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The me thods of geometrical optics are exte nded so that they may be applied to gyrotropic bodies. 
Various' internal and external re fl ections are considered at nonparallel planar inte rfaces and means 
of determining the ray path or direction of e ne rgy flow are de rived . Nonplanar geometries may be 
represented by the tange nt planes at the various points of inc ide nce. A method is given for computing 
the phases of the various fi elds . These values may be used to de te rmin e the re fl ecte d fi e lds from 
such a "gy rotropic body. 

1. Introduction 

A numbeT of inves tigators have applied geometrical optics to anisotrop ic media, notably in 
ionospheric research [Budde n, 1961] where ray tracing procedures have bee n carried out for aniso· 
tropic interfaces, and also of more recent studies where sources have been included [Arbel, 1960; 
Arbel and Felse n, 1963; Felsen, 1963a, and b] and scatterers e mbedded in anisotropic regi'ons 
[Felsen, 1963a, b, 1964a, b ; Rulf and Felse n, 1964]. While these s tudies have often involved spe· 
cial orientations of the gyrotropic axis (parallel or perpe ndic ular to the interface) or special medium 
parameters (uniaxial case) to permit the derivation of explicit results for various radiation and dif
frac tion problems, the relevance of these techniques to more ge neral situations has been indicated. 

A modified geometrical optics method also has been developed for approximating the electro
magnetic scattering properti es of isotropic bodies. This method has been successfully applied 
to a number of differe nt cases including cylinders, spheres, and a prolate sphe roid [Peters and 
Thomas , 1962; Thomas, 1962; Kawano and P eters, 1963; Kouyoumjian, P eter s, and Thomas, 1963; 
Kawano and P eters, 1964]. These papers on the modified geometrical optics me thod have s hown 
the manner in which diffraction of rays and caustics may be treated. In order to apply these same 
methods to gyrotropic media, geometrical optics for gyro tropic bodies is required. The purpose of 
this paper is to. outline a geometrical optics technique for gyrotropic bodies . Much of the material 
is well known but has not been presented in concise form such that the modified geometrical optics 
method can be readily applied. 

Wait [1961] has developed a boundary value solution for the infinite circular gyrotropic cylinde r 
with an axial magnetic field. This is a special case in which the index of refraction is indepe nde nt 
of the direction of propagation through the medium. The modified geometrical optics me thod 
[Lee , Peters, and Walter, 1964a, and b] has also been applied to this particular case and the results 
obtained are In excellent agreement with those obtained from the boundary value solution . 

In all cases the static magnetic field is chosen so that it lies in the plane of incidence, i.e., the 
x -z plane (see fig. 1). Then this plane contains all refracted ray paths. If the static magnetic 
field had a y c.omponent, this would no longer be true . This does not represent a limitation on the 
methods but it does reduce the complications involved in obtaining numerical results . 

I The work rcporl ~d in thi s paper was s upport ed in pari by Contract Number AF 19(604}-7270 between Air Force Cambridge Hcscarc h Laboratories , Office of 
Aerospace Hesearc h, Bedford, Mass. and The Ohio Slale University Research Foundation. 

2 Presently employt!d by Bell Telephone Laboratories, Inc., Murray Hill, N.J. 
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FIGURE 1. Plane wave incident on a plasma gyrotropic 
interface. 
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2. Ray Optics for Arbitrary Gyrotropic Boundaries 

The fundamentals needed to trace a ray path through a finite, homogeneous, gyrotropic body 
and to compute the magnitude and phase of the emergent rays are developed in this paper by 
considering only planar interfaces. This might appear to be a severe restriction; however, modi· 
fied geometrical optics as applied to isotropic bodies is also based on the planar interfaces. Snell's 
law and the various reflection and transmission coefficients are all derived under the assumption 
of infinite planar interfaces. Yet this modified geometrical optics method has been remarkably 
successful in computing the radar cross section for isotropic spheres and cylinders. This modified 
geometrical optics method also yields remarkably accurate radar cross sections for the plasma 
cylinder with an axial static magnetic field [Wait, 1961; Lee, Peters, and Walter, 1964 a, and b]. 
The reflection and transmission coefficients for the planar gyrotropic interfaces have been devel· 
oped previously and are given in the appendix. 

