EoE + P)- V X (v X P) (69) 

(70) 

A term of the order of (VIC)2 is di scarded in converting 
(66) into (70). Equations (68) and (69) are ide ntical in 
form to the two equations used by Unz [1962] who 
originally inves tigated that proble m based upon the 
so-called EHPMv formulation . Equation (70) can 
be transformed to the force equation interpre ted by 
Epstein [1963]. Thus , if we write (70) in the form 

(71) 

or 

(72) 

Using? given by (29) and substituting it into (72) we 
may reconstruct the differential equation correspond
ing to (72). We consider 

:1, [(1- jZ')I+ jy'] . P=E+ /-to; X Hp (73) 

which is the same as 

-mW'2[( .W~ ) - ./-toleIHo -J -- - --NI 12 I - roo, P+] , x p -E+/-tov XHp. 
e W mw (74) 

a2Rp ,aRp _ -E aliI) - --
m at'2 +mwcat'"" - - e( + /-t0at' X Ho+/-tov X Hp). 

(76) 

Since t' is defined in the primed sys te m, the partial 
derivation of a function with respect to t ' is the same 

as the material derivative dd = ~ + (; . V) e valuated in 
t at 

the unprimed sys tem as a result of the firs t-order 
Lorentz transformation, i.e., neglecting terms of the 
order of (vlcF. Equation (76), therefore, is ide ntical 
to the force equation in the EHPMv formulation . As 
we have mentioned earli er , as far as the c harac te r
is ti c equation for n is concerned, both the convec tion
curre nt model a nd the polarization model provide the 
same a nswer. However , it is obvious fro m thj s di s
cussion that there are several delicate concepts in
volved in the polarization c urre nt model. I t appears 
that these concepts and their acceptance can bes t be 
unders tood and jus tified with the aid of Minkowski 's 
theory. Finally, it s hould be pointed out that although 
the classical method provides the correc t answer 
whe n (V IC)2 « 1 it fails whe n v is co mparable to c. In 
that c ase, one mus t depe nd upon Minkows ki 's exact 
theory to formulate such a proble m. 
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