The same assumption made in developing the modified geometrical optics method in these 
previous cases is also made here for this general gyro tropic case. That assumption is that the 
planar interfaces represent the tangent planes of any curved body at the point of incidence and the 
point of reflection. The ray technique for finite homogeneous gyro tropic bodies will now be 
summarized. 

A ray is incident at the origin as shown in figure 1. The value of S is obtained from the angle 
of incidence, (h, as S = sin (h and C = cos (h, where the incident plane wave is given by 

UI = Uoe - jk(Sx+Czl. (1) 

The parameters of the gyro tropic plasma medium are given by X and Y which are defined by 

and 

where 
WH IS the cyclotron frequency, 
WN IS the plasma frequency, 

Eo IS the permittivity in free space, 
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(2) 

(3) 

(4) 
(5) 



and 

J-Lo is the permeability in free space, 
N is the number of electrons per unit volume, 
e IS the charge of electron, 

m is the mass of electron, 
Ho is the applied static magnetic field, 
iI, i2, i3 are the direction cosines of the static magnetic fi eld, 

~ k are the unit vectors for the coordinate system of figure 1. 

These represent the physical parameters of the gyrotropic body to be treated. If that body has 
a curved surface it should be noted that S is a function of the point at which the ray enters the body 
for a particular plane wave incidence, or conversely that the coordinate system of figure 1 is always 
chosen so that the z·axis is normal to the surface at the point of incidence which is the origin. 
Thus the values of S, C, ii, i2, and i3 are all functions of this angle of incidence, OJ. 

Once OJ is found, vlllues of S, C, ii, i2, and i3 are readily obtained. These parameters uniquely 
dete rmine the values of the coeffici ents a, {3 , y , 0, and E of Booker' s quartic equation, which is 
given by 

F(q) = aq4 + {3q3+ yq2 + oq+ E = 0, (6) 

where the coefficients are functions of direction, O2 • For the lossless case, the collision freque ncy 
is negligible, and 

a = (1- Yl) +X(Y; -1) = (1- Yl) + X(iiYl -1), (7) 

(8) 

y = - 2(1- X)(C2 - X) + 2Yl(C2 - X) + X[Yl - CY; + S2fi.] 

=- 2(1- X)(C2 -X) + 2Yl(C2- X)+ XYl[I- C2l5 +S2tn, (9) 

(10) 

and 

(11) 

Similar equations have been derived by [lohler and Walters, 1960] without neglecting the loss 
mechanism. 

For the present case l2 is set equal to zero tu maintain the refracted angle in the plane of in· 
cidence. This is not an essential step but simply reduces the complexity of the solution. The 
more general case of l2 ~ 0 would follow the procedures given without any complication. 

Once, a, {3, y, 0, and E are obtained, Booker's quartic equation, (6), may be factored and the 
four values of q obtained. The two roots, ql and q2, which make the signs of ray path angles Og, 
and Og, the same as OJ are the ones being sought, since they represent waves traveling in the posi· 
tive z·direction. 
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The angle {}g is given by 

(12) 

These angles are the directions of two ray paths associated with ql and q2, respectively. 
The angles (}PI and (}P2 of the refractive index n will also be useful in the following calculations. 

They are given by 

using the respective values ql and q2. 

S 
tan (}p =-, 

q 

The relative phase of the ray at any point r is given by 

and 

s 
n=---' 

sin (}p 

(13) 

(14) 

(15) 

It is necessary to determine this relative phase since the phasor sum of the various scattered field 
components is to be computed to find the total scattered field. 

To specify the magnitude of the ray at the intersection point on the second interface, it is 
necessary to compute the transmission coefficients at the first interface. These are given by (A-I) 
and (A-2). One may also compute the reflection coefficient at the first interface at this time which 
would be associated with the directly reflected ray. 

The fields associated with the two rays at their point of intersection with the second interface 
(shown in fig. 2) are given by 

(16) 

and 

where rl and rz are the lengths of the ray paths. The directly reflected fields at the first interface 
are given by 

(17) 

and 

It is now necessary to determine a new set of parameters associated with the transmission 
and reflection mechanism at the second interface. The first step is to transform the coordinate 
system such that the z; axis is now normal to this second interface, as illustrated by x;, y;, z;, 
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F IGURE 2. Ray tracing for nonparallel intelfaces. 

coordinate system for ray 1 and shown in figure 2. The values q; and S; of the ray incident on 
this second interface in this primed coordinate syste m are [Lee, Peters, and Walters, 1964 a and b] 

,_ cos (Op + 0) 
q - q cos Op (18) 

and 

5' =5 sin .(Op+ 0), 
sm Op (19) 

The subscript (1) on the coordinate axes refers to the system associated with q,. A second coo rdi
nate system, designated by x~, y~, z~, is associated with q2 for ray 2. This is necessary because 
the phase angle Op differs for the two ray paths r, and r2. 

The value C,'2 = 1-S,'2 and the values of the direction cosines ii' and i3' of the magnetic field 
are readily obtained in the new coordinate system. The coefficients of Booker's quartic equation 
(ex', f3' , y', 8', E') now may be obtained from (7-11). 

For ray 1, these coefficients are a function of S; at point 0;. Thus Booker's equation must be 
factored to obtain the roots q;, q(2);, q~, q(4);. However q; is already known and Booker's equation 
reduces to the cubic equation 

where ex;, f3;, y;, 8; are associated with 5;. There are three solutions to (20) which are designated 

353 

x 



by q(2);, q;, and q(4);. It has been shown [Lee, 1963] that the desired value of q~ should be chosen 
so that if q; > q(2);, then q~ < q(4);, when the associated pair (q;, q;) is being sought. Now (for 
ray 1) (}Y::' shown in figure 2, is found from (12), and (}p~ from (13). The index of refraction, n~, 
is found from (15). The same technique can be applied to find q~ from q~ at point O~ for ray 2. 

The point of intersection of the ray path with the next interface may then be found for the 
geometry being treated. In the example of figure 2, this is the original interface. Calculation of 
phase at this intersection follows the method described above. The reflection and transmission 
coefficients at this boundary, i.e., at the point 0' of figure 2 are given by (A-3) and (A-4). At 
point 0;, q;, q~, and q(4); are used to calculate ;R~, ;TII ' and ;TJ.. At point O~, q~, q~, and q(3)~ are 
used to calculate ~R~, ~TI I ' and ~TJ.. 

Thus only reflection coefficients :R:i and ;'R; are considered in the following treatment. For 
cases where ;R(4); and ~R(3)~ are not negligible the additional computation [Lee, 1963] would parallel 
those used in this paper. Reflections described by coefficients ;R(4); and ~R(3)~ are interpreted 
as coupling between waves. 

The fields transmitted into free space at the second interface are given by 

(21) 

and 

where 

and all phases are referenced to the original origin of coordinates at point 0, i.e., x=y=z=O. 
The fields of the ray reflected back to the gyro tropic medium to the point O~ and 0; are 

(22) 

and 

where 

cp; = kn;r; cos ((}~:J - ()~) and cp~ = kn~r~ cos ((}~4 - (}~), 

and all phases are referenced to the original origin o. 
The use of ray optics for the gyrotropic body has considered a ray incident upon the body from 

the external medium and followed it completely through one internal reflection. All of the fields 
associated with this case have been given. Any additional internal reflections may be treated 
simply by repeating these same steps. In addition, any coupling terms may also be readily in· 
cluded in any case where coupling becomes significant. 

Any changes in amplitude introduced by diverging ray systems, i.e., spatial attenuation, have 
been neglected. However, this problem can be handled by the modified geometrical optics method. 
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3. Conclusions 

A modified geometrical optics method has bee n described for determining the scattered fields 
of gyrotropic bodies. This method makes use of a ray optics technique developed for .gyrotropic 
media. The general methods given are applicable to any anisotropic body. Other known tech· 
niques can not be applied to find these scattered fields. 

4. Appendix. Reflection and Transmission CoefficientR at Planar "Free-Space 
Gyrotropic" Interfaces 

The coordinate system used in this appendix is chosen so that 5, = 5 and 52 = 0. Th ere are 
four possible waves in the gyrotropic medium; paired as upgoing waves, designated by subscripts 
(1) and (2), and downgoing waves, designated by subscripts (3) and (4). Thus a wave (1) or (2) 
in the gyro tropic medium may be reflected as wave (3) or (4), the re fl ec tion coefficient of whic h 
is designated IR 3 , IR 4 , 2R 3 , or 2R 4 , etc. 

4.1. Wave Incident From Free Space Up to Gyrotropic Medium 

For parallel polarized plane wave incidence (E~ = 0) 

E1' ET 2C 1 
liT, =_z_, = C..2J.=-(7TY2- C 'Y/ X2), 

'Y/H~ E~ D, 

E' ET 2C 1 
II T2 = HZ2, = C E~2=_-D (7TlI ,--C 'Y/x ,), 

'Y/ Y x , 

H:I Eli 1 1 
II R lb H: = -E' = D- [('Y/ X,'Y/1I2 -'Y/y,'Y/x.l +c (7Tx ,'Y/x, - 'Y/ X,7TX2) 

y X' I 

and 

where 

ER 2 
II R .L =-HY ' =--D [7T y,'Y/X2- 'Y/x ,7Ty2]· 

'Y/o y , 

- (5q + M .X'Z) (C2_q2 + M ",,) + M x 11M 'iZ 7T x= .. " , 
(1- q2+ Mxx) (C2 - q2 + M ylI)- MxyMyx 

_ -(1- q2 + M xx)Myz+(5q+ M xzJMyz 
7T y- (1- q2+ M xx) (C2 _ q2 + Myy) - M xyM yx ' 

'Y/x =52 - q7Ty, 

and the numerical subscript is the subscript for the particular q involved. 
For perpendicular polarized plane wave incidence (El = 0), 

£T 2 
.LTI = E£' =-Dl (7TX2 - C'Y/Y2)' 

£T 2 
.LTz = EZ~ =-D (7Tx, + C'Y/ y,), 

y I 
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_ E:; _ 1 [ 1 
.LRJ - Et - D! - (1] X,1]Y2-1]y,1]X2) +c (7rX,1]X2-1]X,7rX2) 

- C( 7r y ,1]Y2 -1]y,7rY2) + (7rX,7rY2 - 7ry,7rX2)] ' 

and 

where 

Transmission into the gyro tropic medium yields coefficients of the form li T!, II T2 , where the 
subscript II designates the polarization of the incident wave and (1) or (2) designates one of the 
up going waves. Conventional definitions of polarization are used so that subscript II or .L means 
that the E vector is "parallel to" or is "perpendicular to" the plane of incidence, respectively. 

4.2. Wave Incident From Gyrotropic Medium Up to Free Space 

For wave (1) (E;,=O) 

and 
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For wave (2) (E£,= O) 

E~ 1 
2TII = E I = Do {1T X2 ( 'Y/ X,,'Y/Y4 - 'Y/y" T/.rJ - 'Y/X2 (1T YOT/Y4 - T/y,,1T y.) 

Z2 -

2R3= -;;21 [ ( T/ X2'Y/Y4 - 'Y/Y, 'Y/ X,) +l; (1TX,'Y/ X4 -T/X21TxJ +C(1Ty2'Y/y., - 'Y/y,1Ty.,) + (7TX21TY4-1TY21TXJ]. (A-4) 

and 

where 

The dominant reflection coefficients are .R3 and 2R4 • Coefficients .R4 and 2R3 are usually negligible . 

4.3. Wave Incident From Gyrotropic Medium Down to Free Space 

For wave (3) (£I = 0) 
Z4 

'Y/Hr £T-C 
3TII = E l Y =- C E: =D {1TxJrl x ,'Y/Y2 -'Y/y,'Y/x2)- 'Y/ x,,(1Tx ,'Y/Y2 -'Y/y,1TX2) 

Z:I Za 3 

- C(1T y,'Y/y" - 'Y/Y21Ty) + (1Tx,1TY3 -1T1h1TX:)}, (A-S) 
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and 

For wave (4) (E~3 = 0) 

_ T/Hi, _ E~ _ C {( _ ) _ ( _ ) + ( _ ) 4TI I - £I -- C £I---D 7TX4 T/X,T/Y2 T/y,T/ X2 T/ x4 7Tx ,T/Y2 T/y, 7TX2 T/Y4 7Tx ,T/X2 T/X, 7TX2 
Z4 Z4 3 

and 

where 

In this case the dominant reflection coefficients are 3Rl and 4R2. The coefficients 3R2, 4RJ are 
usually negligible. 
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